Stosunek Koercji do Indukcji magnetycznej, oraz optymalny punkt pracy magnesu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Stosunek Koercji do Indukcji magnetycznej, oraz optymalny punkt pracy magnesu"

Transkrypt

1 MATERIAŁY MAGNETYCZNE Rodzaje Diamagnetyki, Paramagnetyki, Ferromagnetyki Ferrimagnetyki Diamagnetyki magnetyzują się w bardzo słabym stopniu w kierunku przeciwnym do kierunku działania zewnętrznego pola magnetycznego. osłabiają działanie pola magnetyzacja ta jest proporcjonalna do natężenia pola zewnętrznego i niezależna od temperatury; Gazy szlachetne; miedź; srebro; cynk; złoto; węgiel; kadm; rtęć; ołów; itd Paramagnetyki magnetyzują się w bardzo słabym stopniu, lecz w kierunku zgodnym z kierunkiem działania zewnętrznego pola magnetycznego. nie osłabia go, ale wzmacnia w bardzo niewielkim stopniu. magnetyzacja ta jest na ogół proporcjonalna do zewnętrznego pola magnetycznego i odwrotnie proporcjonalna do temperatury bezwzględnej. Metale alkaliczne; platyna; magnez; aluminium; cyna; wanad; wolfram; itd M = X H Namagnesowanie: M namagnesowanie (moment magnetyczny jednostki objętości substancji) χ objętościowa podatność magnetyczna H natężenie pola magnetycznego. Ferromagnetyki Magnetyzują się bardzo silnie w kierunku zgodnym z kierunkiem działania zewnętrznego pola magnetycznego, Wzmacnia zewnętrzne pole magnetyczne, Przy okresowej zmianie kierunku pola magnetycznego wykazują własności histerezy (tzn. w mniejszym lub w większym stopniu zachowują magnetyzację po zaniknięciu zewnętrznego pola), Ten rodzaj magnetyzacji nie jest proporcjonalny do zewnętrznego pola magnetycznego i jest odwrotne proporcjonalny do różnicy temp. Bezwzględnej i punkt Curie charakterystyczną dla każdego materiału Żelazo; nikiel; kobalt, gadolin Podział: twarde zachowują stan namagnesowania pomimo zmian zewnętrznego pola magnetycznego, półtwarde zachowują stan namagnesowania, ale jest on stosunkowo łatwy do usunięcia. miękkie tracą zewnętrzne namagnesowanie po usunięciu pola magnetycznego zachowując jedynie namagnesowanie resztkowe znacznie mniejsze od maksymalnego, Materiały magnetycznie twarde Umowna grupa materiałów wykazujących własności ferromagnetyczne, dla których wartość natężenia koercji H C jest powyżej 10 ka/m (typowo powyżej 100 ka/m, do 24 MA/m). Materiały magnetycznie twarde nazywane są również magnesami trwałymi.

2 Stosuje się wszędzie tam, gdzie wymagane jest silne stałe pole lub indukcja magnetyczna. Wykorzystuje się je również w silnikach lub generatorach synchronicznych (szczególnie w elektrowniach wiatrowych) oraz w siłownikach elektromagnetycznych lub czujnikach. Stosunek Koercji do Indukcji magnetycznej, oraz optymalny punkt pracy magnesu Opis wykresu Energia magnetyczna magnesu (czerwona krzywa), obliczona jako iloczyn indukcji magnetycznej B i natężenia pola magnetycznego H dla krzywej odmagnesowania (niebieska krzywa) przechodzącej przez punkty remanencji B r i koercji B H C. Punkty B a i H a wyznaczają optymalny punkt pracy magnesu dla którego energia magnetyczna przyjmuje maksimum. Materiały magnetycznie miękkie umowna grupa materiałów wykazujących własności ferromagnetyczne, dla których wartość natężenia koercji H C jest poniżej 1000 A/m (H C przyjmuje tylko wartości dodatnie). Magnetyki miękkie stosuje się w maszynach elektrycznych do transformacji energii elektrycznej (transformatory), generacji energii elektrycznej (generatory, alternatory i prądnice) oraz zamiany energii elektrycznej w mechaniczną (silniki elektryczne). Znajdują one również szerokie zastosowanie do ekranowania magnetycznego i czujników magnetycznych. Pętle Histerezy Opis wykresu Rodzina pętli histerezy B=f(H) dla orientowanej blachy elektrotechnicznej, na wykresie zaznaczono remanencję B R oraz koercję H C Materiały magnetycznie półtwarde umowna grupa materiałów wykazujących własności ferromagnetyczne, dla których wartość natężenia koercji H C zawiera się w granicach 1 10 ka/m. Magnetyki półtwarde znajdują zastosowanie głównie do przechowywania informacji. Głównie są one wykorzystywane do:

3 pamięci magnetycznych, gdzie powierzchnia magnetyczna jest namagnesowana w kierunku dodatnich (logiczna jedynka) lub ujemnych (logiczne zero) wartości indukcji magnetycznej. Informacja może być kasowana lub zmieniana poprzez zmianę kierunku namagnesowania systemów zabezpieczeń towarowych, gdzie taśmy półtwarde mogą rezonować w polu elektromagnetycznym po rozmagnesowaniu (lub namagnesowaniu) zmienia się czestotliwość rezonansowa i tym samym można przenieść towar przez bramkę zabezpieczającą wszelkiego rodzaju czujników Pożądanymi parametrami materiału magnetycznie miękkiego są: duża przenikalność magnetyczna, pozwalająca uzyskać duże wartości indukcji magnetycznej przy użyciu małego prądu magnesowania jak najmniejsza stratność(pole objęte pętlą histerezy), pozwalająca na wysokosprawne przetwarzanie energii duża indukcja nasycenia, pozwalająca na uzyskanie jak największej siły mechaniczej (proporcjonalnej do kwadratu indukcji) duża rezystywność w celu zmniejszenia strat mocy powodowanych prądami wirowymi odpowiednie własnoście mechaniczne (w zależności od zastosowania) Pożądanymi parametrami materiału magnetycznie półtwardego są: duża wartość remanencji, ułatwiająca odczytywanie stanu (kierunku polaryzacji) namagnesowania odpowiednia wartość pola koercji pozwalająca na względnie łatwe przemagnesowanie, w zależności od aplikacji duża stabilność parametrów w zależności od temperatury duża odporność na zewnętrze warunki (np. korozję) odpowiednie własności mechaniczne Pożądanymi parametrami materiału magnetycznie twardego są: duża wartość remanencji (indukcji szczątkowej), pozwalająca uzyskać siły mechanicznej (proporcjonalnej do kwadratu indukcji) duże natężenie koercji, pozwalające na uzyskanie jak największej energii magnetycznej odpowiednie własności mechaniczne (w zależności od zastosowania) odporność na korozję Stopy metali ferromagnetycznych: Alnico zawierające Fe, Co, Ni, Al, Cu twarde ferryty, o składzie MOFe 12 O, gdzie MO jest zwykle tlenkiem baru lub strontu magnesy na bazie metali ziem rzadkich, przykładowe składy chemiczne to: Nd 2 Fe 14 B, SmCo 5.

4 Często spotykane materiały ferromagnetyczne Nazwa Magnesu Wygląd Skład chemiczny BaFe 12O 19 Remanencja (Br) zakres zakres Koercja (jhc) Gęstość energii (BH)max Gęstość kgs ka/m kj/m 3 g/cm 3 zakres Temp. Curie Max Temp. pracy o C C Ferrytowe (ceramiczne) lub 2,00 4, ,5 35,0 4,0 5, N e o d y m o w e SrFe 12O 1 Wiązane Nd 2 Fe 14B 4,0 8,0 7,0 17,0 Spiekane Nd 2Fe 14B 10,212,2 11,0 30, ,5 6,6 7,4 7, SmCo 5 Samarowo Kobaltowe lub 8,012, ,0 8, Sm 2 Co 17 Alnico (odlewane) Związki glinu niklu kobaltu (AlNi Co). Gs Oe ,0 72,0 6,9 7, Ferrytowe Przy produkcji magnesów anizotropowych operacja prasowania odbywa się w polu magnetycznym orientującym ziarna osiami łatwego namagnesowania wzdłuż linii sił pola. Metody wytwarzania tych magnesów są zbliżone do sposobów produkcji innych materiałów ceramicznych. W procesie wytwarzania izotropowych magnesów ferrytowych podczas prasowania nie stosuje się zewnętrznego pola magnetycznego. Wiązane W procesie produkcji magnetyczny proszek na bazie związku Nd 2 Fe 14 B spajany jest tworzywem sztucznym. Typ tworzywa wiążącego dobiera się w zależności od przewidzianej metody formowania magnesów. Neodymowe Produkcja Spiekane Wytwarzane są metodami metalurgii proszków. dzięki prasowaniu w polu magnetycznym lub obróbce plastycznej w podwyższonej temperaturze uzyskują strukturę anizotropową. Samarowo Kobaltowe Są one produkowane metodami metalurgii proszków, z reguły jako magnesy anizotropowe. Alnico Magnesy alnico mogą być produkowane metodami metalurgicznymi (odlewy) albo metalurgii proszków (spiekanie).

5 Każdy Magnes tworzy pole magnetyczne Natężenie pola magnetycznego wielkość wektorowa charakteryzująca pole magnetyczne. Indukcja magnetyczna jest definiowana przez siłę działającą na poruszający się ładunek elektryczny (noszącą nazwę siły Lorentza) siła działająca na ładunek elektryczny z powodu jego ruchu w polu magnetycznym [N] ładunek elektryczny prędkość ładunku indukcja Więc: JEDNOSTKA: tesla Jeżeli w pewnym obszarze na poruszający się ładunek działa siła określona przez następujący iloczyn wektorowy to w obszarze tym występuje pole magnetyczne o indukcji. Przenikalność magnetyczna jest to wielkość określająca zdolność danego materiału (ośrodka) do zmiany indukcji magnetycznej pod wpływem natężenia pola magnetycznego. Między ę indukcją ą magnetyczną B a natężeniem pola magnetycznego H zachodzi relacja: gdzie: to przenikalność magnetyczna ośrodka, wyrażona w henrach na metr.

6 Przenikalność Magnetyczna Schematyczne porównanie przenikalności: ferromagnetyka (μ f ) paramagnetyka (μ p ), próżni (μ 0 ) diamagnetyka (μ d ) Dodatkowe Pojęcia: domena magnetyczna ( obszar Weissa) obszar w którym spiny atomów pod działaniem sił wymiany porządkują się równolegle, a ich momenty magnetyczne ustawiają się zgodnie z osiami łatwego magnesowania kryształu. 2) małe obszary samorzutnego magnesowania(tworzą obwód zamknięty).jest to spowodowane dążeniem systemu do osiągnięcia jak najniższej sumarycznej energii magnetycznej. siły wymiany siły wzajemnego oddziaływania spinowych momentów elektronów prowadzące do spontanicznego uporządkowania orientacji spinów podatność magnetyczna Jest to cecha materiału, która porównuje własności magnetyczne danego materiału względem powietrza i mówi o ile dany materiał jest lepszy od powietrza;

7 separatory magnetyczne: Wałki magnetyczne inaczej nazywane separatory magnetyczne zbudowane z magnesów neodymowych w osłonie ze stali kwasoodpornej 1H18N9T. Wykorzystywane do konstruowania niezależnych separatorów magnetycznych. Z powodzeniem wykorzystywane w przemyśle spożywczym, przetwórstwie tworzyw sztucznych, ceramice i innych dziedzinach przemysłu, gdzie potrzebna jest separacja ferromagnetyczna materiałów sypkich i lejnych.

Własności magnetyczne materii

Własności magnetyczne materii Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego

Bardziej szczegółowo

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab. Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych

Bardziej szczegółowo

30/01/2018. Wykład XII: Właściwości magnetyczne. Zachowanie materiału w polu magnetycznym znajduje zastosowanie w wielu materiałach funkcjonalnych

30/01/2018. Wykład XII: Właściwości magnetyczne. Zachowanie materiału w polu magnetycznym znajduje zastosowanie w wielu materiałach funkcjonalnych Wykład XII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu

Bardziej szczegółowo

Wykład XIII: Właściwości magnetyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych

Wykład XIII: Właściwości magnetyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Wykład XIII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu

Bardziej szczegółowo

Właściwości magnetyczne materii. dr inż. Romuald Kędzierski

Właściwości magnetyczne materii. dr inż. Romuald Kędzierski Właściwości magnetyczne materii dr inż. Romuald Kędzierski Kryteria podziału materii ze względu na jej właściwości magnetyczne - względna przenikalność magnetyczna - podatność magnetyczna Wielkości niemianowane!

Bardziej szczegółowo

WYKŁAD 15 WŁASNOŚCI MAGNETYCZNE MAGNESÓW TRWAŁYCH

WYKŁAD 15 WŁASNOŚCI MAGNETYCZNE MAGNESÓW TRWAŁYCH WYKŁAD 15 WŁASNOŚCI AGNETYCZNE AGNESÓW TRWAŁYC Przy wzbudzaniu pola magnetycznego za pomocą magnesów trwałych występuje pewna specyfika, związana z występowaniem w badanym obszarze maszyny zarówno źródła

Bardziej szczegółowo

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Elektryczne właściwości materii Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki I

Bardziej szczegółowo

WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO

WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO WŁASNOŚCI MAGNETYCZNE CIAŁA STAŁEGO Moment magnetyczny atomu Polaryzacja magnetyczna Podatność magnetyczna i namagnesowanie Klasyfikacja materiałów magnetycznych Diamagnetyzm, paramagnetyzm, ferromagnetyzm

Bardziej szczegółowo

Własności magnetyczne materii

Własności magnetyczne materii Własności magnetyczne materii Ośrodek materialny wypełniający solenoid (lub cewkę) wpływa na wartość indukcji magnetycznej, strumienia, a także współczynnika indukcji własnej solenoidu. Trzy rodzaje materiałów:

Bardziej szczegółowo

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium Kolokwium 2 Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 w poprzednim odcinku 2 Ramka z prądem F 1 n Moment sił działających na ramkę b/2 b/2 b M 2( F1 ) 2 b 2 F sin(θ ) 2 M 1 F 1 iab F 1

Bardziej szczegółowo

Materiały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych. Jacek Mostowicz

Materiały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych. Jacek Mostowicz Materiały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych Jacek Mostowicz Plan seminarium Wstęp Materiały magnetycznie miękkie Podstawowe pojęcia Prądy wirowe Lepkość magnetyczna

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm

Wykład FIZYKA II. 5. Magnetyzm Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???

Bardziej szczegółowo

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1)

Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) 1. Wymagane zagadnienia - klasyfikacja rodzajów magnetyzmu - własności magnetyczne ciał stałych, wpływ temperatury - atomistyczna

Bardziej szczegółowo

Lekcja 59. Histereza magnetyczna

Lekcja 59. Histereza magnetyczna Lekcja 59. Histereza magnetyczna Histereza - opóźnienie w reakcji na czynnik zewnętrzny. Zjawisko odkrył i nazwał James Alfred Ewing w roku 1890. Najbardziej znane przypadki histerezy występują w materiałach

Bardziej szczegółowo

3. Równania pola elektromagnetycznego

3. Równania pola elektromagnetycznego 3. Równania pola elektromagnetycznego Oddziaływanie pola elektromagnetycznego z materią Pole elektromagnetyczne jest opisywane zazwyczaj za pomocą następujących 5 pól wektorowych: gęstości prądu J, natężenia

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne 1

Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

Siła magnetyczna działająca na przewodnik

Siła magnetyczna działająca na przewodnik Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach

Bardziej szczegółowo

Właściwości magnetyczne

Właściwości magnetyczne Właściwości magnetyczne Historia magnetyzmu ok. 1400 BC chiński kompas; 1269 Pierre Pelerin de Maricourt (Epistola de magnete) naturalne sferyczne magnesy z magnetytu magnetyzujące igły, obraz pola magnetycznego,

Bardziej szczegółowo

Magnetyzm. Magnesy trwałe.

Magnetyzm. Magnesy trwałe. Magnetyzm. Magnesy trwałe. Zjawiska magnetyczne od wielu stuleci fascynowały uczonych i wynalazców. Badanie tych zjawisk doprowadziło bowiem do wielu niezwykłych odkryć i powstania urządzeń, które zmieniły

Bardziej szczegółowo

MAGNETOCERAMIKA 2013-06-12. Historia. Historia

MAGNETOCERAMIKA 2013-06-12. Historia. Historia MAGNETOCERAMIKA Historia ok. 1400 BC chiński kompas; 1269 Pierre Pelerin de Maricourt (Epistola de magnete) naturalne sferyczne magnesy z magnetytu magnetyzujące igły, obraz pola magnetycznego, pojęcie

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ PRACOWNIA MATERIAŁOZNAWSTWA

Bardziej szczegółowo

Magnetyzm. Magnesy trwałe.

Magnetyzm. Magnesy trwałe. Magnetyzm. Magnesy trwałe. Zjawiska magnetyczne od wielu stuleci fascynowały uczonych i wynalazców. Badanie tych zjawisk doprowadziło bowiem do wielu niezwykłych odkryć i powstania urządzeń, które zmieniły

Bardziej szczegółowo

Pole magnetyczne w ośrodku materialnym

Pole magnetyczne w ośrodku materialnym Pole magnetyczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pole magnetyczne w materii

Bardziej szczegółowo

Pytania z przedmiotu Inżynieria materiałowa

Pytania z przedmiotu Inżynieria materiałowa Pytania z przedmiotu Inżynieria materiałowa 1.Podział materiałów elektrotechnicznych 2. Potencjał elektryczny, różnica potencjałów 3. Związek pomiędzy potencjałem i natężeniem pola elektrycznego 4. Przewodzenie

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

Zakład Inżynierii Materiałowej i Systemów Pomiarowych

Zakład Inżynierii Materiałowej i Systemów Pomiarowych Zakład Inżynierii Materiałowej i Systemów Pomiarowych Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka LABORATORIUM INŻYNIERII

Bardziej szczegółowo

Elektryczne właściwości materiałów. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Elektryczne właściwości materiałów. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Elektryczne właściwości materiałów Materiały dydaktyczne dla kierunku Technik Optyk (W) Kwalifikacyjnego kursu zawodowego. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki

Bardziej szczegółowo

MATERIAŁY MAGNETYCZNIE MIĘKKIE. BADANIA WYBRANYCH WŁASNOŚCI MAGNETYCZNYCH

MATERIAŁY MAGNETYCZNIE MIĘKKIE. BADANIA WYBRANYCH WŁASNOŚCI MAGNETYCZNYCH 1 ĆWICZENIE 6B MATERIAŁY MAGNETYCZNIE MIĘKKIE. BADANIA WYBRANYCH WŁASNOŚCI MAGNETYCZNYCH 1. WPROWADZENIE Związek między natężeniem pola magnetycznego H [Am -1 ] a indukcją magnetyczną B [T] wyraża się

Bardziej szczegółowo

NERONIT - nowoczesny magnes trwały na bazie materiałowej NdFeB

NERONIT - nowoczesny magnes trwały na bazie materiałowej NdFeB Tridelta Magnetsysteme Przedsiębiorstwo Grupy Tridelta NERONIT - nowoczesny magnes trwały na bazie materiałowej NdFeB NERONIT siła przyciągania wiedza i doświadczenie to dobry materiał Popularne magnesy

Bardziej szczegółowo

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW

POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Paweł Trautman, Aleksander Bogucki Wykład dwudziesty piąty 6 czerwca 2017 Z poprzedniego wykładu Prawo Curie i Curie-Weissa Model paramagnetyzmu

Bardziej szczegółowo

Badanie właściwości magnetycznych

Badanie właściwości magnetycznych Ćwiczenie 20 Badanie właściwości magnetycznych ciał stałych Filip A. Sala Spis treści 1 Cel ćwiczenia 2 2 Wstęp teoretyczny 2 2.1 Zagadnienia z teorii atomu............................ 2 2.2 Magnetyzm....................................

Bardziej szczegółowo

Badanie histerezy magnetycznej

Badanie histerezy magnetycznej Badanie histerezy magnetycznej Cele ćwiczenia: Wyznaczenia przenikalności magnetycznej próżni µ 0 na podstawie wykresu B(H) dla cewek pomiarowych bez rdzenia ferromagnetycznego; wyznaczenie zależności

Bardziej szczegółowo

Elementy indukcyjne. Nowoczesne Podzespoły Elektroniczne wykład 2. Cewka. Cewka zastosowanie. Cewka zastosowanie. Cewka zastosowanie

Elementy indukcyjne. Nowoczesne Podzespoły Elektroniczne wykład 2. Cewka. Cewka zastosowanie. Cewka zastosowanie. Cewka zastosowanie Nowoczesne Podzespoły Elektroniczne wykład 2 Elementy indukcyjne dr inż. Kamil Grabowski kgrabowski@dmcs.pl pok.28, B18 Cewka Cewka zastosowanie Jest to pewna ilość zwojów drutu miedzianego, nawiniętego

Bardziej szczegółowo

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016 Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu

Bardziej szczegółowo

Ferromagnetyki, paramagnetyki, diamagnetyki.

Ferromagnetyki, paramagnetyki, diamagnetyki. Ferromagnetyki, paramagnetyki, diamagnetyki https://www.youtube.com/watch?v=u36qppveh2c Materiały magnetyczne Do tej pory rozważaliśmy przewody z prądem umieszczone w powietrzu lub w próżni. Jednak w praktycznych

Bardziej szczegółowo

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................

Bardziej szczegółowo

Z powyższej zależności wynikają prędkości synchroniczne n 0 podane niżej dla kilku wybranych wartości liczby par biegunów:

Z powyższej zależności wynikają prędkości synchroniczne n 0 podane niżej dla kilku wybranych wartości liczby par biegunów: Bugaj Piotr, Chwałek Kamil Temat pracy: ANALIZA GENERATORA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI Z POMOCĄ PROGRAMU FLUX 2D. Opiekun naukowy: dr hab. inż. Wiesław Jażdżyński, prof. AGH Maszyna synchrocznina

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 5. Magnetyzm.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt

Bardziej szczegółowo

LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE Z CWICZENIA NR58

LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE Z CWICZENIA NR58 1. OPIS TEORETYCZNY. LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE Z CWICZENIA NR58 TEMAT : BADANIE FERROMAGNETYKÓW. Pole magnetyczne w osrodkach mozna scharakteryzowac za pomoca nastepujacych wielkosci wektorowych

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

WYZNACZANIE PODSTAWOWYCH PARAMETRÓW FERROMAGNETYKÓW

WYZNACZANIE PODSTAWOWYCH PARAMETRÓW FERROMAGNETYKÓW ĆWICZENIE 58 WYZNACZANIE PODSTAWOWYCH PARAMETRÓW FERROMAGNETYKÓW Cel ćwiczenia: Obserwacja, pomiar i wykreślenie nasyconej pętli histerezy ferromagnetycznej, wyznaczanie krzywej namagnesowania pierwotnego,

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie E8 Wyznaczanie przenikalności magnetycznej i krzywej histerezy E8.1. Cel ćwiczenia Celem ćwiczenia jest pomiar zależności B(I) dla cewki z rdzeniem stalowym lub żelaznym, wykreślenie krzywej

Bardziej szczegółowo

MAGNETO Sp. z o.o. Możliwości wykorzystania taśm nanokrystalicznych oraz amorficznych

MAGNETO Sp. z o.o. Możliwości wykorzystania taśm nanokrystalicznych oraz amorficznych MAGNETO Sp. z o.o. Możliwości wykorzystania taśm nanokrystalicznych oraz amorficznych na obwody magnetyczne 2012-03-09 MAGNETO Sp. z o.o. Jesteśmy producentem rdzeni magnetycznych oraz różnych komponentów

Bardziej szczegółowo

Metale i niemetale. Krystyna Sitko

Metale i niemetale. Krystyna Sitko Metale i niemetale Krystyna Sitko Substancje proste czyli pierwiastki dzielimy na : metale np. złoto niemetale np. fosfor półmetale np. krzem Spośród 115 znanych obecnie pierwiastków aż 91 stanowią metale

Bardziej szczegółowo

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy. Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

3. Materiały stosowane do budowy maszyn elektrycznych

3. Materiały stosowane do budowy maszyn elektrycznych 3. Materiały stosowane do budowy maszyn elektrycznych 3.1. Materiały na rdzenie magnetyczne Wymagania w stosunku do materiałów magnetycznych miękkich: - duża indukcja nasycenia, - łatwa magnasowalność

Bardziej szczegółowo

Sylabus kursów MT stopień I: II: i SpecKol Sektory: Przemysłowe Utrzymania ruchu kolei Wersja 02/01.07.11

Sylabus kursów MT stopień I: II: i SpecKol Sektory: Przemysłowe Utrzymania ruchu kolei Wersja 02/01.07.11 Sylabus kursów MT 1/1 U L T R A ZAKŁAD BADAŃ MATERIAŁÓW 53-621 Wrocław, Głogowska 4/55, tel/fax + 48 71 3734188 52-404 Wrocław, Harcerska 42, tel. + 48 71 3643652 www.ultrasonic.home.pl tel. kom. + 48

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat

Bardziej szczegółowo

Podstawy mechatroniki 5. Sensory II

Podstawy mechatroniki 5. Sensory II Podstawy mechatroniki 5. Sensory Politechnika Poznańska Katedra Podstaw Konstrukcji Maszyn Poznań, 20 grudnia 2015 Budowa w odróżnieniu od czujników indukcyjnych mogą, oprócz obiektów metalowych wykrywać,

Bardziej szczegółowo

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.

Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2. Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat

Bardziej szczegółowo

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Pole magnetyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Pole magnetyczne Pole magnetyczne jest nierozerwalnie związane z polem elektrycznym. W zależności

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci

Bardziej szczegółowo

Pole magnetyczne prąd elektryczny

Pole magnetyczne prąd elektryczny Pole magnetyczne pąd elektyczny Czy pole magnetyczne może wytwazać pąd elektyczny? Piewsze ekspeymenty dawały zawsze wynik negatywny. Powód: statyczny układ magnesów. Michał Faaday piewszy zauważył, że

Bardziej szczegółowo

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Nowoczesne metody metalurgii proszków Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Metal injection moulding (MIM)- formowanie wtryskowe Metoda ta pozwala na wytwarzanie

Bardziej szczegółowo

Źródła pola magnetycznego

Źródła pola magnetycznego Pole magnetyczne Źódła pola magnetycznego Cząstki elementane takie jak np. elektony posiadają własne pole magnetyczne, któe jest podstawową cechą tych cząstek tak jak q czy m. Pouszający się ładunek elektyczny

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Pole elektryczne w ośrodku materialnym

Pole elektryczne w ośrodku materialnym Pole elektryczne w ośrodku materialnym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Stała dielektryczna Stała

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne 1

Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

Elektromagnetyzm. pole magnetyczne prądu elektrycznego

Elektromagnetyzm. pole magnetyczne prądu elektrycznego Elektromagnetyzm pole magnetyczne prądu elektrycznego Doświadczenie Oersteda (1820) 1.Jeśli przez przewodnik płynie prąd, to wokół tego przewodnika powstaje pole magnetyczne. 2.Obecność oraz kierunek linii

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?)

PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) Korozja chemiczna PODSTAWY OBLICZEŃ CHEMICZNYCH.. - należy podać schemat obliczeń (skąd się biorą konkretne podstawienia do wzorów?) 1. Co to jest stężenie molowe? (co reprezentuje jednostka/ metoda obliczania/

Bardziej szczegółowo

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem Pole magnetyczne Własność przestrzeni polegającą na tym, że na umieszczoną w niej igiełkę magnetyczną działają siły, nazywamy polem magnetycznym. Pole takie wytwarza ruda magnetytu, magnes stały (czyli

Bardziej szczegółowo

Konwersatorium 1. Zagadnienia na konwersatorium

Konwersatorium 1. Zagadnienia na konwersatorium Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują

Bardziej szczegółowo

1. Podstawy teorii magnetyzmu

1. Podstawy teorii magnetyzmu 1. Podstawy teorii magnetyzmu 1.1 Pole magnetyczne i jego charakterystyka Pole magnetyczne przyciąga lub odpycha ciała namagnesowane. Siła oddziaływania F (przyciągania lub odpychania) dwóch biegunów magnetycznych

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 1)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 1) Prowadzący: Politechnika Wrocławska nstytut Maszyn, Napędów i Pomiarów Elektrycznych Materiał ilustracyjny do przedmiotu ELEKTROTECHNKA (Cz. 1) Dr inż. Piotr Zieliński (-29, A10 p.408, tel. 320-32 29)

Bardziej szczegółowo

Magnesowanie i rodzaje magnesowania materiałów OXIT, OERSTIT, SECOLIT oraz NEOLIT

Magnesowanie i rodzaje magnesowania materiałów OXIT, OERSTIT, SECOLIT oraz NEOLIT Tridelta Magnetsysteme Przedsiębiorstwo Grupy Tridelta Magnesowanie i rodzaje magnesowania materiałów OXIT, OERSTIT, SECOLIT oraz NEOLIT Magnesowanie zastrzyk energii zmiana materiału w magnes trwały Na

Bardziej szczegółowo

Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Anna Rutkowska IMM sem. 2 mgr

Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Anna Rutkowska IMM sem. 2 mgr Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie Anna Rutkowska IMM sem. 2 mgr Gdańsk, 2012 Spis treści: 1. Nadprzewodnictwo...3 2. Efekt Meissnera...5 2.1 Lewitacja...5 3. Zastosowanie...6 3.1

Bardziej szczegółowo

Wyk³ady z Fizyki. Magnetyzm. Zbigniew Osiak

Wyk³ady z Fizyki. Magnetyzm. Zbigniew Osiak Wyk³ady z Fizyki 07 Magnetyzm Zbigniew Osiak ORCID Linki do moich publikacji naukowych i popularnonaukowych, e-booków oraz audycji telewizyjnych i radiowych są dostępne w bazie ORCID pod adresem internetowym:

Bardziej szczegółowo

Temat 1: Budowa atomu zadania

Temat 1: Budowa atomu zadania Budowa atomu Zadanie 1. (0-1) Dany jest atom sodu Temat 1: Budowa atomu zadania 23 11 Na. Uzupełnij poniższą tabelkę. Liczba masowa Liczba powłok elektronowych Ładunek jądra Liczba nukleonów Zadanie 2.

Bardziej szczegółowo

TECHNIKA WIELKICH CZĘSTOTLIWOŚCI. Przyrządy ferrytowe. Plan wykładu. Karol Aniserowicz. Magnetyczne właściwości materii

TECHNIKA WIELKICH CZĘSTOTLIWOŚCI. Przyrządy ferrytowe. Plan wykładu. Karol Aniserowicz. Magnetyczne właściwości materii TECHNIKA WIELKICH CZĘSTOTLIWOŚCI Przyrządy ferrytowe Karol Aniserowicz Plan wykładu Wiadomości wstępne magnetyczne właściwości materii Właściwości fizyczne ferrytów PRZYRZĄDY FERRYTO Izolatory ferrytowe

Bardziej szczegółowo

Mikrosilniki prądu stałego cz. 1

Mikrosilniki prądu stałego cz. 1 Jakub Wierciak Mikrosilniki cz. 1 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zasady działania siłowników elektrycznych (Heimann,

Bardziej szczegółowo

Podstawy fizyki sezon 2 4. Pole magnetyczne

Podstawy fizyki sezon 2 4. Pole magnetyczne Podstawy fizyki sezon 2 4. Pole magnetyczne Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego

Bardziej szczegółowo

POLE MAGNETYCZNE. Własności pola magnetycznego. powstawanie pola magnetycznego

POLE MAGNETYCZNE. Własności pola magnetycznego. powstawanie pola magnetycznego POLE MAGNETYCZNE Własności pola magnetycznego powstawanie pola magnetycznego W przestrzeni otaczającej przewodnik z prądem elektrycznym istnieje pole magnetyczne. Jego istnienie przejawia się tym, że oddziałuje

Bardziej szczegółowo

KONKURS FIZYCZNY CZĘŚĆ 3. Opracowanie Agnieszka Janusz-Szczytyńska

KONKURS FIZYCZNY CZĘŚĆ 3. Opracowanie Agnieszka Janusz-Szczytyńska KONKURS FIZYCZNY CZĘŚĆ 3 Opracowanie Agnieszka Janusz-Szczytyńska ZAGADNIENIA DO KONKURSU ETAP II Kolorem czerwonym zaznaczone są zagadnienia wykraczające poza program nauczania, na zielono zagadnienia,

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

Zamiast przewodnika z miedzi o bardzo dużych rozmiarach możemy zastosowad niewielki nadprzewodnik niobowo-tytanowy

Zamiast przewodnika z miedzi o bardzo dużych rozmiarach możemy zastosowad niewielki nadprzewodnik niobowo-tytanowy Nadprzewodniki Nadprzewodnictwo Nadprzewodnictwo stan materiału polegający na zerowej rezystancji, jest osiągany w niektórych materiałach w niskiej temperaturze. Nadprzewodnictwo zostało wykryte w 1911

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 3 Badanie przemiany fazowej w materiałach magnetycznych

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 3 Badanie przemiany fazowej w materiałach magnetycznych Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 3 Badanie przemiany fazowej w materiałach magnetycznych Cel ćwiczenia: Celem ćwiczenia jest badanie charakteru przemiany fazowej w tlenkowych

Bardziej szczegółowo

H a. H b MAGNESOWANIE RDZENIA FERROMAGNETYCZNEGO

H a. H b MAGNESOWANIE RDZENIA FERROMAGNETYCZNEGO MAGNESOWANIE RDZENIA FERROMAGNETYCZNEGO Jako przykład wykorzystania prawa przepływu rozważmy ferromagnetyczny rdzeń toroidalny o polu przekroju S oraz wymiarach geometrycznych podanych na Rys. 1. Załóżmy,

Bardziej szczegółowo

Wykład 18 Dielektryk w polu elektrycznym

Wykład 18 Dielektryk w polu elektrycznym Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.

Bardziej szczegółowo

Maszyna indukcyjna jest prądnicą, jeżeli prędkość wirnika jest większa od prędkości synchronicznej, czyli n > n 1 (s < 0).

Maszyna indukcyjna jest prądnicą, jeżeli prędkość wirnika jest większa od prędkości synchronicznej, czyli n > n 1 (s < 0). Temat: Wielkości charakteryzujące pracę silnika indukcyjnego. 1. Praca silnikowa. Maszyna indukcyjna jest silnikiem przy prędkościach 0 < n < n 1, co odpowiada zakresowi poślizgów 1 > s > 0. Moc pobierana

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Wykłady z Fizyki. Magnetyzm

Wykłady z Fizyki. Magnetyzm Wykłady z Fizyki 07 Magnetyzm Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Towaroznawstwo artykułów przemysłowych

Towaroznawstwo artykułów przemysłowych Towaroznawstwo artykułów przemysłowych Towaroznawstwo Tomasz Poskrobko Przemysł produkcja materialna, polegająca na wytwarzaniu wyrobów w sposób masowy, przy użyciu urządzeń mechanicznych, Towary przemysłowe

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

Laboratorium Półprzewodniki, Dielektryki i Magnetyki

Laboratorium Półprzewodniki, Dielektryki i Magnetyki Laboratorium Półprzewodniki, Dielektryki i Magnetyki Ćwiczenie 11 Badanie materiałów ferromagnetycznych Zagadnienia do przygotowania 1. Podstawowe wielkości oraz parametry charakteryzujące materiały magnetyczne.

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

Electromagnetic interactions. Oddziaływania elektromagnetyczne

Electromagnetic interactions. Oddziaływania elektromagnetyczne Electromagnetic interactions Oddziaływania elektromagnetyczne Odziaływania grawitacyjne - siła powszechnego ciążenia (Newton) F = G grawit m m 1 2 r 2 G = 6.67 10 11 Nm 2 s 2 http://universeadventure.org/universe_4-6.html

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo