Obliczenia wielkości zwarciowych z wykorzystaniem nowych norm
|
|
- Mariusz Kuczyński
- 9 lat temu
- Przeglądów:
Transkrypt
1 Andrzej KANICKI Politechnika Łódzka Instytut Elektroenergetyki Obliczenia wielkości zwarciowych z wykorzystaniem nowych norm 1. Wstęp Zasady obliczeń wielkości zwarciowych nie ulegają zmianą od lat trzydziestych ubiegłego wieku i są dobrze opisane w literaturze książkowej, w języku polskim można tu wymienić przykładowe pozycje [14], [15], [16], [17], [18], [19] a w języku angielskim [1], [2], [27]. Szczegółowe zasady takich obliczeń są podawane w postaci norm począwszy od normy VDE 102 z 1929 roku. W Polsce w obliczeniach wielkości zwarciowych do 2003 roku posługiwaliśmy się normami znanymi od kilkudziesięciu lat, a mianowicie: PN - 74/E Dobór aparatów wysokonapięciowych w zależności od warunków znamionowych PN -90/E Obliczanie skutków prądów zwarciowych W 2002 roku PKN wprowadził do użytkowania następujące nowe normy: PN-EN :2002 (U) Obliczanie skutków prądów zwarciowych. Część 1: Definicje i metody obliczania PN-EN :2002 (U) Prądy zwarciowe w sieciach trójfazowych prądu przemiennego. Część 0: Obliczanie prądów PN-EN :2004 (U) Prądy zwarciowe w sieciach trójfazowych prądu przemiennego. Część 3: Prądy podwójnych, jednoczesnych i niezależnych, zwarć doziemnych i częściowe prądy zwarciowe płynące w ziemi PN-EN :2002 (U) Prądy zwarciowe w obwodach pomocniczych prądu stałego w elektrowniach i stacjach elektroenergetycznych. Część 1: Obliczanie prądów zwarciowych PN-EN :2002 (U) Prądy zwarciowe w obwodach pomocniczych prądu stałego w elektrowniach i stacjach elektroenergetycznych. Część 2: Obliczanie skutków. Wymienione normy nie są przetłumaczone na język polski, a więc są w języku angielskim i francuskim. Normy te, to normy europejskie przejęte z norm IEC wyszczególnionych w spisie literatury od [3] do [13] Norma PN-EN :2002 została omówiona w [15] jeszcze jako IEC :2001. W dalszych rozważaniach zostanie szczegółowo omówiona norma PN-EN :2002 pod kątem obliczeń zwarciowych w promieniowych sieciach niskiego napięcia. 2. Założenia do obliczeń W normie PN-EN :2002 Prądy zwarciowe w sieciach trójfazowych prądu przemiennego. Część 0. Obliczanie prądów obliczenia prądów i wielkości zwarciowych mają różny przebieg w zależności od typu zwarcia, i tak rozróżnia się: 1
2 zawarcia pobliskie, podczas którego składowa okresowa prądu zwarciowego pozostaje stała zwarcia odległe, podczas którego w co najmniej jednej maszynie synchronicznej prąd zwarciowy początkowy jest dwukrotnie większy od prądu znamionowego tej maszyny lub udział silników asynchronicznych w prądzie zwarciowym początkowym liczonym bez tych silników jest większy niż 5% tego prądu. Podział ten jak i przebiegi prądu zwarciowego podczas zwarcia pobliskiego i odległego są dobrze omówione w literaturze. Założono tutaj, że zostanie rozważone jedynie zwarcie odległe z uwzględnieniem wpływu silników asynchronicznych. Wspólną wielkością dla obu typów zwarć jest pojęcie źródła napięciowego zastępczego włączonego w miejscu zwarcia jako idealne źródło, niezależne od prądów zwarciowych i niezależne od stanu sieci przed zwarciem. Źródło napięciowe zastępcze w miejscu zwarcia jest jedynym źródłem aktywnym w sieci podczas zwarcia. Wartość napięcia tego źródła to: (1) gdzie: c - współczynnik napięciowy podany w tabl. 1. Zastosowanie współczynnika c powoduje, że obliczanie stanu sieci przed zwarciem nie jest wymagane. Tabl. 1. Współczynnik napięciowy c Napięcie nominalne sieci U n Niskie napięcie od 100 V do 1000 V Średnie napięcia powyżej 1 kv do 35 kv Wysokie napięcia powyżej 35 kv do 230 kv 2) Współczynnik napięciowy c do obliczania: maksymalnego prądu minimalnego 1) zwarciowego c max zwarciowego c min 1,05 3) 0,95 1,10 4) 1,10 1,00 prądu 1. c max.u n nie może przekraczać najwyższego napięcia urządzeń U m 2. Jeżeli nie jest zdefiniowane napięcie nominalne sieci to powinno się zastosować c max.u n =U m lub c mim.u n =0,9.U m 3. Dla niskiego napięcie z zakresem napięcia +6% np. dla 380 lub 400 V 2
3 4. Dla niskiego napięcie z zakresem napięcia +10%. Norma PN-EN :2002 podaje następujące założenia upraszczające: rozpatruje się zwarcie pojedyncze, jednoczesne, podczas zwarcia nie występują zmiany w rozważanej sieci, pomija się wszystkie pojemności i upływności linii oraz admitancje równoległe reprezentujące nie wirujące obciążenia z wyjątkiem pojemności linii dla składowej zerowej w sieci z nieskutecznie uziemionym punktem neutralnym, nie jest potrzebna znajomość położenia przełączników zaczepów transformatorów, pomija się stany przejściowe w generatorach i silnikach, pomija się rezystancję łuku. Norma proponuje, aby stosować metodę składowych symetrycznych podczas obliczania zwarć symetrycznych jak i niesymetrycznych. Obliczając prądy zwarciowe w sieci wielonapięciowej należy przeliczać impedancje z jednego poziomu napięcia na inny, zwykle na poziom napięcia w miejscu zwarcia. Przeliczanie to powinno wykorzystywać kwadraty rzeczywistych przekładni transformatorów, przekładnie te powinny być równe stosunkowi napięć znamionowych transformatora, czyli Metodę jednostek względnych można zastosować, gdy różnonapięciowe sieci są koherentne, czyli dla każdego transformatora. 3. Maksymalny prąd zwarciowy W przypadku konieczności wyznaczenia maksymalnego prądu zwarciowego należy założyć: współczynnik c przyjąć z tabl. 1 dla maksymalnego prądu zwarciowego, wybrać konfiguracją systemu, która prowadzi do maksymalnych prądów zwarciowych, wyznaczając impedancję zastępczej sieci elektroenergetycznej wybrać taką konfigurację, która prowadzi do maksymalnego prądu zwarciowego, uwzględnić silniki asynchroniczne, rezystancje linii wyznaczyć w temperaturze 20 C 4. Minimalny prąd zwarciowy W przypadku konieczności wyznaczenia minimalnego prądu zwarciowego należy założyć: współczynnik c przyjąć z tabl. 1 dla minimalnego prądu zwarciowego wybrać konfiguracją systemu, która prowadzi do minimalnych prądów zwarciowych pominąć silniki rezystancję linii przeliczyć na maksymalną temperaturę zgodnie z wzorem: 3
4 (2) gdzie: R L20 - rezystancja linii w temperaturze 20 C, e- temperatura przewodnika linii na koniec trwania zwarcia w [ C], =0,004 w [1/ C]. Temperaturę przewodnika linii na koniec trwania zwarcia wyznaczyć można zgodnie np. z IEC Impedancja sieci elektroenergetycznej zastępczej Impedancja sieci elektroenergetycznej zastępczej Z Q jest wyznaczana w oparciu prąd zwarciowy początkowy zwarcia trójfazowego, jaki płynie z tej sieci przy zwarciu na jej zaciskach (3) Rezystancję i reaktancję sieci elektroenergetycznej zastępczej wyznacza się następująco: Dla sieci o napięciu nominalnym powyżej 35 kv zakładamy, że rezystancja sieci jest równa zeru a reaktancja jej impedancji. Dla pozostałych sieci mamy: (4) (5) 6. Impedancja transformatora Impedancję transformatora wyznaczamy w oparciu o jego napięcie zwarcia, następnie rezystancję w oparciu o straty obciążeniowe a reaktancje z impedancji i rezystancji. W przypadku transformatorów wprowadzono współczynnik korekcyjny, przez który należy pomnożyć impedancję zespoloną transformatora. Współczynnik korekcyjny należy użyć także przy wyznaczaniu impedancji transformatora dla składowej przeciwnej i zerowej, przy czym nie dotyczy to impedancji uziemiającej transformatora. WspółczynniK Ten dla transformatora sieciowego dwuuzwojeniowego za wyjątkiem transformatorów blokowych jest o postaci: (6) 4
5 gdzie: x T - reaktancja transformatora wyznaczona w jednostkach względnych, w których moc podstawowa jest równa mocy znamionowej transformatora. Na rys. 1 pokazano wartości współczynnika korekcyjnego K T w funkcji reaktancji transformatora wyznaczonej w jednostkach względnych (w przybliżeniu równej napięciu zwarcia transformatora w jednostkach względnych) dla dwóch wartości współczynnika c. Współczynnik ten koryguje wartość siły elektromotorycznej wyznaczanej za pomocą wzoru (1) ze względu na występowanie spadków napięć na transformatorze przed zwarciem. Rys. 1. Współczynnik K T w zależności od wartości impedancji transformatora x T Dla transformatora sieciowego dwuuzwojeniowego, dla którego możliwe jest określenie warunków pracy w stanie przedzwarciowym za wyjątkiem transformatorów blokowych, współczynnik korekcyjny wyraża się zależnością: (7) gdzie: U b - najwyższe napięcie pracy sieci przed zwarciem, - najwyższy prąd transformatora przed zwarciem, - prąd znamionowy transformatora, 5
6 - kąt obciążenia prądu transformatora przed zwarciem. 7. Impedancja silnika asynchronicznego Silniki asynchroniczne średniego i niskiego napięcia są źródłem prądu zwarciowego i należy dla nich wyznaczać: prąd zwarciowy początkowy, prąd zwarciowy udarowy i p, prąd zwarciowy wyłączeniowy symetryczny I b, a dla zwarć niesymetrycznych także prąd zwarciowy ustalony I k. Silniki asynchroniczne niskiego napięcia należy brać pod uwagę w następujących instalacjach: w układach potrzeb własnych elektrowni, w przemysłowych instalacjach np. zakładach przemysłu chemicznego, stalowego czy w stacjach pomp. Wpływ silników asynchronicznych niskiego napięcia można pominąć, jeżeli udział silników asynchronicznych w prądzie zwarciowym początkowym liczonym bez tych silników jest mniejszy niż 5% tego prądu, tzn. gdy spełniona jest zależność: (8) gdzie: - suma prądów znamionowych silników przyłączonych bezpośrednio do sieci, w której wystąpiło zwarcie, czyli bez pośrednictwa transformatora, - prąd zwarciowy początkowy liczonym bez tych silników. Impedancja silników jest obliczana z zależności: (9) gdzie: - współczynnik samorozruchu silnika, - sprawność silnika. 6
7 Rezystancję i reaktancję niskonapięciowego silnika asynchronicznego wyznaczamy z: (10) (11) Impedancje silników są włączana w schemat zastępczy sieci dla składowej zgodnej i ewentualnie przeciwnej. Silniki asynchroniczne średniego i niskiego napięcia połączone z miejscem zwarcia za pośrednictwem transformatora lub za pośrednictwem pracujących równolegle transformatorów mogą być pominięte, gdy: (12) gdzie: - suma mocy znamionowych czynnych silników, - suma mocy znamionowych pozornych transformatorów, przez które silniki są połączone z miejscem zwarcia. - prąd zwarciowy początkowy płynący z układu zasilania liczonym bez tych silników. Powyższą zależność zilustrowano za pomocą rys. 2 dla wybranych wartości mocy zwarciowych w funkcji mocy znamionowej transformatora. Wyniki pod tymi krzywymi oznaczają pominięcie silnika a nad krzywymi zaaprobowanie w obliczeniach zwarciowych. Przebiegi tych krzywych są, co najmniej zaskakujące szczególnie w związku występującą nieciągłością wyników. Dodatkowo na rys. 3 podano wyniki z zależności (12) w funkcji mocy zwarciowych dla różnych mocy transformatora. Wyniki z tych dwóch rysunków wskazują, że dla zbyt dużych impedancji sieci zastępczej czy transformatora nie będzie silnika, który należy uwzględnić w obliczeniach zwarciowych. Silniki asynchroniczne niskiego napięcia połączone z miejscem zwarcia za pośrednictwem transformatora i przyłączone do strony dolnego napięcie tego transformatora za pośrednictwem różnych kabli można zastąpić jednym zastępczym silnikiem, którego parametry są następujące: silnika, kiedy nie znamy mocy silników, przy czym p to liczba par biegunów, 7
8 . Rys. 2. Wielkości otrzymywane z zależności (12) w funkcji mocy transformatora dla różnych mocy zwarciowych występujących przed transformatorem Rys. 3. Wielkości otrzymywane z zależności (12) w funkcji mocy zwarciowych dla różnych mocy transformatora 8
9 8. Impedancja przekształtnika statycznego Odwracalne statyczne przekształtniki zasilające różne napędy są rozważane jako źródła prądu zwarciowego jedynie podczas zwarcia trójfazowego, jeżeli: masy wirujące silników są dostatecznie duże, układ przekształtnika umożliwia przepływ energii od silnika do miejsca zwarcia podczas wybiegu silnika spowodowanego zwarciem. W tej sytuacji wyznacza się jedynie: prąd zwarciowy początkowy, prąd zwarciowy udarowy i p. Odwracalny statyczny przekształtnik modeluje się impedancją wyznaczoną z parametrów silnika, przy czym przyjmuje się:,,. 9. Impedancja kondensatora i obciążenia niewirującego Podczas obliczania prądów zwarciowych należy: pominąć kondensatory równoległe i obciążenia niewirujące również podczas wyznaczania prądu zwarciowego udarowego, pominąć kondensatory szeregowe do kompensacji reaktancji linii jeśli wyposażone są w urządzenia do ograniczania przepięć włączane równolegle z kondensatorem. 10. Prąd zwarciowy początkowy Prąd zwarciowy początkowy dla zwarcia trójfazowego wyraża się wzorem: (13) 11. Prąd zwarciowy udarowy i p Prąd zwarciowy udarowy może być wyznaczony z zależności: (14) Współczynnik udaru można wyznaczyć z rys. 4 lub z wzoru: 9
10 (15) R/X X/R Rys. 4. Współczynnik udaru w zależności od wartości R/X oraz X/R 10
11 12.Prąd wyłączeniowy symetryczny I b Podczas zwarcia odległego prąd wyłączeniowy symetryczny jest równy prądowi zwarciowemu początkowemu, czyli: (16) Prąd wyłączeniowy symetryczny płynący od silników asynchronicznych w sieci promieniowej jest równy iloczynowi prądu zwarciowego początkowego, współczynnika uwzględniającego zanikanie składowej okresowej tego prądu zwarciowego i współczynnika q zależnego od mocy znamionowej czynnej silnika na parę biegunów: (17) Współczynnik wyznaczany jest dla najkrótszego czasu od chwili powstania zwarcia do momentu otwarcia pierwszego bieguna łącznika. Współczynnik ten wyznaczamy z poniższych wzorów lub wykorzystując rys. 5. dla t min =0,02 s (18) dla t min =0,05 s (19) dla t min =0,10 s (20) dla t min >=0,25 s (21) 11
12 Rys. 5. Współczynnik dla wyznaczania prądu wyłączeniowego symetrycznego dla zwarcia pobliskiego Wartości współczynnika q wyznaczamy z poniższych zależności lub w oparciu o rys. 6: dla t min =0,02 s (22) dla t min =0,05 s (23) dla t min =0,10 s (24) dla t min =0,25 s (25) 12
13 Rys. 6. Współczynnik q uwzględniający wpływ mocy silnika na zmianę składowej okresowej prądu zwarciowego W przypadku występowania w sieci promieniowej kilku źródeł prąd wyłączeniowy symetryczny jest równy sumie arytmetycznej prądów wyłączeniowych symetrycznych płynących od każdego źródła. Zwarcia niesymetryczne należy traktować jako zwarcia odległe. 13. Prądy zwarciowe przy zwarciu na zaciskach silnika asynchronicznego W rozdziale tym zostaną podsumowane w tabl. 2 zależności na prądy zwarciowe płynące przy różnych rodzajach zwarć na zaciskach silnika asynchronicznego. Podczas zwarcia jednofazowego, jeżeli silnik nie ma uziemionego punktu neutralnego. Tabl. 2. Prądy zwarciowe przy zwarciu na zaciskach silnika asynchronicznego Rodzaj zwarcia Trójfazowe Dwufazowe Jednofazowe Prąd zwarciowy początkowy Prąd zwarciowy udarowy Silniki średniego napięcia: silniki o mocy na parę biegunów mniejszej od 1 MW, silniki o mocy na parę biegunów większej lub 13
14 równej od 1 MW. Silnik niskiego napięcia razem kablami łączącymi je z rozdzielnią:. Prąd zwarciowy wyłączeniowy symetryczny Współczynniki zgodnie z: - wzory od (6.74)do (6.77) lub rys. 6.10, q - wzory od (6.79)do (6.82) lub rys Prąd zwarciowy ustalony 14. Całka Joule'a i zastępczy prąd zwarciowy cieplny I th Całka Joule'a to energia cieplna wydzielana przez prąd zwarciowy w czasie trwania zwarcia na rezystancji i można ją opisać zależnością: (26) Całka ta została uzależniona od prądu zwarciowego początkowego i dwóch współczynników: m - opisującego wpływ zmian składowej nieokresowej prądu zwarciowego, n - opisującego wpływ zmian składowej okresowej prądu zwarciowego. W oparciu o równanie (26) wyprowadzono wzór na zastępczy prąd zwarciowy cieplny, który jest prądem okresowym o stałej amplitudzie i wydzielającym tą samą ilość ciepła, co prąd zwarciowy. Zastępczy prąd zwarciowy cieplny można zapisać następująco: (27) Współczynnik m można odczytać z rys. 7 lub z zależności analitycznych, wzór (28). Dla zwarć odległych współczynnik n=1. Zgodnie z tabl. 2 współczynnik n dla silników asynchronicznych jest równy zeru. Uwagi: Podczas zwarcia odległego, gdy czas trwania zwarcia jest większy lub równy 0,5 s można przyjąć, że m+n=1. 14
15 W sytuacji, gdy zastosowano w sieci bezpieczniki lub wyłączniki ograniczające prąd zwarciowy to całkę Joule'a należy wyznaczyć z odpowiednich charakterystyk tych urządzeń. W normie współczynniki m jest podane także w formie analitycznej: (28) Dla z powyższego wzoru otrzymuje się złe wyniki (m=0). W tej sytuacji należy podstawić i to rozwiązuje ten problem. Rys. 7. Współczynnik m uwzględniający wpływ zmian składowej nieokresowej prądu zwarciowego na nagrzewanie się przewodu 15. Zwarcia w sieci niskiego napięcia z jednoczesną przerwą po stronie średniego napięcia Zwarcia w sieci niskiego napięcia występujące na zaciskach transformatora zasilającego mogą wywołać przepalenie się jednego bezpiecznika po stronie górnego napięcia tego. Wtedy zwarcie po stronie niskiego napięcia transformatora występuje jednocześnie z przerwą w jednej fazie po stronie górnego napięcia transformatora i taka sytuacja jest teraz analizowana i pokazana na rys
16 Rys. 8. Schemat sieci ze zwarciem po stronie niskiego napięcia i z jednoczesną z przerwą w jednej fazie po stronie górnego napięcia transformatora Tabl. 3. Współczynniki stronach transformatora oraz ß dla obliczenia prądów zwarciowych występujących po obu Zwarcie Trójfazowe Dwufazowe doziemne Jednofazowe Dotyczy faz L1, L2, L3 L1, L2, L3, N (E) L1, L3, N (E) L1, L2, N (E) L2, L3, N (E) L2, N (E) 1) Współczynnik ß 0 2 0,5 0,5 Współczynnik dla strony niskiego napięcia 0,5 1, ,0-1,5 1,5 0,5 1, ,0 1,5 1,5 Współczynnik dla strony niskiego napięcia 1) W przypadku zwarcia jednofazowego w fazach L1 lub L3 otrzymujemy znikomo małe prądy zwarcia albowiem ogranicza je reaktancja magnesująca transformatora. Przypadki te mogą być pominięte. Prądy zwarciowe występujące po obu stronach transformatora można obliczyć stosując poniższe równanie: 16
17 (29) gdzie: - faza L1, L2, L3, N (E) po stronie niskiego napięcia lub L2, L3 po stronie wysokiego napięcia, - impedancje dla składowej zgodnej sieci zastępczej, transformatora i linii przeliczone na stronę niskiego napięcia transformatora, - impedancje dla składowej zerowej transformatora i linii przeliczone na stronę niskiego napięcia transformatora, - współczynniki określone w tabl. 3. Z analizy wzoru (29) wynika, że jedynie prąd dla zwarcia dwufazowego doziemnego w fazach L1, L3, N jest równy prądowi zwarcia jednofazowego bez przerwy w jednej fazie, pozostałe prądy wyznaczane w oparciu o zależność (29) są mniejsze od prądu zwarcia jednofazowego bez przerwy w jednej fazie. Z powyższego wynika, że nie trzeba rozważać wzoru (29) podczas doboru aparatury rozdzielczej w stacji jak na rys. 8, wzór ten może być jedynie użyteczny podczas analizy zakłóceń po awarii. 16. Algorytm obliczania wielkości zwarciowych wg PN-EN :2002 W poprzednich rozdziałach podano główne zasady stosowania normy PN-EN :2002. Obecnie dla sieci elektroenergetycznej składającej się z sieci zastępczej zasilającej transformator obniżający napięcie, z którego zasilane są silniki asynchroniczne dla zwarcia trójfazowego na zaciskach dolnego napięcia tego transformatora zostanie sformułowany algorytm obliczania wielkości zwarciowych. Algorytm ten jest następujący: 1. Obliczamy impedancje sieci zastępczej, oraz sprowadzone na poziom dolnego napięcia transformatora. 2. Obliczamy impedancje transformatora, oraz na poziomie dolnego napięcia transformatora. 3. Obliczamy współczynnik korekcyjny transformatora K T. 4. Impedancję zespoloną transformatora mnożymy przez współczynnik korekcyjny otrzymując skorygowaną impedancję transformatora. 5. Obliczamy impedancję zwarciową bez uwzględnienia silników asynchronicznych, w tej sytuacji równą sumie impedancji sieci zastępczej oraz skorygowanej impedancji transformatora. 6. Obliczamy prąd zwarciowy początkowy bez uwzględnienia silników asynchronicznych. 7. Obliczamy sumaryczny prąd znamionowy silników asynchronicznych. 8. Gdy sumaryczny prąd znamionowy silników asynchronicznych jest większy od jednej setnej prądu zwarciowego początkowego bez uwzględnienia silników 17
18 asynchronicznych to należy uwzględnić silniki w dalszych obliczeniach. Zakładamy, że warunek ten jest spełniony. 9. Obliczamy impedancję silników i włączamy ją do schematu zastępczego zwarcia. W tej sytuacji impedancja zwarciowa z uwzględnieniem silników asynchronicznych będzie połączeniem równoległym impedancji zwarciowej bez uwzględnienia silników asynchronicznych oraz impedancji silników. 10. Obliczamy prąd zwarciowy początkowy z uwzględnieniem silników asynchronicznych. 11. Obliczamy rozpływ prądu zwarciowego początkowego z uwzględnieniem silników asynchronicznych na prąd płynący od sieci i od silników. 12. Obliczamy współczynniki udarowe dla ww. obu źródeł wykorzystując ich stosunki rezystancji do reaktancji. 13. Obliczamy prądy udarowe dla obu źródeł a następnie prąd zwarciowy udarowy jako sumę tych dwóch prądów udarowych składowych. 14. Wyznaczamy współczynniki µ oraz Q dla silników asynchronicznych. 15. Obliczamy prądy wyłączeniowy sieci zastępczej równy prądowi zwarciowemu początkowemu. 16. Obliczamy prądy wyłączeniowy płynący od silników równy iloczynowi współczynników µ, q oraz prądowi zwarciowemu początkowemu płynącemu od silników. 17. Prąd wyłączeniowy jest równy sumie tych dwóch prądów wyłączeniowych. 18. W podobny sposób jak wyznaczano prąd wyłączeniowy postępujemy przy obliczaniu prądu zwarciowego cieplnego. 17. Wnioski W referacie zaprezentowano główne zasady stosowania normy PN-EN :2002. W tej skrótowej prezentacji pokazano jej zalety i wady normy oraz zwrócono szczególną uwagę na: założenia upraszczające przyjęte w normie, właściwości wzorów aproksymacyjnych stosowanych w normie. Dla sieci elektroenergetycznej składającej się z sieci zastępczej zasilającej transformator obniżający napięcie, z którego zasilane są silniki asynchroniczne dla zwarcia trójfazowego na zaciskach dolnego napięcia tego transformatora został sformułowany algorytm obliczania wielkości zwarciowych zgodnie z normą PN-EN :2002. Literatura 1. Anderson P. M.: Analysis of Faulted Power Systems. The IEEE Press, Power Systems Engineering Series, New York, Blackburn J. L.: Symmetrical Components for Power Systems Engineering. M. Dekker, New York, IEC 60781: Application guide for calculation of short-circuit currents in low voltage systems 4. IEC :1993. Short-circuit currents - Calculation of effects - Part 1: Definitions and calculation methods 5. IEC : Technical Report: Short-circuit currents - Calculation of effects - Part 2: Examples of calculation 18
19 6. IEC :2001. Short - circuit current calculation in three - phase a.c. systems. Part 0: Calculation of currents. 7. IEC :2002. Short - circuit current calculation in three - phase a.c. systems. Part 1: Factors for the calculation of short-circuit currents according to IEC IEC :1992. Short - circuit current calculation in three - phase a.c. systems. Part 2: Electrical equipment - Data for short-circuit current calculation in accordance with IEC IEC :2003. Short - circuit current calculation in three - phase a.c. systems. Part 3: Currents during two separate simultaneous single phase line-to-earth short circuits and partial short-circuit through earth. 10. IEC :2000. Short - circuit current calculation in three - phase a.c. systems. Part 3: Examples for the calculation of short-circuit currents. 11. IEC : Short-circuit currents in dc auxiliary installations in power plants and substations. Part 1: Calculation of short-circuit currents. 12. IEC : Short-circuit currents in dc auxiliary installations in power plants and substations. Part 1: Calculation of effects. 13. IEC :2000. Short-circuit Currents in DC Auxiliary Installations in Power Plants and Substations. Part 3: Examples of calculations 14. Jackowiak M., Lubośny Z., Wojciechowicz W.: Zbiór zadań z obliczeń prądów zwarciowych w sieciach elektroenergetycznych. Skrypt P. G., Gdańsk Kacejko P., Machowski J.: Zwarcia w systemach elektroenergetycznych. WNT, Warszawa Kobosko S.: Obliczanie zwarć w systemach elektroenergetycznych. Skrypt P. W., Warszawa Kończykowski S., Bursztyński J.: Zwarcia w układach elektroenergetycznych. WNT, Warszawa Kowalski Z.: Teoria zwarć w układach elektroenergetycznych. Skrypt P. Ł., Łódź Kremens Z., Sobierajski M.: Analiza systemów elektroenergetycznych. WNT, Warszawa PN - 74/E Dobór aparatów wysokonapięciowych w zależności od warunków znamionowych. 21. PN -90/E Obliczanie skutków prądów zwarciowych. 22. PN-EN :2002 (U) Obliczanie skutków prądów zwarciowych. Część 1: Definicje i metody obliczania 23. PN-EN :2002 (U) Prądy zwarciowe w sieciach trójfazowych prądu przemiennego. Część 0: Obliczanie prądów 24. PN-EN :2004 (U) Prądy zwarciowe w sieciach trójfazowych prądu przemiennego. Część 3: Prądy podwójnych, jednoczesnych i niezależnych, zwarć doziemnych i częściowe prądy zwarciowe płynące w ziemi 25. PN-EN :2002 (U) Prądy zwarciowe w obwodach pomocniczych prądu stałego w elektrowniach i stacjach elektroenergetycznych. Część 1: Obliczanie prądów zwarciowych 26. PN-EN :2002 (U) Prądy zwarciowe w obwodach pomocniczych prądu stałego w elektrowniach i stacjach elektroenergetycznych. Część 2: Obliczanie skutków 27. Roeper R.: Short-circuit Currents in Three-phase Systems. Siemens Aktiengesellschaft, J. Wiley
Wyznaczanie wielkości zwarciowych według norm
Zasady obliczeń wielkości zwarciowych nie ulegają zmianom od lat trzydziestych ubiegłego wieku i są dobrze opisane w literaturze. Szczegółowe zasady takich obliczeń są podawane w postaci norm począwszy
Bardziej szczegółowoAlgorytm obliczania charakterystycznych wielkości prądu przy zwarciu trójfazowym (wg PN-EN 60909-0:2002)
Andrzej Purczyński Algorytm obliczania charakterystycznych wielkości prądu przy zwarciu trójfazowym (wg PN-EN 60909-0:00) W 10 krokach wyznaczane są: prąd początkowy zwarciowy I k, prąd udarowy (szczytowy)
Bardziej szczegółowoSpis treści. Oznaczenia Wiadomości ogólne Przebiegi zwarciowe i charakteryzujące je wielkości
Spis treści Spis treści Oznaczenia... 11 1. Wiadomości ogólne... 15 1.1. Wprowadzenie... 15 1.2. Przyczyny i skutki zwarć... 15 1.3. Cele obliczeń zwarciowych... 20 1.4. Zagadnienia zwarciowe w statystyce...
Bardziej szczegółowoTemat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie
Bardziej szczegółowo15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH
15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych
Bardziej szczegółowoPRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Bardziej szczegółowoTemat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia.
Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia. Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą wykonuje
Bardziej szczegółowoMetodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Bardziej szczegółowoZaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna)
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej
Bardziej szczegółowoMODELE ELEMENTÓW SEE DO OBLICZEŃ ZWARCIOWYCH
MODELE ELEMENTÓW SEE DO OBLICEŃ WARCIOWYCH Omawiamy tu modele elementów SEE do obliczania początkowego prądu zwarcia oraz jego rozpływu w sieci, czyli prądów zwarciowych w elementach SEE. GENERATORY SYNCHRONICNE
Bardziej szczegółowoSTUDIA I STOPNIA STACJONARNE ELEKTROTECHNIKA
STUDIA I STOPNIA STACJONARNE ELEKTROTECHNIKA PRZEDMIOT: ROK: 3 SEMESTR: 5 (zimowy) RODZAJ ZAJĘĆ I LICZBA GODZIN: LICZBA PUNKTÓW ECTS: RODZAJ PRZEDMIOTU: URZĄDZENIA ELEKTRYCZNE 5 Wykład 30 Ćwiczenia Laboratorium
Bardziej szczegółowo2. Zwarcia w układach elektroenergetycznych... 35
Spis treści SPIS TREŚCI Przedmowa... 11 1. Wiadomości ogólne... 13 1.1. Klasyfikacja urządzeń elektroenergetycznych i niektóre definicje... 13 1.2. Narażenia klimatyczne i środowiskowe... 16 1.3. Narażenia
Bardziej szczegółowoWpływ impedancji transformatora uziemiającego na wielkości ziemnozwarciowe w sieci z punktem neutralnym uziemionym przez rezystor
Artykuł ukazał się w Wiadomościach Elektrotechnicznych, nr 7/008 dr inż. Witold Hoppel, docent PP dr hab. inż. Józef Lorenc. profesor PP Politechnika Poznańska Instytut Elektroenergetyki Wpływ impedancji
Bardziej szczegółowoANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 8 Electrical Engineering 05 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH
Bardziej szczegółowoXXXIII OOWEE 2010 Grupa Elektryczna
1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,
Bardziej szczegółowoRozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne
Opracowała: mgr inż. Katarzyna Łabno Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne Dla klasy 2 technik mechatronik Klasa 2 38 tyg. x 4 godz. = 152 godz. Szczegółowy rozkład materiału:
Bardziej szczegółowo2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora
E Rys. 2.11. Uproszczony schemat zastępczy turbogeneratora 2.3. Praca samotna Maszyny synchroniczne może pracować jako pojedynczy generator zasilający grupę odbiorników o wypadkowej impedancji Z. Uproszczony
Bardziej szczegółowoELEKTROTECHNIKA. Zagadnienia na egzamin dyplomowy dla studentów
ELEKTROTECHNIKA Zagadnienia na egzamin dyplomowy dla studentów Teoria obwodów 1. Jakimi parametrami (podać definicje) charakteryzowane są okresowe sygnały elektryczne? 2. Wyjaśnić pojecie indukcyjności
Bardziej szczegółowoTRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
TRANSFORMATORY Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Maszyny elektryczne Przemiana energii za pośrednictwem pola magnetycznego i prądu elektrycznego
Bardziej szczegółowo5. PRĄDY ZWARCIOWE W INSTALACJACH NISKIEGO NAPIĘCIA I ICH WYŁĄCZANIE
5. PRĄDY ZWARCIOWE W INSTALACJACH NISKIEGO NAPIĘCIA I ICH WYŁĄCZANIE 5.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z przebiegami prądów zwarciowych w instalacjach elektrycznych niskiego
Bardziej szczegółowoWYKORZYSTANIE PROGRAMU LabVIEW DO WYZNACZANIA PRĄDÓW ZWARCIOWYCH W SIECIACH ELEKTROENERGETYCZNYCH
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 0 XIV Seminarium ZASTOSOWANIE KOMPUTERÓW W NAUCE I TECHNICE 004 Oddział Gdański PTETiS WYKORZYSTANIE PROGRAMU LabVIEW DO
Bardziej szczegółowoWielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny
prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość
Bardziej szczegółowoLekcja 14. Obliczanie rozpływu prądów w obwodzie
Lekcja 14. Obliczanie rozpływu prądów w obwodzie Zad 1.Oblicz wartość rezystancji zastępczej obwodu z rysunku. Dane: R1= 10k, R2= 20k. Zad 2. Zapisz równanie I prawa Kirchhoffa dla węzła obwodu elektrycznego
Bardziej szczegółowoĆwiczenie 1 Badanie układów przekładników prądowych stosowanych w sieciach trójfazowych
Ćwiczenie 1 Badanie układów przekładników prądowych stosowanych w sieciach trójfazowych 1. Wiadomości podstawowe Przekładniki, czyli transformator mierniczy, jest to urządzenie elektryczne przekształcające
Bardziej szczegółowoEUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015
EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,
Bardziej szczegółowoLaboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO
Bardziej szczegółowoMetody analizy obwodów w stanie ustalonym
Metody analizy obwodów w stanie ustalonym Stan ustalony Stanem ustalonym obwodu nazywać będziemy taki stan, w którym charakter odpowiedzi jest identyczny jak charakter wymuszenia, to znaczy odpowiedzią
Bardziej szczegółowoWPŁYW ODBIORÓW SILNIKOWYCH NA POZIOM MOCY ZWARCIOWEJ W ELEKTROENERGETYCZNYCH STACJACH PRZEMYSŁOWYCH
Zeszyty Problemowe Maszyny Elektryczne Nr 92/2011 211 Marcin Caryk, Olgierd Małyszko, Sebastian Szkolny, Michał Zeńczak atedra Elektroenergetyki i Napędów Elektrycznych, Zachodniopomorski Uniwersytet Technologiczny
Bardziej szczegółowoLaboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO
Bardziej szczegółowoPL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL
PL 226485 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 226485 (13) B1 (21) Numer zgłoszenia: 409952 (51) Int.Cl. H02J 3/01 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Bardziej szczegółowotransformatora jednofazowego.
Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia
Bardziej szczegółowoĆwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Bardziej szczegółowoSilnik indukcyjny - historia
Silnik indukcyjny - historia Galileo Ferraris (1847-1897) - w roku 1885 przedstawił konstrukcję silnika indukcyjnego. Nicola Tesla (1856-1943) - podobną konstrukcję silnika przedstawił w roku 1886. Oba
Bardziej szczegółowoĆwiczenie 5 Badanie wpływu asymetrii napięcia zasilającego na pracę sieci
Ćwiczenie 5 - Badanie wpływu asymetrii napięcia zasilającego na pracę sieci Strona 1/9 Ćwiczenie 5 Badanie wpływu asymetrii napięcia zasilającego na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...
Bardziej szczegółowoHARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrical Engineering 2016 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY
Bardziej szczegółowoPodstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch
Bardziej szczegółowoTranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych
Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału
Bardziej szczegółowoXXXIV OOwEE - Kraków 2011 Grupa Elektryczna
1. Przed zamknięciem wyłącznika prąd I = 9A. Po zamknięciu wyłącznika będzie a) I = 27A b) I = 18A c) I = 13,5A d) I = 6A 2. Prąd I jest równy a) 0,5A b) 0 c) 1A d) 1A 3. Woltomierz wskazuje 10V. W takim
Bardziej szczegółowoPrawa Kirchhoffa. I k =0. u k =0. Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0.
Prawa Kirchhoffa Suma algebraiczna natężeń prądów dopływających(+) do danego węzła i odpływających(-) z danego węzła jest równa 0. k=1,2... I k =0 Suma napięć w oczku jest równa zeru: k u k =0 Elektrotechnika,
Bardziej szczegółowoĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Bardziej szczegółowoWykonanie prototypów filtrów i opracowanie ich dokumentacji technicznej
Wykonanie prototypów filtrów i opracowanie ich dokumentacji technicznej Skład dokumentacji technicznej Dokumentacja techniczna prototypów filtrów przeciwprzepięciowych typ FP obejmuje: informacje wstępne
Bardziej szczegółowoRys. 1 Schemat układu L 2 R 2 E C 1. t(0+)
Autor: Piotr Fabijański Koreferent: Paweł Fabijański Zadanie Obliczyć napięcie na stykach wyłącznika S zaraz po jego otwarciu, w chwili t = (0 + ) i w stanie ustalonym, gdy t. Do obliczeń przyjąć następujące
Bardziej szczegółowoLekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.
Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej
Bardziej szczegółowo3. Jeżeli pojemność jednego z trzech takich samych kondensatorów wynosi 3 µf to pojemność zastępcza układu wynosi:
1. Jeżeli dwa punktowe ładunki o wartości 10 C każdy, oddziałują w próżni siłą elektrostatycznego odpychania równą 9 10 9 N, to odległość między nimi jest równa: a) 10-4 m b) 10 - m c) 10 m d) 10 m. W
Bardziej szczegółowoZJAWISKA W OBWODACH TŁUMIĄCYCH PODCZAS ZAKŁÓCEŃ PRACY TURBOGENERATORA
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 32 212 Piotr KISIELEWSKI*, Ludwik ANTAL* maszyny synchroniczne, turbogeneratory,
Bardziej szczegółowoĆ w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO
Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.
Bardziej szczegółowoWykład 2 Silniki indukcyjne asynchroniczne
Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa
Bardziej szczegółowoCzęść 4. Zagadnienia szczególne
Część 4 Zagadnienia szczególne a. Tryb nieciągłego prądu dławika Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 2011/12 1 Model przetwornicy w trybie nieciągłego prądu DC DC+AC Napięcie
Bardziej szczegółowoLABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego
Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.
Bardziej szczegółowo2 Przykład C2. <-I--><Flux><Name><Rmag> TRANSFORMER RTop_A RRRRRRLLLLLLUUUUUU 1 P1_B P2_B 2 S1_B SD_B 3 SD_B S2_B 1 P1_C P2_C 2 S1_C SD_C 3 SD_C S2_C
PRZYKŁAD 2 Utworzyć model dwuuzwojeniowego, trójfazowego transformatora. Model powinien zapewnić symulację zwarć wewnętrznych oraz zadawanie wartości początkowych indukcji w poszczególnych fazach. Ponadto,
Bardziej szczegółowo1. Wiadomości ogólne 1
Od Wydawcy xi 1. Wiadomości ogólne 1 dr inż. Stefan Niestępski 1.1. Jednostki miar 2 1.2. Rysunek techniczny 8 1.2.1. Formaty arkuszy, linie rysunkowe i pismo techniczne 8 1.2.2. Symbole graficzne 10 1.3.
Bardziej szczegółowoObwody elektryczne prądu stałego
Obwody elektryczne prądu stałego Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 12 grudnia 2015 Plan wykładu: 1. Rozwiązanie zadania z poprzedniego
Bardziej szczegółowoBADANIE IZOLACJI ODŁĄCZNIKA ŚREDNIEGO NAPIĘCIA
LABORATORIUM APARATÓW I URZĄDZEŃ WYSOKONAPIĘCIOWYCH POLITECHNIKA WARSZAWSKA INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ
Bardziej szczegółowoSILNIK INDUKCYJNY KLATKOWY
SILNIK INDUKCYJNY KLATKOWY 1. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana
Bardziej szczegółowoKarta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)
Przedmiot: Stacje i sieci elektroenergetyczne Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Kod przedmiotu: E36_D Typ przedmiotu/modułu: obowiązkowy X obieralny Rok: trzeci
Bardziej szczegółowoI. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ELEKTROENERGETYKA OKRĘTOWA. Kod przedmiotu: Eeo 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn 5. Specjalność:
Bardziej szczegółowoLABORATORIUM PRZEKŁADNIKÓW
Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...
Bardziej szczegółowoPOZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* PRÓBA ILOŚCIOWEGO PRZEDSTAWIENIA WPŁYWU CHARAKTERYSTYCZNYCH PARAMETRÓW
Bardziej szczegółowoPRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Bardziej szczegółowoĆwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia
Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia Sprawdzenie zasady superpozycji. Sprawdzenie twierdzenia Thevenina. Sprawdzenie twierdzenia Nortona. Czytanie schematów
Bardziej szczegółowoĆWICZENIE T2 PRACA RÓWNOLEGŁA TRANSFORMATORÓW
ĆWICZENIE T2 PRACA RÓWNOLEGŁA TRANSFORMATORÓW I. Program ćwiczenia 1. Pomiar napięć i impedancji zwarciowych transformatorów 2. Pomiar przekładni napięciowych transformatorów 3. Wyznaczenie pomiarowe charakterystyk
Bardziej szczegółowoĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA
ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC Celem ćwiczenia jest poznanie zasad symulacji prostych obwodów jednofazowych składających się z elementów RLC. I. Zamodelować jednofazowy szeregowy układ RLC (rys.1a)
Bardziej szczegółowoCZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy
CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy ZADANIE.. W linii prądu przemiennego o napięciu znamionowym 00/0 V, przedstawionej na poniższym rysunku obliczyć:
Bardziej szczegółowo10. METODY NIEALGORYTMICZNE ANALIZY OBWODÓW LINIOWYCH
OWODY SYGNŁY 0. MTODY NLGOYTMCZN NLZY OWODÓW LNOWYCH 0.. MTOD TNSFGUCJ Przez termin transfiguracji rozumiemy operację kolejnego uproszczenia struktury obwodu (zmniejszenie liczby gałęzi i węzłów), przy
Bardziej szczegółowoPrzedmowa do wydania czwartego Wyjaśnienia ogólne Charakterystyka normy PN-HD (IEC 60364)... 15
Spis treści 5 SPIS TREŚCI Spis treści Przedmowa do wydania czwartego... 11 1. Wyjaśnienia ogólne... 13 Spis treści 2. Charakterystyka normy PN-HD 60364 (IEC 60364)... 15 2.1. Układ normy PN-HD 60364 Instalacje
Bardziej szczegółowoZespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.
Bardziej szczegółowoWisła, 16 października 2019 r.
dr hab. inż. Jacek Klucznik, prof. PG Wydział Elektrotechniki i utomatyki Politechniki Gdańskiej mgr inż. Grzegorz Mańkowski Elfeko S Gdynia Wisła, 16 października 2019 r. 2 Całka Joule a J jest miarą
Bardziej szczegółowoĆwiczenie: "Silnik indukcyjny"
Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
Bardziej szczegółowoŹródła zasilania i parametry przebiegu zmiennego
POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz
Bardziej szczegółowoLABORATORIUM PODSTAWY ELEKTROTECHNIKI
LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk
Bardziej szczegółowoĆwiczenie 1 i 2 Regulacja napięcia w elektroenergetycznej sieci rozdzielczej za pomocą kompensacji równoległej i szeregowej
Ćwiczenie 1 i 2 - Regulacja napięcia w elektroenergetycznej sieci rozdzielczej Strona 1/16 Ćwiczenie 1 i 2 Regulacja napięcia w elektroenergetycznej sieci rozdzielczej za pomocą kompensacji równoległej
Bardziej szczegółowof r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy
PORTFOLIO: Opracowanie koncepcji wdrożenia energooszczędnego układu obciążenia maszyny indukcyjnej dla przedsiębiorstwa diagnostyczno produkcyjnego. (Odpowiedź na zapotrzebowanie zgłoszone przez przedsiębiorstwo
Bardziej szczegółowoLABORATORIUM PRZEKŁADNIKÓW
Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...
Bardziej szczegółowoPracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych
Pracownia Automatyki i lektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWCZN Analiza obwodów liniowych przy wymuszeniach stałych. CL ĆWCZNA Celem ćwiczenia jest praktyczno-analityczna ocena złożonych
Bardziej szczegółowoTematy prac dyplomowych dla studentów studiów I. stopnia stacjonarnych kierunku. Elektrotechnika. Dr inż. Marek Wancerz elektrycznej
Tematy prac dyplomowych dla studentów studiów I. stopnia stacjonarnych kierunku. Elektrotechnika Lp. Temat pracy dyplomowej Promotor (tytuły, imię i nazwisko) 1. Analiza pracy silnika asynchronicznego
Bardziej szczegółowoOchrona instalacji elektrycznych niskiego napięcia przed skutkami doziemień w sieciach wysokiego napięcia
mgr inż. Andrzej Boczkowski Stowarzyszenie Elektryków Polskich Sekcja Instalacji i Urządzeń Elektrycznych Warszawa 10.01.2012 r. Ochrona instalacji elektrycznych niskiego napięcia przed skutkami doziemień
Bardziej szczegółowoBADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5
BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie
Bardziej szczegółowoEUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2012/2013. Zadania dla grupy elektronicznej na zawody II stopnia
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody II stopnia 1. Wykorzystując rachunek liczb zespolonych wyznacz impedancję
Bardziej szczegółowoDYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA
71 DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA dr hab. inż. Roman Partyka / Politechnika Gdańska mgr inż. Daniel Kowalak / Politechnika Gdańska 1. WSTĘP
Bardziej szczegółowoZabezpieczanie bezpiecznikami przewodów połączonych równolegle
Dr inż. Edward Musiał Politechnika Gdańska Zabezpieczanie bezpiecznikami przewodów połączonych równolegle Problematyka zabezpieczania przewodów połączonych równolegle obejmuje wiele trudnych zagadnień
Bardziej szczegółowoprzedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) semestr I semestr zimowy (semestr zimowy / letni)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Elektrotechnika i Urządzenia elektryczne Nazwa modułu w języku angielskim Electrical engineering and equipment Obowiązuje od roku akademickiego 2016/2017
Bardziej szczegółowoPodstawy Elektroenergetyki 2
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej Laboratorium z przedmiotu: Podstawy Elektroenergetyki 2 Kod: ES1A500 037 Temat ćwiczenia: BADANIE SPADKÓW
Bardziej szczegółowoElektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot kierunkowy. obowiązkowy polski semestr I semestr letni. nie
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Zakłócenia w układach elektroenergetycznych Disturbances in electrical
Bardziej szczegółowoĆwiczenie: "Właściwości wybranych elementów układów elektronicznych"
Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.
Bardziej szczegółowoAC/DC. Jedno połówkowy, jednofazowy prostownik
AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej
Bardziej szczegółowoĆwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Bardziej szczegółowoTemat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO
Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1 Źródła energii elektrycznej prądu przemiennego: 1. prądnice synchroniczne 2. prądnice asynchroniczne Surowce energetyczne: węgiel kamienny i brunatny
Bardziej szczegółowoPrzesył Energii Elektrycznej i Technika Zabezpieczeniowa
Wykład dla studentów II roku MSE Kraków, rok ak. 2006/2007 Przesył Energii Elektrycznej i Technika Zabezpieczeniowa Źródła wysokich napięć przemiennych Marcin Ibragimow Typy laboratoriów WN Źródła wysokich
Bardziej szczegółowoWpływ nagrzania żył roboczych górniczych kabli i przewodów oponowych na czułość nadprądowych zabezpieczeń zwarciowych w sieciach kopalnianych
Adam HEYDUK, Jarosław JOOSTBERENS Politechnika Śląska, Katedra Elektryfikacji i Automatyzacji Górnictwa Wpływ nagrzania żył roboczych górniczych kabli i przewodów oponowych na czułość nadprądowych zabezpieczeń
Bardziej szczegółowoKARTA PRZEDMIOTU. Rok akademicki 2010/2011
Nazwa przedmiotu: Sieci i urządzenia elektroenergetyczne KARTA PRZEDMIOTU Rok akademicki 2010/2011 Rodzaj i tryb studiów: niestacjonarne I stopnia Kierunek: Górnictwo i Geologia Specjalność: Automatyka
Bardziej szczegółowoUkłady przekładników prądowych
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Instrukcja
Bardziej szczegółowoPROPAGACJA PRZEPIĘĆ W STACJI ELEKTROENERGETYCZNEJ SN/NN NA TERENIE TVP KATOWICE
PROPAGACJA PRZEPIĘĆ W STACJI ELEKTROENERGETYCZNEJ SN/NN NA TERENIE TVP KATOWICE Tomasz BARTUCHOWSKI *, Jarosław WIATER**, *tomasz.bartuchowski@gze.pl, **jaroslawwiater@vela.pb.bialystok.pl * Górnośląski
Bardziej szczegółowo1. JEDNOSTKI WZGLĘDNE W ANALIZIE STANÓW NIEUSTALONYCH
. Jednostki względne w analizie stanów nieustalonych. JEDNOTK WGLĘDNE W ANALE TANÓW NETALONYCH.. Oliczenia przy wykorzystaniu jednostek względnych W oliczeniach układów elektroenergetycznych stosuje się
Bardziej szczegółowo8. METODY OGRANICZANIA PRĄDÓW ZWARCIOWYCH
8. METODY OGRANICZANIA PRĄDÓW ZWARCIOWYCH 8.1. Wzrost mocy zwarciowych Wzrost sumarycznej mocy zainstalowanej w systemie elektroenergetycznym, wzrost koncentracji wytwarzania oraz zagęszczenie siatki linii
Bardziej szczegółowoDANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.
Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika
Bardziej szczegółowoWPŁYW SPOSOBU MODELOWANIA TRANSFORMATORÓW ENERGETYCZNYCH NA POPRAWNOŚĆ OBLICZEŃ ZWARCIOWYCH
P OZNAN UNIVERSIT Y OF TECHNOLOGY ACADEMIC JOURNALS No Electrical Engineering 2016 Piotr MILLER Marek WANCERZ Politechnika Lubelska WPŁYW SPOSOBU MODELOWANIA TRANSFORMATORÓW ENERGETYCZNYCH NA POPRAWNOŚĆ
Bardziej szczegółowoBADANIA MODELOWE OGNIW SŁONECZNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.
Bardziej szczegółowoANALIZA MOŻLIWOŚCI WYKORZYSTANIA PRĄDNIC SYNCHRONICZNYCH W ZESPOŁACH PRĄDOTWÓRCZYCH (SPALINOWO-ELEKTRYCZNYCH)
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 015 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA MOŻLIWOŚCI WYKORZYSTANIA PRĄDNIC SYNCHRONICZNYCH W ZESPOŁACH
Bardziej szczegółowoR 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1.
EROELEKR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 9/ Rozwiązania zadań dla grupy elektrycznej na zawody stopnia adanie nr (autor dr inŝ. Eugeniusz RoŜnowski) Stosując twierdzenie
Bardziej szczegółowoWłasności i charakterystyki czwórników
Własności i charakterystyki czwórników nstytut Fizyki kademia Pomorska w Słupsku Cel ćwiczenia. Celem ćwiczenia jest poznanie własności i charakterystyk czwórników. Zagadnienia teoretyczne. Pojęcia podstawowe
Bardziej szczegółowo