BADANIA EKSPERYMENTALNE MODELU TURBINY WODNEJ TYPU MICHELL-BANKI
|
|
- Jacek Tomaszewski
- 9 lat temu
- Przeglądów:
Transkrypt
1 BADANIA EKSPERYMENTALNE MODELU TURBINY WODNEJ TYPU MICHELL-BANKI Wojciech Zdrojewski Instytut Lotnictwa Streszczenie Praca przedstawia metodę oraz wyniki pomiarów podstawowych parametrów mechanicznych modelu turbiny Michell-Banki przeprowadzonych na basenie przeciwpożarowym Instytutu Lotnictwa dla sprawdzenia przewidywanych własności wyrobu finalnego będącego nową koncepcją tej turbiny zaprojektowaną całkowicie w Instytucie Lotnictwa, w szczególności z nowatorskim rozwiązaniem wlotu wody wraz z jego regulacją. Zaprezentowano również porównanie wyników powyższych pomiarów z obliczeniami przy zastosowaniu oprogramowania CFD (FLUENT) do numerycznego modelowania przepływów. 1. OBIEKT BADAŃ W Centrum Nowych Technologii Instytutu Lotnictwa w ramach aktualnie realizowanego projektu celowego finansowanego przez MNiSW oraz przy współpracy z przyszłym producentem turbin, firmą Darek&Co, opracowano projekt turbiny wodnej Michell-Banki małej mocy (rzędu 3,5 kw dla pojedynczego segmentu) przeznaczonej do pracy przy spadach od 1 do 2 m, o średnicy wirnika 0,8 m. Rys. 1. Przekrój turbiny Michell-Banki z wlotem pionowym BADANIA EKSPERYMENTALNE MODELU TURBINY WODNEJ TYPU MICHELL-BANKI 141
2 Rys. 2. Przekrój turbiny Michell-Banki z wlotem poziomym Turbina Banki jest połączonym z atmosferą kołem wodnym z przepływem promieniowym, które czerpie swoją moc wyłącznie z energii kinetycznej strumienia wody. Jest to turbina akcyjna, w której strumień wody o przekroju prostokątnym i szerokości równej długości wirnika przepływa w niej dwukrotnie przez łopatki, umocowane w tarczach. Na rys. 1 i 2 przedstawiono przykładowe przekroje turbiny Michell-Banki z pionowym i z poziomym wlotem wody (wg [4]). Omawiane badania przeprowadzono w celu sprawdzenia przewidywanych własności energetycznych przyszłej turbiny, przede wszystkim jej mocy. Do pomiarów użyto wykonany w Instytucie Lotnictwa model turbiny w skali 1:5 o średnicy wirnika 0,16 m (fotografia modelu na rys. 4, wg [1]). Zastosowany do badań model turbiny Banki składa się z dwóch części, dyszy i wirnika turbiny. Wirnik jest zbudowany z dwóch równoległych dysków (tarczy) kołowych połączonych na obrzeżu szeregiem zakrzywionych łopatek. Strumień wypływa z dyszy o przekroju prostokątnym na całej szerokości koła i wpływa na koło pod kątem średnio ok. 11 do stycznej do obrysu koła przy pełnym otwarciu. Kształt strumienia jest prostokątny, szeroki i niezbyt dużej grubości. Woda uderza w łopatki na obrzeżu koła (rys. 3), przelewa się po łopatce opuszczając ją, przechodząc przez pustą przestrzeń pomiędzy wewnętrznymi wieńcami, wchodzi na łopatkę po wewnętrznej stronie wieńca i wypływa na zewnętrznym wieńcu. Koło jest więc dośrodkowym kołem strumieniowym. Wydatek wody na wlocie można regulować za pomocą przepustnicy. Rys. 3. Schemat modelu turbiny (wg [3]) 142 PRACE INSTYTUTU LOTNICTWA Nr 206
3 Konstrukcja przepustnicy oraz geometria wlotu wody jest oryginalną koncepcją powstałą w Instytucie Lotnictwa. Przepustnica przesuwana po obwodzie wirnika, we współpracy z geometrią wlotu, tylko nieznacznie zakłóca przepływ przy różnych położeniach. Ukształtowanie wlotu daje też możliwie mały kąt wejścia wody na wieniec wirnika. Takie własności wlotu wody podnoszą sprawność turbiny (m.in. wg [7]). Rys. 4. Badany model turbiny wodnej typu Banki (wykonany model 1:5, zabudowany na stoisku badawczym) 2. METODYKA I PRZEBIEG POMIARÓW Pomiary przeprowadzono na basenie przeciwpożarowym Instytutu Lotnictwa z wykorzystaniem instalacji wodnej chłodzenia zespołu sprężarek Tunelu Aerodynamicznego dużych prędkości N3. Na brzegu basenu zainstalowano stoisko badawcze wykonane również w Instytucie Lotnictwa, którego schemat oraz fotografię przedstawiono (wg [1]) na rys. 5 i 6 poniżej. Rys. 5. Schemat stoiska pomiarowego z modelem turbiny i alternatorem dla spadu 2,145 m BADANIA EKSPERYMENTALNE MODELU TURBINY WODNEJ TYPU MICHELL-BANKI 143
4 Rys. 6. Stoisko do badań modelu turbiny (widok z przodu w trakcie rozruchu turbiny) Podstawowymi elementami stoiska wraz z zainstalowanymi modelem turbiny oraz alternatorem były: zbiornik zalewowy, rurociąg zasilający z instalacji zewnętrznej, upusty przelewowe wraz z przewodami, kanał zalewowy do wlotu turbiny. Wynikiem pomiarów miała być charakterystyka mocy modelu turbiny w funkcji prędkości obrotowej wirnika. Nie zrealizowano pomiarów wydatku wody przepływającej przez turbinę ze względu na ograniczone środki finansowe, które nie pozwoliły na wprowadzenie aparatury mierzącej przepływ. Moc turbiny zmierzono metodą pośrednią poprzez pomiar mocy użytecznej wytwarzanej przez alternator obciążający. Do obciążenia turbiny użyto alternatora samochodowego A125-55k, charakteryzującego się następującymi parametrami: napięcie regulatora 14 V, natężenie maksymalne prądu 55 A, sprawność elektryczna η a = 0,45 0,5. Pomiary wykonano dla trzech spadów wody, odpowiednio: 2,145 m; 1,5 m; 1,0 m dla jednego (maksymalnego) otwarcia przepustnicy o wielkości 40 (tzw. położenie A przepustnicy). Każdy z pomiarów powtórzono minimum trzy razy. Moc użyteczną zwiększano poprzez zmianę oporu na oporniku suwakowym o zakresie 0 40 Ω. Mierzono bezpośrednio: napięcie, woltomierzem typu APPA 305 o zakresie 0 40 V, natężenie prądu wytwarzanego przez alternator, amperomierzem typu TLME o dwóch zakresach pomiarowych: 0 5 A oraz 0 20 A, prędkość obrotową wału modelu turbiny, pomiarem bezpośrednim, wskazania w km/h, przeliczone następnie na prędkość obrotową prędkościomierzem typu SIGMA Elektro GmbH BC 506. Elementami składowymi obwodu pomiarowego były: alternator, 144 PRACE INSTYTUTU LOTNICTWA Nr 206
5 amperomierz, opornik suwakowy, woltomierz, akumulator, żarówka kontrolna obwodu wzbudzenia. Przyjęto sprawność obwodu elektrycznego η el = 0,9. 3. OMÓWIENIE WYNIKÓW POMIARÓW Moc wyjściową P turbiny obliczono jako iloczyn zmierzonego napięcia U oraz natężenia I podzielony przez iloczyn sprawności alternatora η a i obwodu elektrycznego η el, czyli:. Ponieważ sprawność alternatora nie była dokładnie znana, obliczenia przeprowadzono dla dwóch wartości z przyjętego przedziału sprawności (0,45 do 0,5), stąd dla każdego pomiaru są dwie charakterystyki (grupy linii na wykresach oznaczone jako P(n)). Na wykresach przedstawiono też, dla każdego pomiaru, charakterystyki mocy bez uwzględnienia sprawności η a i η el jako iloczyn bezpośrednio zmierzonych wielkości U oraz I (grupy linii na wykresach oznaczone jako U*I). Wyniki pomiarów dla przyjętych założeń przedstawiono na rys. 7 9 (wg [1]) wraz z charakterystykami mocy w funkcji prędkości obrotowej wirnika uzyskanymi z obliczeń oprogramowaniem FLUENT (z [3]) dla takich samych warunków, jak w pomiarach. P(n) U*I Rys. 7. Zestawienie charakterystyk mocy w zależności od obrotów z badań oraz z obliczeń numerycznych dla spadu 2,145 m BADANIA EKSPERYMENTALNE MODELU TURBINY WODNEJ TYPU MICHELL-BANKI 145
6 P(n) U*I Rys. 8. Zestawienie charakterystyk mocy w zależności od obrotów z badań oraz z obliczeń numerycznych dla spadu 1,5 m P(n) U*I Rys. 9. Zestawienie charakterystyk mocy w zależności od obrotów z badań oraz z obliczeń numerycznych dla spadu 1,0 m 146 PRACE INSTYTUTU LOTNICTWA Nr 206
7 Dla spadu 2,145 m obliczeniowa charakterystyka mocy była przesunięta względem krzywej doświadczalnej. W obliczeniach uzyskano mniejszą moc maksymalną niż w eksperymencie. Uśrednione maksimum mocy uzyskane w doświadczeniu to 322,5 W. W obliczeniach dla tej samej wartości obciążenia uzyskano 270 W. Błąd wynosi 19%. Dla spadu 1,5 m otrzymano dobrą zgodność obliczeń z doświadczeniem w całym zakresie pracy turbiny. Uśrednione maksimum mocy uzyskane w doświadczeniu to 189 W. W obliczeniach, dla tej samej wartości obciążenia uzyskano 176 W. Błąd wynosi ok. 7%. Dla spadu 1,0 m w obliczeniach otrzymano zawyżoną wobec wyników pomiarów wartość mocy turbiny z obliczeń numerycznych programem FLUENT. Uśrednione maksimum mocy uzyskane w doświadczeniu to 94,5 W. W obliczeniach, dla tej samej wartości obciążenia uzyskano 107 W. Oznacza to błąd około 14%. W przypadku pomiarów dla słupa wody 1,0 m aparatura pomiarowa wykazała zbyt małą dokładność przy rejestracji zmian mierzonych wartości, stąd niemal pionowy kształt charakterystyki doświadczalnej. Podstawowymi czynnikami powodującymi różnice między obliczeniami programem FLUENT, a wynikami pomiarów stoiskowych, oprócz nieznanych dokładnie sprawności alternatora i obwodu, mogą być nieszczelności w układzie stoiska badawczego i wynikające stąd przecieki, a także niemożność uzyskania w pełni niezapowietrzonego przepływu wody w kanale zalewowym, a tym samym na wlocie do turbiny. W obliczeniach nie zakładano przecieków oraz przyjęto skład czynnika na wlocie jako 100% wody. Jednak uzyskane zestawienie wyników obliczeń numerycznych z wynikami badań modelu turbiny pozwalają stwierdzić ich dobrą zgodność, co potwierdza prawidłowość modelu numerycznego oraz jego przydatność do przyszłego modelowania tego rodzaju przepływów. Można też spodziewać się uzyskania oczekiwanych własności energetycznych przyszłej turbiny (obiektu 1:1). Wyróżnik szybkobieżności n s, dla modelu oraz turbiny w skali 1:1, określony zależnością:, gdzie: n Pmax obroty wirnika turbiny dla maksymalnej mocy w obr/min, P max maksymalna moc wyjściowa turbiny w KM, H spad w m, dla przebadanych wielkości spadu przedstawiono poniżej, w Tabeli 1. Tabela 1. Wyróżnik szybkobieżności n s w zależności od spadu W Tabeli 2, przedstawiono klasyfikację turbiny wodnej wg [5]. BADANIA EKSPERYMENTALNE MODELU TURBINY WODNEJ TYPU MICHELL-BANKI 147
8 Tabela 2. Wyróżnik szybkobieżności rozmaitych rodzajów turbin wodnych (wg [5]) Uwzględniając warunki podobieństwa, na podstawie badań stoiskowych i obliczeń numerycznych, oszacowano przewidywane parametry energetyczne i mechaniczne turbiny w skali 1:1 (jeden segment) dla istotnych punktów charakterystyki mocy w funkcji obrotów, czyli: moc maksymalną P max, moment maksymalny M max (dla obrotów n = 0), moment dla mocy maksymalnej M Pmax, obroty dla mocy maksymalnej n Pmax, obroty maksymalne n max (dla momentu M = 0), wydatek dla mocy maksymalnej Q Pmax, sprawność maksymalną η max (dla P max ). Do oszacowania momentu maksymalnego dla n = 0 przyjęto liniowy przebieg charakterystyki momentu w funkcji obrotów. Ponieważ w badaniach stoiskowych nie mierzono wydatku, oszacowano go na podstawie obliczeń numerycznych z [3]. Przedstawione poniżej, w Tabeli 3, charakterystyczne wielkości dotyczą warunków takich jakie wystąpiły w badaniach stoiskowych czyli dla spadów 1,0; 1,5; 2,145 m oraz maksymalnego otwarcia wlotu. Tabela 3. Charakterystyczne parametry dla modelu oraz turbiny w skali 1:1 148 PRACE INSTYTUTU LOTNICTWA Nr 206
9 4. WNIOSKI 4.1. Wyniki badań modelu turbiny w skali 1:5, z uwzględnieniem warunków podobieństwa, pozwalają stwierdzić, że można spodziewać się uzyskania oczekiwanych własności energetycznych przyszłej turbiny (obiektu 1:1), której parametry przedstawiono w Tabeli Uzyskane zestawienie wyników obliczeń numerycznych oprogramowaniem FLUENT z wynikami badań modelu turbiny wykazało ich dobrą zgodność, co potwierdza prawidłowość modelu numerycznego oraz jego przydatność do przyszłego modelowania tego rodzaju przepływów Biorąc pod uwagę klasyfikację, przedstawioną w Tabeli 2, turbin wodnych ze względu na wielkość powyżej zdefiniowanego wyróżnika szybkobieżności n s,omawiana tu turbina Michell- Banki sytuuje się na pozycji odpowiadającej szybkobieżności wolnobieżnych turbin Francisa. BIBLIOGRAFIA [1] W. Gnarowski i Zespół BP-P1: Raport. Badania stoiskowe turbiny Banki, Sprawozdanie ILot nr 174/BP1 - SR/08, Warszawa, grudzień [2] W. Gnarowski i Zespół BP-P1: Analiza wyników prób modelowych turbiny Banki, Sprawozdanie ILot nr 173/BP1-AA/09, Warszawa, grudzień [3] W. Zalewski: Analiza przepływu przez model turbiny wodnej typu Michell-Banki, Sprawozdanie ILot nr 12/BA-A2/08/P, Warszawa, grudzień [4] M. Hoffman: Małe elektrownie wodne poradnik, Wyd. Nabba, Warszawa, [5] W.J. Prosnak: Mechanika płynów, t. 1, cz. III, p. 3.5, PWN, Warszawa, [6] Poradnik inżyniera mechanika, t. 2, rozdz. X, WNT, Warszawa, [7] C.A. Mockmore, F. Merryfield: The Banki Water Turbine, Oregon State College, Corvallis, February Wojciech Zdrojewski THE EXPERIMENTAL TESTS OF THE MODEL OF THE MICHELL BANKI WATER TURBINE Abstract The work presents the method and the results of the measurements of the basic mechanical parameters of the Michell - Banki turbine model. The tests were conducted on the firefighting pool of the Institute of Aviation in order to validate the expected properties of the final product, which is a new concept of this turbine designed entirely at Institute of Aviation, in particular with the innovative solution of the water inlet and its control. The work also presents the comparison of the above mentioned measurements results against calculations using CFD (FLUENT software) for flows numerical modeling. BADANIA EKSPERYMENTALNE MODELU TURBINY WODNEJ TYPU MICHELL-BANKI 149
Laboratorium LAB1. Moduł małej energetyki wiatrowej
Laboratorium LAB1 Moduł małej energetyki wiatrowej Badanie charakterystyki efektywności wiatraka - kompletnego systemu (wiatrak, generator, akumulator) prędkość wiatru - moc produkowana L1-U1 Pełne badania
OPTYMALIZACJA KONSTRUKCJI I OSIĄGÓW TURBINY WODNEJ PRZY WYKORZYSTANIU METOD OBLICZENIOWEJ MECHANIKI PŁYNÓW CFD
OPTYMALIZACJA KONSTRUKCJI I OSIĄGÓW TURBINY WODNEJ PRZY WYKORZYSTANIU METOD OBLICZENIOWEJ MECHANIKI PŁYNÓW CFD Wiesław Zalewski Instytut Lotnictwa Streszczenie W artykule przedstawiono przebieg procesu
Badania wentylatora. Politechnika Lubelska. Katedra Termodynamiki, Mechaniki Płynów. i Napędów Lotniczych. Instrukcja laboratoryjna
Politechnika Lubelska i Napędów Lotniczych Instrukcja laboratoryjna Badania wentylatora /. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z budową i metodami badań podstawowych typów wentylatorów. II. Wprowadzenie
LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne
LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Cztery identyczne diody oraz trzy oporniki o oporach nie różniących się od siebie o więcej niż % połączono szeregowo w zamknięty obwód elektryczny.
POLITECHNIKA LUBELSKA
Badania opływu turbiny wiatrowej typu VAWT (Vertical Axis Wind Turbine) Międzyuczelniane Inżynierskie Warsztaty Lotnicze Cel prezentacji Celem prezentacji jest opis przeprowadzonych badań CFD oraz tunelowych
SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie
DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje
Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją..
Eksperyment 1.2 1.2 Bilans energii oraz wydajność turbiny wiatrowej Zadanie Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją.. Układ połączeń
DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH
Mgr inż. Anna GRZYMKOWSKA Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa DOI: 10.17814/mechanik.2015.7.236 DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH
Badanie charakterystyk turbiny wiatrowej w funkcji prędkości wiatru
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych w funkcji prędkości wiatru Ćwiczenie nr 1 Laboratorium z przedmiotu Odnawialne źródła energii Kod:
I. Wyznaczenie prędkości rozruchowej trójpłatowej turbiny wiatrowej
I. Wyznaczenie prędkości rozruchowej trójpłatowej turbiny wiatrowej Płyta główna Dmuchawa z regulacją napięcia (0-12V) Turbina wiatrowa (wirnik trójpłatowy o wyprofilowanych łopatkach, 25 o ) 2. Pomiary
Ćwiczenie 4. Energia wiatru - badania eksperymentalne turbiny wiatrowej
Ćwiczenie 4 Energia wiatru - badania eksperymentalne turbiny wiatrowej Opis stanowiska pomiarowego W skład stanowiska do badań energii wiatru wchodzą: płyta podstawa stanowiska, dmuchawa wentylator z potencjometryczną
Zakład Zastosowań Elektroniki i Elektrotechniki
Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o
Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.
Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane
Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Ćwiczenie nr 4 Laboratorium z przedmiotu: Alternatywne źródła energii Kod: ŚC3066
LABORATORIUM TERMODYNAMIKI I TECHNIKI CIEPLNEJ. Badanie charakterystyki wentylatorów połączenie równoległe i szeregowe. dr inż.
LABORATORIUM TERMODYNAMIKI I TECHNIKI CIEPLNEJ Badanie charakterystyki wentylatorów połączenie równoległe i szeregowe. dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZIAŁ
BADANIA WIRNIKA TURBINY WIATRROWEJ O REGULOWANYM POŁOŻENIU ŁOPAT ROBOCZYCH. Zbigniew Czyż, Zdzisław Kamiński
BADANIA WIRNIKA TURBINY WIATRROWEJ O REGULOWANYM POŁOŻENIU ŁOPAT ROBOCZYCH Zbigniew Czyż, Zdzisław Kamiński Politechnika Lubelska, Wydział Mechaniczny, Katedra Termodynamiki, Mechaniki Płynów i Napędów
Pomiar rezystancji metodą techniczną
Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja
Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"
Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Akademia Górniczo- Hutnicza Im. Stanisława Staszica w Krakowie
Akademia Górniczo- Hutnicza Im. Stanisława Staszica w Krakowie PODOBIEŃSTWO W WENTYLATORACH TYPOSZEREGI SMIUE Prowadzący: mgr inż. Tomasz Siwek siwek@agh.edu.pl 1. Wstęp W celu umożliwienia porównywania
WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE
Dr hab. inż. Andrzej Kawalec, e-mail: ak@prz.edu.pl Dr inż. Marek Magdziak, e-mail: marekm@prz.edu.pl Politechnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Katedra Technik Wytwarzania i Automatyzacji
SILNIK INDUKCYJNY KLATKOWY
SILNIK INDUKCYJNY KLATKOWY. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana
Wyznaczanie oporu elektrycznego właściwego przewodników
Wyznaczanie oporu elektrycznego właściwego przewodników Ćwiczenie nr 7 Wprowadzenie Natężenie prądu płynącego przez przewodnik zależy od przyłożonego napięcia U oraz jego oporu elektrycznego (rezystancji)
Katedra Elektrotechniki Teoretycznej i Informatyki
Katedra lektrotechniki Teoretycznej i Informatyki Laboratorium Teorii Obwodów Przedmiot: lektrotechnika teoretyczna Numer ćwiczenia: 1 Temat: Liniowe obwody prądu stałego, prawo Ohma i prawa Kirchhoffa
INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA
LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA ELEKTROWNIA WIATROWA
Laboratorium z Konwersji Energii. Silnik Wiatrowy
Laboratorium z Konwersji Energii Silnik Wiatrowy 1.0.WSTĘP Silnik wiatrowy to silnik wirnikowy zamieniający energię kinetyczną wiatru na pracę mechaniczną łopat wirnika, dzięki której wytwarzana jest energia
Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE
Ćwiczenie WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE Opis stanowiska pomiarowego Stanowisko do wyznaczania charakterystyk prądowo napięciowych
Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?
Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie
ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ
ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ 1. Cel i zakres ćwiczenia Celem ćwiczenia jest opanowanie umiejętności dokonywania pomiarów parametrów roboczych układu pompowego. Zapoznanie z budową
LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ
VIII-EW ELEKTROWNIA WIATROWA LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ Katedra Aparatury i Maszynoznawstwa Chemicznego Instrukcja ćwiczenia nr 8. EW 1 8 EW WYZNACZENIE ZAKRESU PRACY I
Numeryczna symulacja rozpływu płynu w węźle
231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,
symbol miernika amperomierz woltomierz omomierz watomierz mierzona
ZADANIA ELEKTROTECHNIKA KLASA II 1. Uzupełnij tabelkę: nazwa symbol miernika amperomierz woltomierz omomierz ----------------- watomierz ----------------- wielkość mierzona jednostka - nazwa symbol jednostki
Powtórzenie wiadomości z klasy II. Przepływ prądu elektrycznego. Obliczenia.
Powtórzenie wiadomości z klasy II Przepływ prądu elektrycznego. Obliczenia. Prąd elektryczny 1. Prąd elektryczny uporządkowany (ukierunkowany) ruch cząstek obdarzonych ładunkiem elektrycznym, nazywanych
Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.
1 Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. Celem ćwiczenia jest doświadczalne określenie wskaźników charakteryzujących właściwości dynamiczne hydraulicznych układów sterujących
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Zasada działania maszyny przepływowej.
Zasada działania maszyny przepływowej. Przyrost ciśnienia statycznego. Rys. 1. Izotermiczny schemat wirnika maszyny przepływowej z kanałem miedzy łopatkowym. Na rys.1. pokazano schemat wirnika maszyny
MECHANIKA PŁYNÓW LABORATORIUM
MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych
WYKŁAD 11 POMPY I UKŁADY POMPOWE
WYKŁAD 11 POMPY I UKŁADY POMPOWE Historia Czerpak do wody używany w Egipcie ok. 1500 r.p.n.e. Historia Nawadnianie pól w Chinach Historia Koło wodne używane w Rzymie Ogólna klasyfikacja pomp POMPY POMPY
LVII Olimpiada Fizyczna (2007/2008)
LVII Olimpiada Fizyczna (2007/2008) Zadanie doświadczalne Masz do dyspozycji: baterię słoneczną, sześć różnych oporników o oporach 100Ω, 500Ω, 1000Ω, 2200Ω, 3000Ω, 4300Ω określonych z dokładnością 5%,
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne
XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Zakładając, że zależność mocy P pobieranej przez żarówkę od temperatury bezwzględnej jej włókna T ma postać: 4 P = A + BT + CT wyznacz wartości
METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH
Inżynieria Rolnicza 2(100)/2008 METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH Krzysztof Nalepa, Maciej Neugebauer, Piotr Sołowiej Katedra Elektrotechniki i Energetyki, Uniwersytet Warmińsko-Mazurski w Olsztynie
ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G
PRACE instytutu LOTNiCTWA 221, s. 115 120, Warszawa 2011 ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G i ROZDZiAŁU 10 ZAŁOżEń16 KONWENCJi icao PIotr
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Badanie charakterystyk turbiny wiatrowej dla różnych kątów nachylenia łopat turbiny wiatrowej
POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych dla różnych kątów nachylenia łopat turbiny wiatrowej Ćwiczenie nr 3 Laboratorium z przedmiotu Odnawialne
BADANIE ROZKŁADU PRĘDKOŚCI W DYFUZORZE TURBINY WIATROWEJ
Dr inż. Paweł PIETKIEWICZ Dr inż. Wojciech MIĄSKOWSKI Dr inż. Krzysztof NALEPA Inż. Kamila KOWALCZUK Uniwersytet Warmińsko-Mazurski w Olsztynie DOI: 10.17814/mechanik.2015.7.282 BADANIE ROZKŁADU PRĘDKOŚCI
Ćwiczenie nr 10. Pomiar rezystancji metodą techniczną. Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji.
Ćwiczenie nr 10 Pomiar rezystancji metodą techniczną. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie się z różnymi metodami pomiaru rezystancji. 2. Dane znamionowe Przed przystąpieniem do
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 23 PRĄD STAŁY CZEŚĆ 1
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 23 PRĄD STAŁY CZEŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO WYBORU
Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa
MECHANIK 7/2014 Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa WYZNACZENIE CHARAKTERYSTYK EKSPLOATACYJNYCH SIŁOWNI TURBINOWEJ Z REAKTOREM WYSOKOTEMPERATUROWYM W ZMIENNYCH
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
SERIA II ĆWICZENIE 2_3. Temat ćwiczenia: Pomiary rezystancji metodą bezpośrednią i pośrednią. Wiadomości do powtórzenia:
SE ĆWCZENE 2_3 Temat ćwiczenia: Pomiary rezystancji metodą bezpośrednią i pośrednią. Wiadomości do powtórzenia: 1. Sposoby pomiaru rezystancji. ezystancję można zmierzyć metodą bezpośrednią, za pomocą
Ćwiczenie nr 3 Sprawdzenie prawa Ohma.
Ćwiczenie nr 3 Sprawdzenie prawa Ohma. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne wykazanie i potwierdzenie słuszności zależności określonych prawem Ohma. Zastosowanie prawa Ohma dla zmierzenia oporności
REAKCJA HYDRODYNAMICZNA STRUMIENIA NA NIERUCHOMĄ PRZESZKODĘ.
REAKCJA HYDRODYNAMICZNA STRUMIENIA NA NIERUCHOMĄ PRZESZKODĘ. Reakcją hydrodynamiczną nazywa się siłę, z jaką strumień cieczy działa na przeszkodę /zaporę / ustawioną w jego linii działania. W technicznych
Sprawozdanie z laboratorium proekologicznych źródeł energii
P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji
Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:
Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.
Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:
Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:
MMB Drives 40 Elektrownie wiatrowe
Elektrownie wiatrowe MMB Drives Zbigniew Krzemiński, Prezes Zarządu Elektrownie wiatrowe produkowane przez MMB Drives zostały tak zaprojektowane, aby osiągać wysoki poziom produkcji energii elektrycznej
PL B1. SZKODA ZBIGNIEW, Tomaszowice, PL BUP 03/16
PL 224843 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224843 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 412553 (22) Data zgłoszenia: 01.06.2015 (51) Int.Cl.
Pomiar podstawowych wielkości elektrycznych
Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 1 Pracownia Elektroniki. Pomiar podstawowych wielkości elektrycznych........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:
Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia
Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Właściwy dobór rezystorów nastawnych do regulacji natężenia w obwodach prądu stałego. Zapoznanie
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
Badanie silnika indukcyjnego jednofazowego i transformatora
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M3 - protokół Badanie silnika indukcyjnego jednofazowego i transformatora Data
STANOWISKOWE BADANIE ZESPOŁU PRZENIESIENIA NAPĘDU NA PRZYKŁADZIE WIELOSTOPNIOWEJ PRZEKŁADNI ZĘBATEJ
Postępy Nauki i Techniki nr 12, 2012 Jakub Lisiecki *, Paweł Rosa *, Szymon Lisiecki * STANOWISKOWE BADANIE ZESPOŁU PRZENIESIENIA NAPĘDU NA PRZYKŁADZIE WIELOSTOPNIOWEJ PRZEKŁADNI ZĘBATEJ Streszczenie.
SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO
SPRWDZNE SŁSZNOŚC PRW OHM DL PRĄD STŁEGO Cele ćwiczenia: Doskonalenie umiejętności posługiwania się miernikami elektrycznymi (stała miernika, klasa miernika, optymalny zakres wychyleń). Zapoznanie się
SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA
SYMULACJA OBLICZENIOWA OPŁYWU I OBCIĄŻEŃ BEZPRZEGUBOWEGO WIRNIKA OGONOWEGO WRAZ Z OCENĄ ICH ODDZIAŁYWANIA NA PRACĘ WIRNIKA Airflow Simulations and Load Calculations of the Rigide with their Influence on
E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW
1. WSTĘP MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW mgr inż. Michał FOLUSIAK Instytut Lotnictwa W artykule przedstawiono wyniki dwu- i trójwymiarowych symulacji numerycznych opływu budynków wykonanych
WYDZIAŁ.. LABORATORIUM FIZYCZNE
W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się
Współpraca turbiny wiatrowej z magazynami energii elektrycznej
Ćwiczenie 4 Współpraca turbiny wiatrowej z magazynami energii elektrycznej Opis stanowiska pomiarowego W skład stanowiska do badań energii wiatru wchodzą: płyta podstawa stanowiska, dmuchawa wentylator
METROLOGIA EZ1C
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ
ANALIZA ROZKŁADU CIŚNIEŃ I PRĘDKOŚCI W PRZEWODZIE O ZMIENNYM PRZEKROJU
Dr inż. Paweł PIETKIEWICZ Dr inż. Wojciech MIĄSKOWSKI Dr inż. Krzysztof NALEPA Piotr LESZCZYŃSKI Uniwersytet Warmińsko-Mazurski w Olsztynie DOI: 10.17814/mechanik.2015.7.283 ANALIZA ROZKŁADU CIŚNIEŃ I
WZÓR. Raport z Badań. ALNOR systemy wentylacji Sp. z o.o. Ul. Aleja Krakowska Wola Mrokowska
Kraków 2013.06.20 Zleceniodawca: Raport z Badań ALNOR systemy wentylacji Sp. z o.o. Ul. Aleja Krakowska 10 05-552 Wola Mrokowska Przedmiot badań: Wykonanie badania szczelności wew. przepustnicy DATL-315
WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski
WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH Dr inż. Robert Jakubowski Literatura Literatura: [] Balicki W. i in. Lotnicze siln9iki turbinowe, Konstrukcja eksploatacja diagnostyka, BNIL nr 30 n, 00 [] Dzierżanowski
BADANiA SPRĘŻAREK SiLNiKÓW TURBiNOWYCH
PRACE instytutu LOTNiCTWA 213, s. 142-147, Warszawa 2011 BADANiA SPRĘŻAREK SiLNiKÓW TURBiNOWYCH KrzySztof KaWalec Instytut Lotnictwa Streszczenie Znajomość charakterystyk elementów przepływowych silnika
MMB Drives 40 Elektrownie wiatrowe
Elektrownie wiatrowe MMB Drives Zbigniew Krzemiński, Prezes Zarządu Elektrownie wiatrowe produkowane przez MMB Drives zostały tak zaprojektowane, aby osiągać wysoki poziom produkcji energii elektrycznej
Badanie transformatora
Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 18 stycznia 018 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60. 85% 51pkt. Uwaga! 1. Za poprawne rozwiązanie
ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ
WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych Studia... Kierunek... Grupa dziekańska... Zespół... Nazwisko i Imię 1.... 2.... 3.... 4.... Laboratorium...... Ćwiczenie
Alternator. Elektrotechnika w środkach transportu 125
y Elektrotechnika w środkach transportu 125 Elektrotechnika w środkach transportu 126 Zadania alternatora: Dostarczanie energii elektrycznej o określonej wartości napięcia (ogranicznik napięcia) Zapewnienie
silniku parowym turbinie parowej dwuetapowa
Turbiny parowe Zasada działania W silniku parowym tłokowym energia pary wodnej zamieniana jest bezpośrednio na energię mechaniczną w cylindrze silnika. W turbinie parowej przemiana energii pary wodnej
Silniki prądu stałego z komutacją bezstykową (elektroniczną)
Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silnik bezkomutatorowy z fototranzystorami Schemat układu przekształtnikowego zasilającego trójpasmowy silnik bezszczotkowy Pojedynczy cykl
Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki
1 Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Temat ćwiczenia: POMIARY PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH W OBWODACH PRĄDU STAŁEGO (obwód 3 oczkowy) 2 1. POMIARY PRĄDÓW I NAPIĘĆ
Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia
Ćwiczenie WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ Opis stanowiska pomiarowego Stanowisko do analizy współpracy jednakowych ogniw fotowoltaicznych w różnych konfiguracjach
4.8. Badania laboratoryjne
BOTOIUM EEKTOTECHNIKI I EEKTONIKI Grupa Podgrupa Numer ćwiczenia 4 p. Nazwisko i imię Ocena Data wykonania ćwiczenia Podpis prowadzącego zajęcia 4. 5. Temat Wyznaczanie indukcyjności własnej i wzajemnej
BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO
Politechnika Warszawska Instytut Maszyn Elektrycznych Laboratorium Maszyn Elektrycznych Malej Mocy BADANIE SILNIKA WYKONAWCZEGO PRĄD STAŁEGO Warszawa 2003 1. WSTĘP. Silnik wykonawczy prądu stałego o wzbudzeniu
Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:
Wydział: EAIiIB Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wstęp
prędkości przy przepływie przez kanał
Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę
MECHANIKA PŁYNÓW LABORATORIUM
MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 6 Wyznaczanie współczynnika wydatku przelewu Celem ćwiczenia jest wyznaczenie wartości współczynnika wydatku dla różnyc rodzajów przelewów oraz sporządzenie ic
SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ WSTĘP KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14
SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ... 9 1. WSTĘP... 11 2. KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14 2.1. Analiza aktualnego stanu struktury wytwarzania elektryczności i ciepła w
TRENDY MODERNIZACYJNE W KRAJOWYCH ELEKTROWNIACH WODNYCH ŚREDNIO- I NISKOSPADOWYCH CZĘŚĆ I
TRENDY MODERNIZACYJNE W KRAJOWYCH ELEKTROWNIACH WODNYCH ŚREDNIO- I NISKOSPADOWYCH CZĘŚĆ I Autorzy: mgr inż. Adam Henke, dr hab. inż., prof. nzw. Adam Adamkowski - Instytut Maszyn Przepływowych PAN ("Energetyka
Trójfazowe silniki indukcyjne. 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu:
A3 Trójfazowe silniki indukcyjne Program ćwiczenia. I. Silnik pierścieniowy 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu: a - bez oporów dodatkowych w obwodzie wirnika, b - z oporami
Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1
Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1 Andrzej Koźmic, Natalia Kędroń 2 Cel ogólny: Wyznaczenie charakterystyki prądowo-napięciowej opornika i żarówki Cele operacyjne: uczeń,
Co się stanie, gdy połączymy szeregowo dwie żarówki?
Różne elementy układu elektrycznego można łączyć szeregowo. Z wartości poszczególnych oporów, można wyznaczyć oporność całkowitą oraz całkowite natężenie prądu. Zadania 1. Połącz szeregowo dwie identyczne
LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego
Ćwiczenie 3 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Urządzenia