Laboratoria nr 1. Sortowanie
|
|
- Aleksander Popławski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Laboratoria nr 1 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) 4. Sortowanie przez zliczanie (CS) 5. Sortowanie kubełkowe (BS) 6. Sortowanie przez scalanie ciągów (MS) 7. Sortowanie stogowe (HS) 8. Sortowanie szybkie (QS) Materiały
2 WyróŜniamy następujące metody sortowania: 1. Przez prostą zamianę bąbelkowe (Bubble Sort) BbS Sprawdzamy całą tablicę od dołu do góry (od prawej do lewej strony). Analizowane są zawsze dwa sąsiadujące ze sobą elementy. JeŜeli uporządkowane są one tak, Ŝe większy poprzedza mniejszy to zamieniane są one miejscami. Czynność powtarzana jest tak długo, aŝ podczas sprawdzania całej tablicy, nie zajdzie ani jedna zamiana elementów. W trakcie pierwszego przebiegu na pierwszą pozycję tablicy (indeks 0) przesuwa się element najlŝejszy", w trakcie drugiego przebiegu drugi najlŝejszy wędruje na drugą pozycję tablicy (indeks 1) i tak dalej, aŝ do posortowania tablicy. Strefa pracy algorytmu zmniejsza się zatem o 1 w kolejnym przejściu duŝej pętli - analizowanie za kaŝdym razem całej tablicy byłoby niepotrzebne. Algorytm nosi nazwę bąbelkowego przez analogię do pęcherzyków powietrza ulatujących w górę tuby wypełnionej wodą o ile postawioną pionowo tablicę potraktować jako pojemnik z wodą a liczby jako pęcherzyki powietrza. Najszybciej ulatują do góry bąbelki najlŝejsze - liczby o najmniejszej wartości (przyjmując sortowanie w kierunku wartości niemalejących). PoniŜej znajduje się przykład dla nieuporządkowanego ciągu liczb <40, 2, 39, 6, 18, 4, 20>. Tablica wejściowa A w poniŝszym pseudokodzie zawiera ciąg, który zakończeniu procedury tablica A zawiera posortowany ciąg wyjściowy. naleŝy posortować. Po PSEUDOKOD Bubble-Sort (A) 1 for i 1 to length[a] 3 for j length[a] 1 to i 4 if A[j] < A[j-1] 5 then do zamień A[j] A[j-1] 2. Przez proste wstawianie (Insertion Sort) IS Algorytm ten działa w taki sposób w jaki ludzie często porządkują talię kart. Zaczynamy od pustej lewej ręki, po czym bierzemy ze stołu kolejne karty i wstawiamy je we właściwe miejsca w talii kart, trzymanej w lewej ręce. Aby znaleźć właściwe miejsce dla danej karty, porównujemy ją z kartami, które juŝ mamy w ręce, przesuwając się od strony prawej do lewej. Na poniŝszym rysunku widać działanie algorytmu dla tablicy A=<5, 2, 4, 6, 1, 3>. Indeks j wskazuje kartę bieŝącą, która jest właśnie wstawiana do talii kart w ręce. Elementy tablicy
3 A[1...j-1] reprezentują karty trzymane w ręce, a elementy A[j+1..n] odpowiadają stosowi kart na stole. Indeks j przesuwa się od strony lewej do prawej. W kaŝdej iteracji zewnętrznej pętli for element A[j] jest pobierany z tablicy (wiersz 2 w pseudokodzie). Następnie, począwszy od pozycji j-1, elementy są sukcesywnie przesuwane o jedną pozycję w prawo, aŝ zostanie znaleziona właściwa pozycja dla A[j] (wiersze 4-7 w pseudokodzie) i wtedy element ten zostaje tam wstawiony (wiersz 8 w pseudokodzie). Tablica wejściowa A w poniŝszym pseudokodzie zawiera ciąg, który zakończeniu procedury tablica A zawiera posortowany ciąg wyjściowy. naleŝy posortować. Po PSEUDOKOD Insertion-Sort (A) 1 for i 1 to length[a] 2 do key A[j] 3 do wstaw A[j] w posortowany ciąg A[1...j-1] 4 i j 1 5 while i>0 i A[i] > key 6 do A[i+1] A[i] 7 i i 1 8 A[i+1] key 3. Przez proste wybieranie/wymianę (Selection Sort) SS Na początku szukany jest najmniejszy element. Po jego znalezieniu jest on zamieniany z pierwszym elementem tablicy. Następnie szukany jest ponownie najmniejszy element, ale począwszy od elementu drugiego (pierwszy najmniejszy jest juŝ wstawiony na odpowiednie miejsce). Po jego znalezieniu jest on zamieniany z drugim elementem. Czynność ta jest powtarzana kolejno na elementach od trzeciego, czwartego, itd., aŝ do n-tego. PoniŜej znajduje się przykład zastosowania dla nieuporządkowanego ciągu liczb <2, 4, 1, 3>.
4 4. Przez zliczanie (Counting Sort) CS Zakładamy, Ŝe kaŝdy z n sortowanych elementów jest liczbą całkowitą z przedziału od 1 do k dla pewnego ustalonego k. Główna idea sortowania przez zliczanie polega na wyznaczeniu dla kaŝdej liczby wejściowej x, ile elementów jest od niej mniejszych. Znając tę liczbę, znamy pozycję x w ciągu posortowanym, wystarczy ją więc bezpośrednio na tej pozycji umieścić. Sytuacja nieco się zmienia, gdy dozwolonych jest więcej elementów o tej samej wartości, poniewaŝ nie chcemy, aby wszystkie elementy trafiły na tę samą pozycję. W procedurze Counting-Sort przyjmujemy, Ŝe dane wejściowe są zawarte w tablicy A[1...n], więc length[a]=n. Potrzebne są jeszcze dwie dodatkowe tablice: w B[1...n] zostaną umieszczone posortowane dane wejściowe, a w tablicy C[1...k] zapamiętywane są tymczasowe dane pomocnicze: Sposób sortowania polega na policzeniu najpierw ile razy dana liczba występuje w ciągu (wiersze 3-4 pseudokodu), który mamy posortować i umieszczenie tej informacji w tablicy C (np. C[4]=3, oznacza, Ŝe cyfra 4 wystąpiła w tablicy wejściowej A 3 razy). Następnie obliczane jest ile elementów jest mniejszych lub równych od elementów w wejściowej tablicy A dodawanie po kolei wartości tablicy C (wiersze 6-7 pseudokodu). Na końcu (w wierszach 9-11 pseudokodu) wszystkie elementy tablicy A zostają umieszczone na właściwych pozycjach w tablicy B. PSEUDOKOD Counting-Sort (A, B, k) 1 for i 1 to k 2 do C[i] 0 3 for i 1 to length[a] 4 do C[A[i]] C[A[i]] // C[i] zawiera teraz liczbę elementów równych i 6 for 2 to k
5 7 do C[i] C[i] + C[i-1] 8 // C[i] zawiera liczbę elementów mniejszych lub równych i 9 for i length[a] downto 1 10 do B[C[A[i]]] A[i] 11 C[A[i]] C[A[i]] 1 5. Kubełkowe (Bucket Sort) BS Zakładamy, Ŝe dane wejściowe są liczbami rzeczywistymi wybieranymi losowo z przedziału [0, 1), zgodnie z rozkładem jednostajnym. Sortowanie opiera się na triku polegającym na podziale przedziału [0, 1) na n podprzedziałów jednakowych rozmiarów, tzw. kubełków, a następnie rozrzuceniu n liczb do kubełków, do których naleŝą. PoniewaŜ liczby są jednostajnie rozłoŝone w przedziale [0, 1), więc oczekujemy, Ŝe w kaŝdym z kubełków nie będzie ich zbyt wiele. W celu uzyskania ciągu wynikowego, sortujemy najpierw liczby w kaŝdym z kubełków, a następnie łączy się je wszystkie, przeglądając po kolei kubełki.
6 PoniŜej znajduje się przykład zastosowania dla nieuporządkowanego ciągu liczb <0.78, 0.15, 0.26, 0.02, 0.64, 0.76, 0.63, 0.59, 0.25, 0.74, 0.15, 0.18, 0.82, 0.79, 0.39>.PSEUDOKOD: BUCKET-SORT(A) 1 n length[a] 2 for i 1 to n 3 do wstaw A[i] do listy B[ na[i] ] 4 for i 0 to n 1 5 do posortuj listę B[i] przez wstawianie 6 połącz listy B[0], B[1],..., B[n 1] dokładnie w tej kolejności 6. Przez scalanie (Merge Sort) MS Scalanie ciągów polega na łączeniu posortowanych ciągów w jeden ciąg posortowany. Ciągi scala się parami, poczynając od pierwszych dwóch. Ustawiamy liczniki obu ciągów na 1 (co wskazuje na pierwszy element ciągu). Sprawdzamy, który z elementów jest mniejszy i ten element przenosimy do ciągu wynikowego, a licznik ciągu, którego element był mniejszy zwiększamy o 1. Następnie sprawdzamy kolejne elementy wskazywane przez liczniki i robimy to tak długo, aŝ liczniki będą wskazywać na ostatnie elementy swoich ciągów. Gdy tak się stanie, w ciągu wynikowym będziemy mieli scalone dwa ciągi o liczbie wyrazów będącej sumą elementów ciągów scalanych. Po scaleniu
7 dwóch pierwszych ciągów scalamy ciąg wynikowy i trzeci. Po tej operacji w ciągu wynikowym będziemy mieli scalone 3 pierwsze ciągi. Następnie scalamy ciąg wynikowy z ciągiem 4, itd... PoniŜej znajduje się przykład zastosowania dla nieuporządkowanych ciągów liczb <1, 5, 18, 27, 31, 95> oraz <5, 13, 21, 31, 45, 88, 95, 107>. PoniŜej znajduje się przykład zastosowania dla nieuporządkowanego ciągu liczb <2, 1, 2, 9, 5, 0>. PSEUDOKOD:
8 MERGE-SORT(A, p, r) 1 if p < r 2 then q (p + r)/2 3 MERGE-SORT(A, p, q) 4 MERGE-SORT(A, q+1, r) 5 MERGE(A, p, q, r) A = tablica p,q, r = indeksy, takie, Ŝe p q < r Zakłada się, Ŝe podtablice A[p..q], A[q r] są posortowane. Procedura MERGE-SORT scala te tablice w jedną posortowaną tablicę A[p..r]. Przez łączenie naturalne Dane, które chcemy posortować są przechowywane w plikach. Nie mamy bezpośredniego dostępu do dowolnego elementu ciągu do posortowania (teoretycznie mamy, ale wyszukanie kolejnego elementu w ciągu znajdującego się przed elementem, który pobraliśmy ostatnio, wymaga przejścia pliku od początku). Wykorzystujemy dwa pliki pomocnicze. Zakładamy, Ŝe sortujemy niemalejąco. 1. Rozdzielamy seriami plik wejściowy na dwa pliki pomocnicze. To znaczy przechodząc plik wejściowy od początku, wyszukujemy ciągi posortowane i zamiennie zapisujemy na dwa pomocnicze pliki. W praktyce wygląda to tak, Ŝe pobiera się n-ty oraz (n+1)-wszy element z pliku i sprawdza się, czy (n+1)-wszy jest większy lub równy n-temu. Jeśli tak, to naleŝy do ciągu i zapisujemy go do tego samego pliku pomocniczego co element n-ty. Jeśli nie, to zapisujemy go na inny (drugi) plik pomocniczy i tak w kółko, aŝ do zakończenia pliku wejściowego. 2. Łączymy serie z plików pomocniczych i kopiujemy do pliku wejściowego (wejściowy lub dla ochrony danych moŝna sobie wziąć kolejny plik pomocniczy i na początku po prostu skopiować plik wejściowy do niego). Łączenie przebiega analogicznie do scalania ciągów, z tą róŝnicą, Ŝe tutaj oba pliki wejściowe niekoniecznie są całkowicie posortowane. 3. Wykonujemy zamiennie kroki 1 i 2, aŝ do momentu, w którym otrzymamy w pliku wejściowym tylko jedną serię, która jest naszym posortowanym ciągiem. PoniŜej znajduje się przykład zastosowania dla nieuporządkowanego ciągu liczb <1, 9, 8, 7, 4, 5, 7, 6, 1, 4, 0, 9, 8, 1, 3, 4, 8, 1, 7>. Po pierwszym kroku: Pierwszy plik pomocniczy: (odstępy pomiędzy seriami) Drugi plik pomocniczy: Plik wejściowy: Po drugim kroku:
9 Pierwszy plik pomocniczy: Drugi plik pomocniczy: Plik wejściowy: Po trzecim kroku: Pierwszy plik pomocniczy: Drugi plik pomocniczy: Plik wejściowy: Po czwartym kroku: Pierwszy plik pomocniczy: Drugi plik pomocniczy: Plik wejściowy: Przez kopcowanie stogowe (Heapsort) HS Czas działania algorytmu wynosi O(n log n). Algorytm heapsort sortuje w miejscu, tzn. elementy wejściowej tablicy są przechowywane cały czas w tej samej tablicy, tylko stała liczba elementów tablicy jest w czasie działania algorytmu przechowywana poza tablicą wejściową. UŜywa się tu struktury danych, zwanej kopcem, do przetwarzania danych w czasie działania algorytmu. Drzewo: Dla kaŝdego drzewa wyróŝniony jest jeden, charakterystyczny element korzeń. Korzeń jest jedynym elementem drzewa, który nie posiada elementów poprzednich. Dla kaŝdego innego elementu określony jest dokładnie jeden element poprzedni. Dla kaŝdego elementu oprócz ostatnich, tzw. liści, istnieją co najmniej 2 elementy następne. JeŜeli liczba następnych elementów wynosi dokładnie 2 to drzewo nazywamy binarnym. Kopiec (stóg): Kopiec (binarny), inaczej zwany stogiem, jest to tablicowa struktura danych, którą moŝna rozpatrywać jako pełne drzewo binarne, które spełnia tzw. warunek kopca (kaŝdy następnik jest niewiększy od swego poprzednika). Z warunku tego wynikają szczególne własności kopca: w korzeniu kopca znajduje się największy element, na ścieŝkach (połączeniach między węzłami), od korzenia do liścia, elementy są posortowane nierosnąco.
10 KaŜdy węzeł drzewa odpowiada elementowi tablicy, w którym jest podana wartość węzła. Drzewo jest pełne na wszystkich poziomach z wyjątkiem być moŝe najniŝszego, który jest wypełniony od strony lewej do pewnego miejsca. Po zbudowaniu drzewa naleŝy wykonać odpowiednie instrukcje, które zapewnią mu warunek kopca. NaleŜy więc sprawdzać (poczynając od poprzednika ostatniego liścia schodząc w górę do korzenia), czy poprzednik jest mniejszy od następnika i jeŝeli tak jest to zamienić je miejscami. Po wykonaniu tych czynności drzewo binarne zamienia się w stóg. Z jego własności wynika, Ŝe w korzeniu znajduje się największy element. Korzystając z tego faktu, moŝemy go pobrać na koniec tablicy wynikowej, a na jego miejsce wstawić ostatni liść. Po pobraniu korzenia tablica źródłowa zmniejsza się o 1 element, a porządek kopca zostaje zaburzony (nie wiadomo, czy ostatni liść będący teraz korzeniem jest rzeczywiście największym elementem). By przywrócić warunek stogu naleŝy ponownie uporządkować jego elementy, tym razem jednak zaczynając od korzenia (poniewaŝ to on jest nowym elementem). Po przywróceniu porządku w kopcu moŝemy ponownie pobrać korzeń i wstawić go do tablicy wynikowej (tym razem na drugie miejsce od końca), wstawić na jego miejsce liść i zmniejszyć rozmiar tablicy źródłowej o 1. Wykonujemy te czynności aŝ do ostatniego korzenia. Po całkowitym wyczyszczeniu kopca w tablicy wynikowej będziemy mieli posortowane elementy z tablicy wejściowej.
11
12
13
14 8. Szybkie (Quicksort) QS Zbiór danych zostaje podzielony na dwa podzbiory i kaŝdy z nich jest sortowany niezaleŝnie od drugiego. Do utworzenia podzbioru musimy ze zbioru wybrać jeden z elementów, który nazwiemy piwotem. W lewym podzbiorze znajdą się wszystkie elementy niewiększe od piwotu, a w prawym podzbiorze znajdą się wszystkie elementy niemniejsze od piwotu. PołoŜenie elementów równych nie wpływa na proces sortowania, zatem mogą one występować w obu podzbiorach. RównieŜ porządek elementów w kaŝdym z podzbiorów nie jest ustalony. Jako piwot moŝna wybierać element pierwszy, środkowy, ostatni, medianę lub losowy. Dla naszych potrzeb wybierzemy element środkowy.
15
16 PSEUDOKOD: QUICKSORT(A, p, r) 1 if p < r 2 then q PARTITION(A, p, r) 3 QUICKSORT(A, p, q) 4 QUICKSORT(A, q+1, r) PARTITION (A, p, r) 1 x A[p] 2 i p 1 3 j r while TRUE 5 do repeat j j 1 6 until A[j] x 7 repeat i i until A[i] x 9 if i < j 10 then zamień A[i] A[j] 11 else return j W celu posortowania tablicy wywołujemy QUICKSORT(A, 1, length[a]). Główna procedura algorytmu PARTITION przestawia elementy podtablicy A[p..r] w miejscu.
17 Laboratorium 1. SORTOWANIE. Na początek kilka ogólnych zaleceń dotyczących sprawozdań: 1. Sprawozdania powinny być wydrukowane obustronnie 2. Nie produkujemy strony tytułowej; wystarczą dane osobowe + numery indeksów. 3. Nie umieszczamy opisu ćwiczenia oraz kodu programu. 4. NajwaŜniejsze są wykresy (odpowiedni dobór parametrów - punktów pomiarowych, czytelność) oraz wnioski, szczególnie, dotyczące złoŝoności obliczeniowej badanych problemów. 1. Porównaj szybkość działania 4 metod sortowania: IS, SS, HS, QS dla tablicy liczb całkowitych generowanych w postaci: losowej, rosnącej, malejącej, stałej, v-kształtnej. Przedstaw wykresy t = f(n) dla kaŝdej z metody w zaleŝności od postaci tablicy wejściowej, gdzie: t - czas sortowania; n - liczba elementów tablicy. Liczbę elementów naleŝy dobrać w taki sposób, aby moŝliwe było wykonanie pomiarów. Wyniki przedstawić na czterech wykresach (przynajmniej 15 punktów pomiarowych). 2. Sformułuj wnioski odnośnie: złoŝoności obliczeniowej badanych metod i ich związku z efektywnością sortowania oraz zajętością pamięciową kaŝdej z nich, wpływu postaci ciągów wejściowych na czas sortowania. Nieprzekraczalny termin oddanie sprawozdania następne zajęcia (odległe od bieŝących o co najmniej dwa tygodnie). Literatura: Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest Wprowadzenie do algorytmów Wydanie czwarte, Wydawnictwo Naukowo-Techniczne, Warszawa, 2001 N. Wirth Algorytmy + struktury danych = programy Wydawnictwo Naukowo-Techniczne, Warszawa, 2004
Laboratorium nr 7 Sortowanie
Laboratorium nr 7 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) Materiały Wyróżniamy następujące metody sortowania: 1. Przez prostą zamianę
Laboratoria nr 1. Sortowanie
Laboratoria nr 1 Sortowanie 1. Sortowanie bąbelkowe (BbS) 2. Sortowanie przez wstawianie (IS) 3. Sortowanie przez wybieranie (SS) 4. Sortowanie przez zliczanie (CS) 5. Sortowanie kubełkowe (BS) 6. Sortowanie
Podstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Sortowanie bąbelkowe
1/98 Sortowanie bąbelkowe (Bubble sort) prosty i nieefektywny algorytm sortowania wielokrotnie przeglądamy listę elementów, porównując dwa sąsiadujące i zamieniając je miejscami, jeśli znajdują się w złym
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:
Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące
Wykład 3. Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy
Wykład 3 Złożoność i realizowalność algorytmów Elementarne struktury danych: stosy, kolejki, listy Dynamiczne struktury danych Lista jest to liniowo uporządkowany zbiór elementów, z których dowolny element
Sortowanie. Bartman Jacek Algorytmy i struktury
Sortowanie Bartman Jacek jbartman@univ.rzeszow.pl Algorytmy i struktury danych Sortowanie przez proste wstawianie przykład 41 56 17 39 88 24 03 72 41 56 17 39 88 24 03 72 17 41 56 39 88 24 03 72 17 39
Wykład 5. Sortowanie w czasie liniowologarytmicznym
Wykład 5 Sortowanie w czasie liniowologarytmicznym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n 2 Zestawienie
Rekurencja. Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)!
Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Przykład: silnia: n! = n(n-1)! Pseudokod: silnia(n): jeżeli n == 0 silnia = 1 w przeciwnym
Sortowanie w czasie liniowym
Sortowanie w czasie liniowym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n Po co sortować? Podstawowy problem
Definicja. Ciąg wejściowy: Funkcja uporządkowująca: Sortowanie polega na: a 1, a 2,, a n-1, a n. f(a 1 ) f(a 2 ) f(a n )
SORTOWANIE 1 SORTOWANIE Proces ustawiania zbioru elementów w określonym porządku. Stosuje się w celu ułatwienia późniejszego wyszukiwania elementów sortowanego zbioru. 2 Definicja Ciąg wejściowy: a 1,
Algorytmy i struktury danych
Algorytmy i struktury danych Proste algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Pojęcie sortowania Sortowaniem nazywa się proces ustawiania zbioru obiektów w określonym porządku Sortowanie
Sortowanie - wybrane algorytmy
Sortowanie - wybrane algorytmy Aleksandra Wilkowska Wydział Matematyki - Katedra Matematyki Stosowanej Politechika Wrocławska 2 maja 2018 1 / 39 Plan prezentacji Złożoność obliczeniowa Sortowanie bąbelkowe
Sortowanie przez scalanie
Sortowanie przez scalanie Wykład 2 12 marca 2019 (Wykład 2) Sortowanie przez scalanie 12 marca 2019 1 / 17 Outline 1 Metoda dziel i zwyciężaj 2 Scalanie Niezmiennik pętli - poprawność algorytmu 3 Sortowanie
Programowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
Algorytmy sortujące. sortowanie kubełkowe, sortowanie grzebieniowe
Algorytmy sortujące sortowanie kubełkowe, sortowanie grzebieniowe Sortowanie kubełkowe (bucket sort) Jest to jeden z najbardziej popularnych algorytmów sortowania. Został wynaleziony w 1956 r. przez E.J.
Sortowanie przez wstawianie Insertion Sort
Sortowanie przez wstawianie Insertion Sort Algorytm sortowania przez wstawianie można porównać do sposobu układania kart pobieranych z talii. Najpierw bierzemy pierwszą kartę. Następnie pobieramy kolejne,
Algorytmy i struktury danych
Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe 15 stycznia 2019 Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r P Jaka wartość zostanie zwrócona
Wstęp do programowania
Wstęp do programowania Algorytmy na tablicach Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. III Jesień 2013 1 / 23 Dwadzieścia pytań Zasady 1 Osoba 1 wymyśla hasło z ustalonej
znalezienia elementu w zbiorze, gdy w nim jest; dołączenia nowego elementu w odpowiednie miejsce, aby zbiór pozostał nadal uporządkowany.
Przedstawiamy algorytmy porządkowania dowolnej liczby elementów, którymi mogą być liczby, jak również elementy o bardziej złożonej postaci (takie jak słowa i daty). Porządkowanie, nazywane również często
prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
ALGORYTMY I STRUKTURY DANYCH
ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/
Strategia "dziel i zwyciężaj"
Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania
Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP
Algorytmy i struktury danych Sortowanie IS/IO, WIMiIP Danuta Szeliga AGH Kraków Spis treści I 1 Wstęp 2 Metody proste 3 Szybkie metody sortowania 4 Algorytmy hybrydowe Sortowanie hybrydowe Sortowanie introspektywne
Algorytmy sortujące i wyszukujące
Algorytmy sortujące i wyszukujące Zadaniem algorytmów sortujących jest ułożenie elementów danego zbioru w ściśle określonej kolejności. Najczęściej wykorzystywany jest porządek numeryczny lub leksykograficzny.
Algorytm selekcji Hoare a. Łukasz Miemus
Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego
Algorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
Sortowanie. LABORKA Piotr Ciskowski
Sortowanie LABORKA Piotr Ciskowski main Zaimplementuj metody sortowania przedstawione w następnych zadaniach Dla każdej metody osobna funkcja Nagłówek funkcji wg uznania ale wszystkie razem powinny być
Informatyka A. Algorytmy
Informatyka A Algorytmy Spis algorytmów 1 Algorytm Euklidesa....................................... 2 2 Rozszerzony algorytm Euklidesa................................ 2 3 Wyszukiwanie min w tablicy..................................
ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
PODSTAWY INFORMATYKI wykład 10.
PODSTAWY INFORMATYKI wykład 10. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutniacza w Krakowie WEAIiE,
Sortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Wykład 3. Metoda dziel i zwyciężaj
Wykład 3 Metoda dziel i zwyciężaj 1 Wprowadzenie Technika konstrukcji algorytmów dziel i zwyciężaj. przykładowe problemy: Wypełnianie planszy Poszukiwanie (binarne) Sortowanie (sortowanie przez łączenie
Struktury Danych i Złożoność Obliczeniowa
Struktury Danych i Złożoność Obliczeniowa Zajęcia 2 Algorytmy wyszukiwania, sortowania i selekcji Sortowanie bąbelkowe Jedna z prostszych metod sortowania, sortowanie w miejscu? Sortowanie bąbelkowe Pierwsze
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni. Wykład 3. Karol Tarnowski A-1 p.
Programowanie proceduralne INP001210WL rok akademicki 2017/18 semestr letni Wykład 3 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Co to jest algorytm? Zapis algorytmów Algorytmy
Wykład 2. Poprawność algorytmów
Wykład 2 Poprawność algorytmów 1 Przegląd Ø Poprawność algorytmów Ø Podstawy matematyczne: Przyrost funkcji i notacje asymptotyczne Sumowanie szeregów Indukcja matematyczna 2 Poprawność algorytmów Ø Algorytm
Źródła. N.Wirth Algorithms and Data Structures, 1985 D.E.Knuth The Art of Computer Programming. Vol. 3, 1973
Źródła N.Wirth Algorithms and Data Structures, 1985 D.E.Knuth The Art of Computer Programming. Vol. 3, 1973 Sortowanie Szukamy uporządkowania; mamy wiele algorytmów o różnych zaletach i różnych stopniach
Sortowanie zewnętrzne
Algorytmy i struktury danych Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Sortowanie zewnętrzne 1 Wstęp Bardzo często
Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa
Łukasz Przywarty 171018 Data utworzenia: 24.03.2010r. Mariusz Kacała 171058 Prowadzący: prof. dr hab. inż. Adam Janiak oraz dr inż. Tomiasz Krysiak Zadanie projektowe 1: Struktury danych i złożoność obliczeniowa
Programowanie Proceduralne
Programowanie Proceduralne Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 1 / 59 Cel wykładów z programowania
INFORMATYKA SORTOWANIE DANYCH.
INFORMATYKA SORTOWANIE DANYCH http://www.infoceram.agh.edu.pl SORTOWANIE Jest to proces ustawiania zbioru obiektów w określonym porządku. Sortowanie stosowane jest w celu ułatwienia późniejszego wyszukania
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium Nr 4
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Nr 4 Algorytmy sortowania zewnętrznego 1 Wstęp Bardzo często przy rozwiązywaniu praktycznych
Problemy porządkowe zadania
Problemy porządkowe Problemy porządkowe zadania Problemy porządkowe to zbiór różnych zadań obliczeniowych związanych z porządkowaniem zbioru danych i wyszukiwaniem informacji na takim zbiorze. Rodzaje
Wykład 4. Sortowanie
Wykład 4 Sortowanie 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n Po co sortować? Podstawowy problem dla algorytmiki
liniowa - elementy następują jeden za drugim. Graficznie możemy przedstawić to tak:
Sortowanie stogowe Drzewo binarne Binary Tree Dotychczas operowaliśmy na prostych strukturach danych, takich jak tablice. W tablicy elementy ułożone są zgodnie z ich numeracją, czyli indeksami. Jeśli za
Egzamin, AISDI, I termin, 18 czerwca 2015 r.
Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Wyszukiwanie. Wyszukiwanie binarne
Wyszukiwanie Wejście: posortowana, n-elementowa tablica liczbowa T oraz liczba p. Wyjście: liczba naturalna, określająca pozycję elementu p w tablicy T, bądź 1, jeŝeli element w tablicy nie występuje.
Algorytmy sortujące. Sortowanie bąbelkowe
Algorytmy sortujące Sortowanie bąbelkowe Sortowanie bąbelkowe - wstęp Algorytm sortowania bąbelkowego jest jednym z najstarszych algorytmów sortujących. Zasada działania opiera się na cyklicznym porównywaniu
WYKŁAD 9. Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c. Tomasz Zieliński
WYKŁAD 9 Algorytmy sortowania elementów zbioru (tablic) Programy: c4_1.c... c4_3.c Tomasz Zieliński /* Przyklad 4.1 - SORTOWANIE TABLIC - metoda najprostsza */ #include #define ROZMIAR 11 void
Jednym z najprostszych sposobów porządkowania jest technika stosowana przy sortowaniu listów:
Jednym z najprostszych sposobów porządkowania jest technika stosowana przy sortowaniu listów: Listy rozkładane są do różnych przegródek. O tym, do której z nich trafi koperta, decydują różne fragmenty
Efektywna metoda sortowania sortowanie przez scalanie
Efektywna metoda sortowania sortowanie przez scalanie Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Metoda dziel i zwycięŝaj Dzielimy
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury
Jeszcze o algorytmach
Jeszcze o algorytmach Przykłady różnych, podstawowych algorytmów 11.01.2018 M. Rad Plan Powtórka Znajdowanie najmniejszego elementu Segregowanie Poszukiwanie przez połowienie Wstawianie Inne algorytmy
Drzewa BST i AVL. Drzewa poszukiwań binarnych (BST)
Drzewa ST i VL Drzewa poszukiwań binarnych (ST) Drzewo ST to dynamiczna struktura danych (w formie drzewa binarnego), która ma tą właściwość, że dla każdego elementu wszystkie elementy w jego prawym poddrzewie
Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:
Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n
Porządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Sortowanie przez wstawianie
Sortowanie przez wstawianie Wykład 1 26 lutego 2019 (Wykład 1) Sortowanie przez wstawianie 26 lutego 2019 1 / 25 Outline 1 Literatura 2 Algorytm 3 Problem sortowania Pseudokod 4 Sortowanie przez wstawianie
Temat 7. Najlżejsze i najcięższe algorytmy sortowania
Temat 7 Najlżejsze i najcięższe algorytmy sortowania Streszczenie Komputery są często używane porządkowania różnych danych, na przykład nazwisk (w porządku alfabetycznym), terminów spotkań lub e-maili
Przykładowe B+ drzewo
Przykładowe B+ drzewo 3 8 1 3 7 8 12 Jak obliczyć rząd indeksu p Dane: rozmiar klucza V, rozmiar wskaźnika do bloku P, rozmiar bloku B, liczba rekordów w indeksowanym pliku danych r i liczba bloków pliku
Algorytmy i złożoność obliczeniowa. Wojciech Horzelski
Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury
Kolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.
Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego
Podstawy Informatyki. Sprawność algorytmów
Podstawy Informatyki Sprawność algorytmów Sprawność algorytmów Kryteria oceny oszczędności Miara złożoności rozmiaru pamięci (złożoność pamięciowa): Liczba zmiennych + liczba i rozmiar struktur danych
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
Algorytmy przeszukiwania
Algorytmy przeszukiwania Przeszukiwanie liniowe Algorytm stosowany do poszukiwania elementu w zbiorze, o którym nic nie wiemy. Aby mieć pewność, że nie pominęliśmy żadnego elementu zbioru przeszukujemy
Struktury danych: stos, kolejka, lista, drzewo
Struktury danych: stos, kolejka, lista, drzewo Wykład: dane w strukturze, funkcje i rodzaje struktur, LIFO, last in first out, kolejka FIFO, first in first out, push, pop, size, empty, głowa, ogon, implementacja
Listy, kolejki, stosy
Listy, kolejki, stosy abc Lista O Struktura danych składa się z węzłów, gdzie mamy informacje (dane) i wskaźniki do następnych węzłów. Zajmuje tyle miejsca w pamięci ile mamy węzłów O Gdzie można wykorzystać:
Rekurencja. Przykład. Rozważmy ciąg
Rekurencja Definicje rekurencyjne Definicja: Mówimy, iż ciąg jest zdefiniowany rekurencyjnie, jeżeli: (P) Określony jest pewien skończony zbiór wyrazów tego ciągu, zwykle jest to pierwszy wyraz tego ciągu
Algorytmy. 1. Sortowanie 2. Statki i okręty. programowanie cz.7. poniedziałek, 2 marca 2009
Algorytmy. Sortowanie 2. Statki i okręty programowanie cz. ALGORYTMY SORTUJĄCE A. Przez zamianę (bąbelkowe) B. Przez wybieranie Najpopularniejsze metody sortowania C. Przez wstawianie Przez zamianę (sortowanie
PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.
PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. 1. Instrukcję case t of... w przedstawionym fragmencie programu moŝna zastąpić: var t : integer; write( Podaj
operacje porównania, a jeśli jest to konieczne ze względu na złe uporządkowanie porównywanych liczb zmieniamy ich kolejność, czyli przestawiamy je.
Problem porządkowania zwanego również sortowaniem jest jednym z najważniejszych i najpopularniejszych zagadnień informatycznych. Dane: Liczba naturalna n i ciąg n liczb x 1, x 2,, x n. Wynik: Uporządkowanie
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to
Złożoność obliczeniowa algorytmu ilość zasobów komputera jakiej potrzebuje dany algorytm. Pojęcie to wprowadzili J. Hartmanis i R. Stearns. Najczęściej przez zasób rozumie się czas oraz pamięć dlatego
Wymagania edukacyjne z informatyki w klasie VIII
Wymagania edukacyjne z informatyki w klasie VIII Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy uczeń. Wymagania podstawowe
Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy
1 Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com
2:8,7 3:9,4 / \ / \ / \ / \ 4:7,3 5:8 6:9,2 7:4
Wykład: Sortowanie III Drzewa Turniejowe 1:9,8 2:8,7 3:9,4 4:7,3 5:8 6:9,2 7:4 8: 3 9:7 12:9 13:2 Insert(x,S) 1) tworzymy dwa nowe liście na ostatnim poziomie, 2) do jednego wstawiamy x a do drugiego wartość
Programowanie dynamiczne
Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty
Zapis algorytmów: schematy blokowe i pseudokod 1
Zapis algorytmów: schematy blokowe i pseudokod 1 Przed przystąpieniem do napisania kodu programu należy ten program najpierw zaprojektować. Projekt tworzącego go algorytmu może być zapisany w formie schematu
Podstawy Programowania 1 Sortowanie tablic jednowymiarowych. Plan. Sortowanie. Sortowanie Rodzaje sortowania. Notatki. Notatki. Notatki.
Podstawy Programowania 1 Sortowanie tablic jednowymiarowych Arkadiusz Chrobot Zakład Informatyki 12 listopada 20 1 / 35 Plan Sortowanie Wartość minimalna i maksymalna w posortowanej tablicy Zakończenie
Zestaw 1: Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.adb i.ads)!!! Zad. 1: Zad. 2: 2,2,2 5,5,5,5,5,5 Zad.
Zestaw 1: procedurę Wstaw wstawiającą do sznura podanego jako parametr element zawierający liczbę podaną jako parametr tak, aby sznur był uporządkowany niemalejąco (zakładając, że sznur wejściowy jest
WyŜsza Szkoła Zarządzania Ochroną Pracy MS EXCEL CZ.2
- 1 - MS EXCEL CZ.2 FUNKCJE Program Excel zawiera ok. 200 funkcji, będących predefiniowanymi formułami, słuŝącymi do wykonywania określonych obliczeń. KaŜda funkcja składa się z nazwy funkcji, która określa
PODSTAWY INFORMATYKI wykład 5.
PODSTAWY INFORMATYKI wykład 5. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,
Laboratorium nr 1. i 2.
Laboratorium nr 1. i 2. Celem laboratorium jest zapoznanie się ze zintegrowanym środowiskiem programistycznym, na przykładzie podstawowych aplikacji z obsługą standardowego wejścia wyjścia, podstawowych
Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.
Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa
Algorytmy i złożoności. Wykład 3. Listy jednokierunkowe
Algorytmy i złożoności Wykład 3. Listy jednokierunkowe Wstęp. Lista jednokierunkowa jest strukturą pozwalającą na pamiętanie danych w postaci uporzadkowanej, a także na bardzo szybkie wstawianie i usuwanie
KODY SYMBOLI. Kod Shannona-Fano. Algorytm S-F. Przykład S-F
KODY SYMBOLI Kod Shannona-Fano KODOWANIE DANYCH, A.Przelaskowski Metoda S-F Kod Huffmana Adaptacyjne drzewo Huffmana Problemy implementacji Kod Golomba Podsumowanie Kod drzewa binarnego Na wejściu rozkład:
Luty 2001 Algorytmy (4) 2000/2001
Mając dany zbiór elementów, chcemy znaleźć w nim element największy (maksimum), bądź najmniejszy (minimum). We wszystkich naturalnych metodach znajdywania najmniejszego i największego elementu obecne jest
Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
Podstawowe struktury danych
Podstawowe struktury danych 1) Listy Lista to skończony ciąg elementów: q=[x 1, x 2,..., x n ]. Skrajne elementy x 1 i x n nazywamy końcami listy, a wielkość q = n długością (rozmiarem) listy. Szczególnym
Wstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów
1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.
1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:
dodatkowe operacje dla kopca binarnego: typu min oraz typu max:
ASD - ćwiczenia IX Kopce binarne własność porządku kopca gdzie dla każdej trójki wierzchołków kopca (X, Y, Z) porządek etykiet elem jest następujący X.elem Y.elem oraz Z.elem Y.elem w przypadku kopca typu
LICZNIKI Liczniki scalone serii 749x
LABOATOIUM PODSTAWY ELEKTONIKI LICZNIKI Liczniki scalone serii 749x Cel ćwiczenia Zapoznanie się z budową i zasadą działania liczników synchronicznych i asynchronicznych. Poznanie liczników dodających
Algorytmy i struktury danych Matematyka III sem.
Algorytmy i struktury danych Matematyka III sem. 30 godz. wykł. / 15 godz. ćw. / 15 godz. projekt dr inŝ. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura T.H. Cormen i inni, Wprowadzenie
Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne
A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację