Odlewnicze stopy żelaza. Staliwa niestopowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Odlewnicze stopy żelaza. Staliwa niestopowe"

Transkrypt

1 Staliwa niestopowe Odlewnicze stopy żelaza Ważnym materiałem konstrukcyjnym, stosowanym w postaci odlewów jest staliwo niestopowe. Otrzymuje się je w wyniku odlewania do form, w których krzepnie, uzyskując wymagany kształt użytkowy. Staliwa niestopowe (węglowe) dzieli się na dwie grupy podlegające odpowiednio odbiorowi: - na podstawie własności mechanicznych, - na podstawie własności mechanicznych oraz składu chemicznego. Skład chemiczny staliw niestopowych według PN-ISO 3755:1994 zestawiono w tablicy 7.1. Znak staliwa składa się z dwóch liczb określających wyrazom w MPa wartości: minimalnej granicy plastyczności R e oraz minimalnej wytrzymałości na rozciąganie R m (np ), po których, w przypadku staliw niestopowych podlegających odbiorowi także na podstawie składu chemicznego, umieszczona jest litera W (np W). Tablica 7.1 Skład chemiczny i własności mechaniczne staliw niestopowych konstrukcyjnych. Własności staliw, podobnie jak stali węglowych i niestopowych, zależą głównie od stężenia węgla (rys. 7.1). Staliwa, szczególnie nisko- i średniowęglowe, cechują się dobrą spawalnością. Składnikami strukturalnymi występującymi w staliwie niestopowym są ferryt i perlit. W zależności od sposobu i szybkości chłodzenia odlewu, w staliwie niestopowym w stanie surowym może wystąpić tzw. struktura globulityczna o okrągłych ziarnach lub struktura Widmannstattena (charakteryzuje się iglastą budową ferrytu w osnowie perlitu i ma niekorzystny wpływ na własności mechaniczne staliwa). Rysunek 7.1 Wpływ stężenia węgla na własności mechaniczne staliw niestopowych w stanie wyżarzonym (wg K. Roescha i Zimmermanna). W celu usunięcia niekorzystnej struktury pierwotnej, niejednorodności składu chemicznego, a także naprężeń odlewniczych, odlewy staliwne poddaje się obróbce cieplnej, głównie wyżarzaniu ujednorodniającemu lub normalizującemu, a także wyżarzaniu odprężającemu. Odlewy staliwne można również hartować i odpuszczać, a także obrabiać cieplno-chemicznie, stosując zasady podobne jak przy obróbce cieplnej elementów stalowych o zbliżonym składzie chemicznym. 1

2 Staliwa stopowe Tablica 7.2 Orientacyjny skład chemiczny i własności staliw stopowych konstrukcyjnych ogólnego przeznaczenia Staliwa stopowe zawierają dodatki stopowe o stężeniu przekraczającym wartości graniczne takie same jak dla stali stopowych. Ze względu na zastosowanie, staliwa stopowe dzieli się na: konstrukcyjne, odporne na ścieranie, odporne na korozję, żaroodporne i żarowytrzymałe oraz narzędziowe. Gdy łączne stężenie dodatków stopowych nie przekracza 2,5%, staliwo jest uważane za niskostopowe, gdy jest zawarte w przedziale 2,5-5% - za średniostopowe, a przy stężeniu większym niż 5% - za wysokostopowe. Przeważnie są stosowane staliwa zawierające kilka składników stopowych, w tym głównie Ni, Cr, Si. Ma często dodatki Mo, V, W, Ti, Nb, Co i B. Staliwa stopowe zawierające tylko jeden z wymienionych składników są stosowane rzadko. Własności staliw stopowych często są polepszane przez modyfikowanie, np. mieszankami cerowymi, a także przez zastosowanie odpowiedniej obróbki cieplnej odlewów. Oznaczenie staliw stopowych rozpoczyna się od litery G (według PN-EN) lub L (według dotychczasowych norm PN), a następujący po nich znak jest zgodny z systemem oznaczania odpowiedniej grupy stali. 2

3 Żeliwa niestopowe Żeliwa należą do materiałów odlewniczych najpowszechniej stosowanych w budowie maszyn. Decydują o tym między innymi: stosunkowo niski koszt produktów, niska temperatura topnienia, dobre własności wytrzymałościowe oraz dobra skrawalność. Żeliwo zawiera ok. 2-4% węgla. W zależności od postaci, w jakiej występuje węgiel, rozróżnia się żeliwa: - szare, w których węgiel występuje w postaci grafitu, - białe, w których węgiel jest związany w cementycie, - połowiczne (pstre), w których występuje zarówno cementyt, jak i grafit. W wyniku celowych zabiegów technologicznych w czasie procesów metalurgicznych grafit może zostać rozdrobniony w przypadku żeliwa modyfikowanego lub doprowadzony do postaci kulistej - w przypadku żeliwa sferoidalnego. Długotrwała obróbka cieplna niektórych żeliw białych powoduje uzyskanie tzw. węgla żarzenia w strukturze otrzymanego żeliwa ciągliwego. Typowe struktury różnych żeliw przedstawiono schematycznie na rysunku 7.2. Żeliwa, zgodnie z PN-EN 1560:2001, są oznaczane na podstawie symboli lub numerów. Znak żeliwa zawierający symbole składa się z liter EN-GJ, litery określającej postać grafitu lub cementytu i jeśli to konieczne następnej litery identyfikującej mikro- lub makrostrukturę. Następne części znaku (oddzielane od siebie kolejnymi łącznikami) klasyfikują żeliwo według własności lub składu chemicznego i podają ewentualne wymagania dodatkowe. Niektóre szczegóły dotyczące oznaczeń podano przy opisie poszczególnych grup żeliw. Jednoznacznie określa dany gatunek żeliwa także oznaczenie zawierające numer. Oznaczenie to zaczyna się od liter EN-J, następnie jest litera określająca strukturę (zwłaszcza postać grafitu) i czterocyfrowy numer, np. EN-JS1131. Rysunek 7.2 Schemat struktur żeliw I - białego, IIa - połowicznego, II - szarego perlitycznego, Ilb - szarego ferrytyczno-perlitycznego, III - szarego ferrytycznego, IV - sferoidalnego, V - ciągliwego (wg W. Sakwy) 3

4 Klasyfikacja żeliwa szarego niestopowego Żeliwo szare niestopowe (węglowe) można podzielić na trzy grupy: - żeliwo szare zwykłe, - żeliwo modyfikowane, - żeliwo sferoidalne. Żeliwa szare mogą cechować się strukturą osnowy: ferrytyczną, ferrytyczno-perlityczną oraz perlityczną. W strukturze żeliwa szarego - poza osnową metaliczną - występuje również grafit płatkowy, steadyt (eutektyka fosforowa) oraz wtrącenia niemetaliczne (tabl. 10.3). Żeliwo szare ferrytyczne charakteryzuje się niską wytrzymałością, dobrą skrawalnością, małą odpornością na zużycie ścierne. Twardość i wytrzymałość żeliwa szarego zwiększa się w miarę zwiększania udziału perlitu w strukturze. Wytrzymałość żeliwa perlitycznego wynosi ok MPa przy twardości HB. Żeliwa szare cechuje dobra zdolność do tłumienia drgań. W odróżnieniu od pozostałych grup żeliw szarych bardzo dobre własności - zarówno wytrzymałościowe, jak i plastyczne - wykazuje żeliwo sferoidalne. Uzyskuje się je w wyniku modyfikowania podczas odlewania żeliwa o tendencji do krzepnięcia jako szare, lecz o bardzo małym stężeniu siarki i fosforu. Jako modyfikatorów używa się magnezu lub ceru. W wyniku tego zabiegu technologicznego grafit występuje w tych żeliwach w postaci kulistej. W zależności od struktury osnowy żeliwo sferoidalne może być ferrytyczne, ferrytyczno-perlityczne lub perlityczne. Osnową może być też bainit lub martenzyt odpuszczony, uzyskiwany po dodatkowej obróbce cieplnej. Żeliwo sferoidalne krzepnie zwykle jako perlityczne lub ferrytyczno-perlityczne. Tablica 7.3 Własności mechaniczne żeliwa szarego. Polepszenie własności i ujednorodnienie struktury odlewu z żeliwa o składzie wykazującym tendencję do krzepnięcia jako białe lub połowiczne jest możliwe dzięki modyfikacji. W tym celu bezpośrednio przed odlaniem, do kąpieli metalowej o temperaturze ok C, w rynnie spustowej lub kadzi, dodaje się ok. 0,5% sproszkowanego modyfikatora, najczęściej żelazokrzemu, wapniokrzemu lub aluminium. Najkorzystniejsze własności ma żeliwo modyfikowane o osnowie perlitycznej. Jego wytrzymałość na rozciąganie R m może wynosić MPa, stąd modyfikację stosuje się często do żeliw szarych o podwyższonej wytrzymałości. Żeliwo modyfikowane, podobnie jak żeliwo szare zwykłe, wykazuje bardzo niskie własności plastyczne. 4

5 Tablica 7.4 Własności mechaniczne wybranych żeliw sferoidalnych. Żeliwa stopowe Do żeliw stopowych są wprowadzane dodatki stopowe (tabl. 10.5), występujące oprócz domieszek. Pierwiastki te są dodawane w celu polepszenia własności użytkowych żeliw, a w szczególności: - zwiększenia własności mechanicznych, - zwiększenia odporności na ścieranie, - polepszenia odporności na działanie korozji elektrochemicznej, - polepszenia odporności na działanie korozji gazowej w podwyższonej temperaturze, - polepszenia innych własności fizycznych, np. magnetycznych lub elektrycznych. Skład chemiczny żeliw jest dobierany tak, aby w wyniku dodania pierwiastków stopowych nie zmienić niekorzystnie ich struktury i własności (tablica 7.5). Ogólną klasyfikację żeliw stopowych - ze względu na stężenie dodatków stopowych - podano w tablicy 7.6. Oprócz składu chemicznego na strukturę i własności żeliw w sposób istotny wpływa szybkość chłodzenia odlewów, którą dla jednakowych materiałów formierskich można z dopuszczalnym przybliżeniem sprowadzić do grubości ścianek odlewów. Wraz ze zwiększeniem grubości ścianek odlewu zwiększa się ilość i grubość płatków wydzielonego grafitu, co powoduje zmniejszenie własności wytrzymałościowych. Spadkowi tych własności można zapobiec przez zmniejszenie stężenia węgla i krzemu oraz innych pierwiastków grafityzujących w żeliwie. Gatunki, skład chemiczny, własności i zastosowanie krajowych żeliw stopowych podano w dotychczas obowiązującej w PN-88/H Zgodnie z tą normą znak żeliwa stopowego szarego lub połowicznego rozpoczyna się literami Zl, białego - Zb, sferoidalnego - Zs, po czym podane są symbole pierwiastków stopowych i liczby określające średnie stężenie pierwiastka w żeliwie. 5

6 Tablica 7.5 Struktury żeliw stopowych o różnym składzie chemicznym. Tablica 7.6 Orientacyjna klasyfikacja żeliw ze względu na stężenie pierwiastków stopowych 6

7 Ogólna charakterystyka metali nieżelaznych i ich stopów Porównanie własności metali nieżelaznych ze stalami Ze względu na bardzo różne własności użytkowe, szerokie jest zastosowanie metali nieżelaznych i ich stopów, niejednokrotnie konkurencyjnych w stosunku do stopów żelaza, a bardzo często komplementarnych w stosunku do nich, lub wręcz bezkonkurencyjnych. Przykładowo, w tablicy 7.7 porównano ze stalą własności mechaniczne, gęstość i koszty kilku wybranych metali nieżelaznych. Tablica 7.7 Porównanie wytrzymałości właściwej oraz relatywnych kosztów jednostki masy wybranych metali nieżelaznych ze stalą niestopową (wg D.R. Askelanda i P.P. Phulego) Rysunek 7.3 Wpływ stężenia chromu i węgla w żeliwie na: a) odporność korozyjną żeliw, b) obrabialność i żaroodporność żeliw (wg W. Sakwy). 7

8 Metale występują w skorupie ziemskiej w różnym udziale. Między innymi od powszechności występowania danego pierwiastka w skorupie ziemskiej, ale również od ceny oraz możliwych do uzyskania własności, zależy całkowite roczne zużycie metali w świecie (tabl. 7.8). Oczywiście zużycie metali nieżelaznych jest relatywnie małe. Zużycie roczne stali wynosi bowiem 10 3 Mt, a zatem jest około 50-krotnie większe, niż kolejnego w rankingu aluminium, blisko 80-krot-nie większe od kolejnej w rankingach miedzi i niemal 120-krotnie większe od czwartego z kolei cynku. Tablica 7.8 Orientacyjne roczne zużycie wybranych metali nieżelaznych (wg Natural Resources Canada). Klasyfikacja metali nieżelaznych W tablicy 7.9 przedstawiono klasyfikację przyjętą do opisu stopów metali nieżelaznych. Nie opiera się ona na jednolitych kryteriach, gdyż najczęściej stosowane metale nieżelazne zakwalifikowano do poszczególnych grup, ze względu na praktyczne, niekiedy formalne podobieństwo, np. ze względu na gęstość, temperaturę topnienia, lub odporność na korozję i cenę, w innych przypadkach ze względu na budowę elektronową, a grupę pozostałych metali nieżelaznych wydzielono po to, by je scharakteryzować, pomimo że samodzielnie właściwie nie tworzą stopów metali, chociaż mają znaczenie techniczne, występując w stopach innych metali lub w związkach chemicznych albo fazach, które są stosowane w technice. Tablica 7.9 Praktyczna klasyfikacja przyjęta w opisie metali nieżelaznych. 8

9 Klasyfikacja stopów metali nieżelaznych W tablicy 7.10 podano specyfikację stopów różnych metali nieżelaznych, równocześnie dokonując ich klasyfikacji na stopy odlewnicze i do obróbki plastyczne ważnej ze względu na praktyczne zastosowania tych stopów. Tablica 7.10 (ciąg dalszy) Tablica 7.10 Klasyfikacja i główne grupy stopów metali nieżelaznych 9

10 Metale lekkie i ich stopy Do metali lekkich zaliczono: - aluminium, - tytan, - beryl, - magnez. Tytan o gęstości 4,507 g/cm 3 często zaliczany jest do metali lekkich. W tablicy 7.11 przedstawiono wybrane własności metali lekkich. Tablica 7.11 Porównanie wybranych własności metali lekkich. Aluminium i jego stopy Aluminium należy do metali o bardzo dużym znaczeniu technicznym. Występuje w przyrodzie w bardzo wielu minerałach i jest trzecim (po tlenie i krzemie) pierwiastkiem pod względem udziału w skorupie ziemskiej. Jest natomiast drugim po żelazie metalem pod względem zastosowań technicznych. Jego główną rudą jest boksyt, z którego wytwarza się czysty tlenek Al 2 0 3, a następnie przez elektrolizę tlenku rozpuszczonego w stopionym kriolicie (fluoroglinian sodu), otrzymuje się aluminium hutnicze, które może być poddane dalszej rafinacji. Aluminium wytwarza się w 17 gatunkach o różnym stopniu czystości od 99,99 do 99,0% (wg PN-EN 573-3:2004 (U)). Oznaczenie z użyciem symboli chemicznych składa się z ciągu znaków: EN AW-A1, liczby wyrażającej czystość aluminium oraz niekiedy symbolu pierwiastka stanowiącego niewielką domieszkę, np. EN AW-A199,0Cu. Gatunki aluminium do zastosowań elektrycznych są wyróżnione literą E przed symbolem Al, np. EN AW-EA199,5. Aluminium jest stosowane zarówno w postaci czystego metalu, jak i wielu stopów. 10

11 Tablica 7.12 Skład chemiczny aluminium do obróbki plastycznej Własności fizyczne i mechaniczne aluminium Aluminium ma liczbę atomową równą 13, a jego masa atomowa wynosi 26,9815. Nie wykazuje ono odmian alotropowych i krystalizuje w sieci regularnej ściennie centrowanej typu A1 o parametrze 0,40408 nm. Temperatura topnienia aluminium wynosi 660,37 C, a wrzenia 2494 C. Gęstość aluminium wynosi 2,6989 g/cm 3 w 20 C. Aluminium w stanie wyżarzonym cechuje się wytrzymałością na rozciąganie wynoszącą R m = MPa, granicą plastyczności R e = MPa, wydłużeniem A 11,3 = 30-45% i przewężeniem Z = 80-95%. Aluminium może być obrabiane plastycznie na zimno i na gorąco. W stanie zgniecionym z 60-80% stopniem gniotu wytrzymałość na rozciąganie R m osiąga MPa, granica plastyczności R e = MPa, twardość HB, przy zmniejszonym wydłużeniu A 11,3 = 1,5-3%. Aluminium cechuje wysoka przewodność elektryczna - 37,74 MS/m, stanowiąca ok. 65% przewodności elektrycznej miedzi, oraz dobra przewodność cieplna. Przewodność elektryczna ulega znacznemu zmniejszeniu wraz ze zwiększeniem stężenia zanieczyszczeń i domieszek, głównie Fe i Si, a także Cu, Zn i Ti (rys. 7.4). Pierwiastki te powodują ponadto obniżenie plastyczności, lecz zwiększają własności wytrzymałościowe. Aluminium wykazuje dużą odporność na korozję. Na powietrzu pokrywa się cienką warstwą Al 2 0 3, chroniącą przed korozją atmosferyczną, działaniem wody, stężonego kwasu azotowego, licznych kwasów organicznych, a także siarkowodoru. W celu polepszenia odporności na korozję aluminium może być poddane utlenianiu anodowemu (tzw. anodowaniu), tj. elektrolitycznemu procesowi wytwarzania powłoki tlenkowej, np. w roztworze 10% kwasu siarkowego, połączonemu z barwieniem powierzchni metalu na różne kolory. 11

12 Zastosowanie aluminium Gatunki aluminium hutniczego (o ograniczonej czystości) są stosowane do produkcji stopów oraz licznych produktów codziennego użytku, urządzeń dla przemysłu spożywczego, na niektóre przewody elektryczne, wymienniki ciepła (PN-EN 683-2:2000), w budownictwie (PN-EN 508-2:2003), a w postaci folii - na opakowania artykułów spożywczych (PN-EN 546-2:2000). Aluminium rafinowane (o wysokiej czystości) jest stosowane w elektronice i elektrotechnice (PN-EN 14121:2003 (U)) oraz do budowy specjalnej aparatury chemicznej. W tablicy 7.14 zestawiono główne obszary zastosowania aluminium i jego stopów. Tablica 7.14 Główne obszary zastosowania aluminium i jego stopów (wg danych P Chevaliera) Rysunek 7.4 Wpływ stężenia domieszek na przewodność elektryczną właściwą aluminium typu ENAW-A199,99 (wg W.W. Malcewa) 12

13 Najogólniej - ze względu na sposób wytwarzania - stopy aluminium dzieli się na: - do obróbki plastycznej, - odlewnicze. Niektóre z tych stopów mogą być stosowane zarówno jako odlewnicze jak i przeznaczone do obróbki plastycznej. Stopy do obróbki plastycznej zawierają zwykle do ok. 5% pierwiastków stopowych, najczęściej Cu, Mg, Mn, niekiedy także Si, Zn, Ni, Cr, Ti lub Li. Niektóre z tych stopów są stosowane w stanie zgniecionym lub po wyżarzaniu rekrystalizującym, a część jest poddawana obróbce cieplnej polegającej na utwardzaniu wydzieleniowym. Odkształceniu plastycznemu, przy zachowaniu specjalnych warunków, można także poddawać stopy aluminium o stężeniu dodatków stopowych większym niż 5%. Odlewnicze stopy aluminium są przeważnie stopami wieloskładnikowymi o dużym stężeniu - od 5 do 25% - pierwiastków stopowych, głównie Si, Cu, Mg, Zn i Ni lub ich różnych zestawień. Charakteryzują się dobrą lejnością i często małym skurczem odlewniczym. W stanie lanym można także stosować stopy zawierające mniej niż 5% pierwiastków stopowych. Stopy aluminium z krzemem Aluminium tworzy z krzemem układ z eutektyką, występującą przy stężeniu 12,6% Si, i dwoma roztworami stałymi granicznymi o rozpuszczalności składników zmniejszającej się wraz z obniżeniem temperatury. Roztwór a (Si w Al) wykazuje sieć regularną typu A1. Aluminium w temperaturze eutektycznej rozpuszcza się w Si w bardzo niewielkim stężeniu - ok. 0,07%, a w temperaturze pokojowej nie wykazuje niemal zupełnie rozpuszczalności w Si. Stopy aluminium z magnezem Aluminium tworzy z Mg roztwór stały graniczny a o rozpuszczalności zmniejszającej się wraz z obniżaniem temperatury, krystalizujący w sieci ściennie centrowanej typu A1 układu regularnego. W zakresie stężenia do ok. 35,5% Mg występuje mieszanina eutektyczna roztworu a z roztworem stałym wtórnym (3 na osnowie fazy elektronowej Al g Mg 5, krystalizującej w sieci regularnej złożonej. W stopach przemysłowych Al z Mg stężenie Mg jest zawarte w przedziale od 0,5 do ok. 13%. Stopy o małym stężeniu Mg wykazują dużą podatność na obróbkę plastyczną, a o dużym stężeniu - bardzo dobre własności odlewnicze. Stopy aluminium z miedzią W układzie podwójnym Al-Cu występują dwa roztwory stałe graniczne oraz 9 roztworów wtórnych na osnowie faz międzymetalicznych. Niektóre z tych faz i roztworów wtórnych utworzonych na ich osnowie krystalizują bezpośrednio z cieczy w wyniku reakcji eutektycznej lub perytektycznej, niektóre zaś powstają w stanie stałym. Eutektyka występuje przy stężeniu 33% Cu i jest złożona z roztworu 13

14 Tablica 7.15 Orientacyjne zakresy stężenia pierwiastków stopowych w stopach aluminium z miedzią Wieloskładnikowe stopy aluminium z cynkiem Czteroskładnikowe stopy Al z Zn, zawierające Mg i Cu (tabl wg PN-EN 573-3:2004 (U) i PN-EN 573-3/Ak:1998), dotychczas nazywane duralami cynkowymi, wykazują najwyższe własności wytrzymałościowe ze wszystkich stopów aluminium. W stanie utwardzonym wydzieleniowo ich wytrzymałość na rozciąganie R m osiąga ok. 700 MPa, a granica plastyczności R 0,2 - ok. 600 MPa, przy małym wydłużeniu A = 2-5%. Ograniczenie ich stosowania jest związane z małą odpornością na działanie podwyższonej temperatury. Stopy te są także mało odporne na korozję, w szczególności naprężeniową, i z tego względu często plateruje się je aluminium lub stopem Al z Zn. Niektóre stopy aluminium z cynkiem można też stosować jako odlewnicze ( wg PN-EN 1706:2001). Tablica 7,17 Orientacyjne zakresy stężenia pierwiastków stopowych w stopach aluminium z cynkiem. Tablica 7.16 Orientacyjny skład chemiczny i własności odlewniczych stopów aluminium z miedzią 14

15 Metale ciężkie i ich stopy Tablica 7.18 Porównanie własności wybranych metali ciężkich Do metali ciężkich zaliczamy : - miedź, - cynk, - ołów, - cynę, - nikiel, - kobalt, - cyrkon, - hafn, - kadm, - ind, - bizmut. W tablicy 7.18 przedstawiono własności wybranych metali ciężkich. 15

16 Miedź i jej stopy Miedź występuje w przyrodzie w postaci rodzimej oraz w rudach siarczkowych: błyszczu miedzi, czyli chalkozynie - Cu 2 S, bornicie - Cu 3 FeS 2, chalkopirycie -CuFeS 2, lub rudach tlenkowych, np. kuprycie - Cu 2 0. Miedź jest trzecim pod względem zużycia (po żelazie i aluminium) metalem stosowanym w technice. Miedź zawierającą 0,5-1% zanieczyszczeń i domieszek można uzyskać metodą pirometalurgiczną przez redukcję, po uprzednim prażeniu związanym z odsiarczaniem i utlenianiem żelaza. Stężenie domieszek można zmniejszyć do ok. 0,1-0,5% przez rafinację ogniową. Miedź katodowa jest produktem elektrolitycznej rafinacji miedzi i może zawierać do 0,05% zanieczyszczeń, a po przetopieniu i odlaniu w próżni lub ośrodku redukującym - jako beztlenowa - 0,01-0,05%. Własności fizyczne i mechaniczne miedzi Miedź ma liczbę atomową równą 29, jej masa atomowa wynosi 63,5463. W związkach chemicznych miedź jest jedno- lub dwuwartościowa. Miedź nie wykazuje odmian alotropowych i krystalizuje w sieci ściennie centrowanej układu regularnego A1 o parametrze 0,3617 nm. Temperatura topnienia miedzi wynosi 1084,88 C, a wrzenia ok C. Miedź ma gęstość 8,93 g/cm 3 w 20 C. Wytrzymałość miedzi na rozciąganie wynosi R m = MPa, granica plastyczności R e = 35 MPa, twardość 45 HB, a wydłużenie A = 30-35%. W wyniku obróbki plastycznej na zimno wytrzymałość miedzi zwiększa się do MPa, a twardość do 120 HB, przy zmniejszeniu wydłużenia do 1-2%. Miedź cechuje duża przewodność cieplna W/(m-K) i elektryczna -59,77 MS/m. Znaczenie domieszek miedzi Przewodność elektryczna miedzi zmniejsza się bardzo znacznie przy niewielkim nawet stężeniu domieszek (rys. 7.5), głównie P, Fe, Co, Si, As, rozpuszczających się w miedzi i - ze względu na dużą różnicę średnic atomowych - powodujących znaczne zniekształcenie sieci krystalicznej miedzi w wyniku kontrakcji lub ekspansji. Pierwiastki Cd, Ag i Zn, których atomy w niewielkim stopniu różnią się wymiarami od atomów Cu, wywierają niewielki wpływ na zmniejszenie przewodności elektrycznej. Podobnie działają Bi i Pb - nierozpuszczające się w miedzi. Pierwiastki te, tworzące niskotopliwe eutektyki, wywierają jednak szczególnie niekorzystny wpływ na własności mechaniczne i technologiczne oraz sprzyjają kruchości na gorąco, co uniemożliwia obróbkę plastyczną miedzi. Obróbkę tę utrudnia również siarka tworząca niskotopliwą eutektykę z siarczkiem Cu 2 S oraz tlen tworzący eutektykę z tlenkiem Cu 2 0, zmniejszające plastyczność miedzi. Miedź jest odporna na korozję atmosferyczną dzięki pokrywaniu się patyną, tj. zasadowym węglanem miedziowym, i na działanie wody, nie wykazuje zaś odporności na działanie amoniaku. 16

17 Zastosowanie miedzi Miedź jest stosowana: - w elektrotechnice na przewody (gdzie wykorzystuje się jej wysoką przewodność elektryczną), - w energetyce i przemyśle chemicznym na chłodnice i wymienniki ciepła (ze względu na dużą przewodność cieplną), - w budownictwie są stosowane produkty z miedzi (blachy na pokrycia dachowe oraz rury na różne instalacje). Ogólna klasyfikacja stopów miedzi Stopy miedzi dzieli się na: - odlewnicze, - przeznaczone do obróbki plastycznej. Wyróżnia się następujące grupy stopów miedzi: Rysunek 7.5 Wpływ stężenia domieszek na przewodność elektryczną właściwą miedzi - z cynkiem ( tradycyjna nazwa mosiądze ), - z cynkiem i ołowiem, - z cynkiem i niklem, - z niklem ( tradycyjna nazwa miedzionikle ), - z cyną ( tradycyjna nazwa brązy ), - z aluminium, - z innymi pierwiastkami stopowymi (których łączne stężenie przekracza 5%), - niskostopowe, w których stężenie pierwiastków stopowych jest mniejsze niż 5%. Ponadto można wydzielić również spoiwa na bazie miedzi, przeznaczone do lutowania twardego m.in. stopów miedzi, metali szlachetnych, ale także innych metali. 17

18 Stopy miedzi z cynkiem Miedź tworzy z cynkiem dwa roztwory stałe graniczne o sieci A3 oraz trzy fazy międzymetaliczne. Spośród wymienionych faz jedynie faza a krystalizuje bezpośrednio z cieczy, a pozostałe powstają w wyniku reakcji perytektycznych. Stopy miedzi z cynkiem, jako głównym pierwiastkiem stopowym, są tradycyjnie nazywane mosiądzami. Dwuskładnikowe stopy Cu z Zn (tabl ze względu na skład fazowy dzieli się na: - jednofazowe - o strukturze roztworu a i stężeniu od 2 do 39% Zn, - dwufazowe o strukturze mieszaniny a + b i stężeniu od 39 do 45% Zn. Jednofazowe stopy Cu z Zn cechuje bardzo duża plastyczność, co umożliwia stosowanie ich na produkty głęboko tłoczone i obrabiane plastycznie na zimno. Duża plastyczność w podwyższonej temperaturze umożliwia ich obróbkę plastyczną na gorąco. Stopy zawierające 5 do 20% Zn są nazywane tradycyjnie tombakami. Dodatek Zn do ok. 30% zwiększa plastyczność oraz wytrzymałość stopów Cu z Zn (rys. 7.6). Wytrzymałość tych stopów zawierających ok. 30 do 45% Zn zwiększa się przy znacznym zmniejszeniu plastyczności. Wiąże się to z obecnością fazy b w stopach dwufazowych i dlatego można je obrabiać plastycznie wyłącznie na gorąco. Dwufazowe stopy Cu z Zn obrabia się plastycznie na gorąco w temperaturze, w której wykazują one strukturę jednofazową. Stopy Cu z Zn w znacznym stopniu umacniają się w wyniku zgniotu. Stopy Cu z Zn charakteryzują się dobrą odpornością na korozję, szczególnie atmosferyczną i w wodzie morskiej. Odporność na korozję stopów miedzi z cynkiem zwiększa się wraz ze wzrostem stężenia Cu. Tablica 7.19 Orientacyjne zakresy stężenia pierwiastków stopowych w stopach miedzi z cynkiem 18

19 Stopy miedzi z cyną Rysunek 7.6 Wpływ stężenia Zn na wytrzymałość na rozciąganie i wydłużenie stopów miedzi z cynkiem (wg W.W. Malcewa) Techniczne stopy Cu z Sn (nazywane tradycyjnie brązami cynowymi) mają zazwyczaj strukturę roztworu a. Duży zakres temperatury krystalizacji stopów Cu z Sn o strukturze a sprzyja jednak ich skłonności do segregacji. Segregacja może być w pewnym stopniu usunięta przez długotrwałe wyżarzanie ujednorodniające w ciągu 24 h w temperaturze C. Stopy miedzi z cyną wykazują dobrą odporność na korozję, szczególnie w środowisku atmosfery przemysłowej i wody morskiej. Odporność ta ulega polepszeniu wraz ze zwiększeniem stężenia Sn, lecz do wartości nie większej od zapewniającej wystąpienie struktury dwufazowej, decydującej o ułatwieniu korozji. Stopy miedzi z cyną o strukturze jednorodnego roztworu a cechuje duża plastyczność i z tego względu mogą być obrabiane plastycznie na zimno, podobnie jak stopy o niejednorodnej strukturze a, zawierające nie więcej niż 4% Sn. Wraz ze zwiększeniem stężenia Sn ponad ok. 4% w strukturze pojawiają się fazy międzymetaliczne, najczęściej przechłodzona faza d wchodząca w skład mieszaniny eutektoidalnej a + d. W praktyce do obróbki plastycznej są przeznaczone stopy miedzi z cyną zawierające do ok. 8% Sn (tablica 7.20), choć obrabia się je źle, przy dużej skłonności do pęknięć. W stanie obrobionym plastycznie na zimno stopy te charakteryzują się dużymi własnościami mechanicznymi, co umożliwia stosowanie ich w przemyśle chemicznym, papierniczym i okrętowym, m.in. na elementy aparatury kontrolno-pomiarowej, siatki, sprężyny, tulejki, łożyska ślizgowe, ślimacznice i ślimaki. Orientacyjne zakresy stężenia podstawowych pierwiastków stopowych występujących w odlewniczych stopach Cu z Sn (według normy PN-EN 1982:2002) zestawiono w tablicy Dotychczas w kraju stosowano odlewnicze stopy miedzi z cyną ujęte w wycofanej normie PN- 91/H

20 Tablica 7.20 Orientacyjne zakresy stężenia dodatków stopowych w różnych grupach stopów miedzi z cyną i/lub innymi pierwiastkami, przeznaczonych do obróbki plastycznej Tablica 7,21 Orientacyjne zakresy stężenia pierwiastków stopowych w odlewniczych stopach miedzi z cyną i/lub innymi pierwiastkami. 20

21 Wieloskładnikowe stopy miedzi z cyną W celu polepszenia niektórych własności oraz zaoszczędzenia Sn są produkowane stopy zawierające oprócz Cu i Sn dodatki Zn lub Pb, nazywane tradycyjnie brązami cynowymi wieloskładnikowymi. Dodatek Zn przeciwdziała segregacji tych stopów cynowych przez zmniejszenie zakresu temperatury krystalizacji fazy a, sprzyjając ujednorodnieniu ich własności mechanicznych i zwiększeniu własności wytrzymałościowych. Cynk jest dobrym odtleniaczem i poprawia lejność tych stopów. Ołów, nietworzący roztworów, polepsza skrawalność stopów Cu z Sn, zmniejsza współczynnik tarcia i korzystnie wpływa na szczelność odlewów, jednak przy większym stężeniu powoduje pogorszenie własności mechanicznych. Wieloskładnikowe stopy miedzi z cyną i innymi pierwiastkami, przeznaczone do obróbki plastycznej mają stężenie Sn ograniczone do ok. 5%. Stopy te są stosowane głównie jako odlewnicze (tabl ). Charakteryzują się dobrą odpornością na korozję oraz na ścieranie (wynikającą z obecności w strukturze twardych faz międzymetalicznych). Szczególnie duży udział tych faz występuje w stopach miedzi z cyną stosowanych na dzwony (np. w nieznormalizowanym stopie CuSn21-C). Stopy miedzi z cyną i cynkiem (nazywane tradycyjnie spiżami) mają zastosowanie podobne jak stopy Cu z Sn dwuskładnikowe, natomiast stopy Cu-Sn-Zn-Pb (tabl. 7.22) stosuje się głównie na tulejki i panewki łożyskowe, a także na elementy maszyn, aparatury, osprzętu silników pojazdów mechanicznych i armatury wodnej. Tablica 7.22 Orientacyjny skład chemiczny odlewniczych stopów miedzi z cyną oraz miedzi z cyną i ołowiem 21

Zespół Szkół Samochodowych

Zespół Szkół Samochodowych Zespół Szkół Samochodowych Podstawy Konstrukcji Maszyn Materiały Konstrukcyjne i Eksploatacyjne Temat: CHARAKTERYSTYKA I OZNACZENIE STALIW. 2016-01-24 1 1. Staliwo powtórzenie. 2. Właściwości staliw. 3.

Bardziej szczegółowo

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu.

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. STOPY ŻELAZA Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. Ze względu na bardzo dużą ilość stopów żelaza z węglem dla ułatwienia

Bardziej szczegółowo

Metale nieżelazne - miedź i jej stopy

Metale nieżelazne - miedź i jej stopy Metale nieżelazne - miedź i jej stopy Miedź jest doskonałym przewodnikiem elektryczności, ustępuje jedynie srebru. Z tego powodu miedź znalazła duże zastosowanie w elektrotechnice na przewody. Miedź charakteryzuje

Bardziej szczegółowo

Stale niestopowe jakościowe Stale niestopowe specjalne

Stale niestopowe jakościowe Stale niestopowe specjalne Ćwiczenie 5 1. Wstęp. Do stali specjalnych zaliczane są m.in. stale o szczególnych własnościach fizycznych i chemicznych. Są to stale odporne na różne typy korozji: chemiczną, elektrochemiczną, gazową

Bardziej szczegółowo

MATERIAŁY KONSTRUKCYJNE

MATERIAŁY KONSTRUKCYJNE Stal jest to stop żelaza z węglem o zawartości węgla do 2% obrobiona cieplnie i przerobiona plastycznie Stale ze względu na skład chemiczny dzielimy głównie na: Stale węglowe Stalami węglowymi nazywa się

Bardziej szczegółowo

MIKROSKOPIA METALOGRAFICZNA

MIKROSKOPIA METALOGRAFICZNA MIKROSKOPIA METALOGRAFICZNA WYKŁAD 3 Stopy żelazo - węgiel dr inż. Michał Szociński Spis zagadnień Ogólna charakterystyka żelaza Alotropowe odmiany żelaza Układ równowagi fazowej Fe Fe 3 C Przemiany podczas

Bardziej szczegółowo

Żeliwo stop żelaza z węglem, zawierający 2,5-4,5% C i inne pierwiastki (Si, Mn, P, S), przeznaczony do wykonywania części maszyn, urządzeń

Żeliwo stop żelaza z węglem, zawierający 2,5-4,5% C i inne pierwiastki (Si, Mn, P, S), przeznaczony do wykonywania części maszyn, urządzeń ŻELIWA NIESTOPOWE Żeliwo stop żelaza z węglem, zawierający 2,5-4,5% C i inne pierwiastki (Si, Mn, P, S), przeznaczony do wykonywania części maszyn, urządzeń przemysłowych i wyrobów codziennego użytku na

Bardziej szczegółowo

Stal - definicja Stal

Stal - definicja Stal \ Stal - definicja Stal stop żelaza z węglem,plastycznie obrobiony i obrabialny cieplnie o zawartości węgla nieprzekraczającej 2,11% co odpowiada granicznej rozpuszczalności węgla w żelazie (dla stali

Bardziej szczegółowo

Odlewnicze stopy żelaza. Staliwa niestopowe i staliwa stopowe Żeliwa

Odlewnicze stopy żelaza. Staliwa niestopowe i staliwa stopowe Żeliwa Odlewnicze stopy żelaza Staliwa niestopowe i staliwa stopowe Żeliwa Staliwo jest stopem żelaza z węglem do około 1,5% i ewentualnie z dodatkami stopowymi przeznaczonym na odlewy Staliwa niestopowe Ważnym

Bardziej szczegółowo

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE WYDZIAŁ ODLEWNICTWA AGH Oddział Krakowski STOP XXXIV KONFERENCJA NAUKOWA Kraków - 19 listopada 2010 r. Marcin PIĘKOŚ 1, Stanisław RZADKOSZ 2, Janusz KOZANA 3,Witold CIEŚLAK 4 WPŁYW DODATKÓW STOPOWYCH NA

Bardziej szczegółowo

Zakres tematyczny. Podział stali specjalnych, ze względu na warunki pracy:

Zakres tematyczny. Podział stali specjalnych, ze względu na warunki pracy: STAL O SPECJALNYCH WŁAŚCIWOŚCIACH FIZYCZNYCH I CHEMICZNYCH Zakres tematyczny 1 Podział stali specjalnych, ze względu na warunki pracy: - odporne na korozję, - do pracy w obniżonej temperaturze, - do pracy

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 5 Temat: Stale stopowe, konstrukcyjne, narzędziowe i specjalne. Łódź 2010 1 S t r

Bardziej szczegółowo

STOPY ŻELAZA. Cz. I. Stale niestopowe konstrukcyjne i o szczególnych właściwościach, staliwa i żeliwa niestopowe

STOPY ŻELAZA. Cz. I. Stale niestopowe konstrukcyjne i o szczególnych właściwościach, staliwa i żeliwa niestopowe STOPY ŻELAZA Cz. I. Stale niestopowe konstrukcyjne i o szczególnych właściwościach, staliwa i żeliwa niestopowe STALE Stal stop żelaza z węglem i innymi dodatkami stopowymi, zawierający do ok. 2 % węgla,

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 5 Temat: Stale niestopowe, stopowe, konstrukcyjne, narzędziowe, specjalne. Łódź 2010

Bardziej szczegółowo

2012-04-04. Zakres tematyczny. Politechnika Rzeszowska - Materiały lotnicze - I LD - 2011/2012 - dr inż. Maciej Motyka

2012-04-04. Zakres tematyczny. Politechnika Rzeszowska - Materiały lotnicze - I LD - 2011/2012 - dr inż. Maciej Motyka STAL NIESTOPOWA, STALIWO I ŻELIWO Zakres tematyczny 1 KLASYFIKACJA I SYSTEMY OZNACZANIA STALI 2 1 Klasyfikacja stopów żelaza Podział czynników determinujących mikrostrukturę iwłaściwości użytkowe stopów

Bardziej szczegółowo

ŻELIWA NIESTOPOWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

ŻELIWA NIESTOPOWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego ŻELIWA NIESTOPOWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Żeliwo stop żelaza z węglem, zawierający 2,5 4,5% C i inne pierwiastki (Si, Mn, P,

Bardziej szczegółowo

Zespół Szkół Samochodowych

Zespół Szkół Samochodowych Zespół Szkół Samochodowych Podstawy Konstrukcji Maszyn Materiały Konstrukcyjne i Eksploatacyjne Temat: OTRZYMYWANIE STOPÓW ŻELAZA Z WĘGLEM. 2016-01-24 1 1. Stopy metali. 2. Odmiany alotropowe żelaza. 3.

Bardziej szczegółowo

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne Technologia obróbki cieplnej Grzanie i ośrodki grzejne Grzanie: nagrzewanie i wygrzewanie Dobór czasu grzania Rodzaje ośrodków grzejnych Powietrze Ośrodki gazowe Złoża fluidalne Kąpiele solne: sole chlorkowe

Bardziej szczegółowo

Do metali nieżelaznych stosowanych w budowie maszyn i urządzeń technicznych zalicza się: miedź, nikiel, cynk, cynę, ołów, aluminium, magnez i chrom

Do metali nieżelaznych stosowanych w budowie maszyn i urządzeń technicznych zalicza się: miedź, nikiel, cynk, cynę, ołów, aluminium, magnez i chrom Do metali nieżelaznych stosowanych w budowie maszyn i urządzeń technicznych zalicza się: miedź, nikiel, cynk, cynę, ołów, aluminium, magnez i chrom (tabela 12). Stopy metali nieżelaznych charakteryzują

Bardziej szczegółowo

Inżynieria materiałowa : stal / Marek Blicharski. wyd. 2 zm. i rozsz. - 1 dodr. (PWN). Warszawa, Spis treści. Wstęp 11

Inżynieria materiałowa : stal / Marek Blicharski. wyd. 2 zm. i rozsz. - 1 dodr. (PWN). Warszawa, Spis treści. Wstęp 11 Inżynieria materiałowa : stal / Marek Blicharski. wyd. 2 zm. i rozsz. - 1 dodr. (PWN). Warszawa, 2017 Spis treści Wstęp 11 1. Wytwarzanie stali 13 1.1. Wstęp 13 1.2. Wsad do wielkiego pieca 15 1.3. Wytwarzanie

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali

Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali KATEDRA INŻYNIERII MATERIAŁOWEJ I SPAJANIA ZAKŁAD INŻYNIERII SPAJANIA Technologie Materiałowe II Wykład 2 Technologia wyżarzania stali dr hab. inż. Jerzy Łabanowski, prof.nadzw. PG Kierunek studiów: Inżynieria

Bardziej szczegółowo

STOPY METALI NIEŻELAZNYCH

STOPY METALI NIEŻELAZNYCH STOPY METALI NIEŻELAZNYCH Podstawowym tworzywem stosowanym we współczesnej technice są stopy żelaza. Rozwój wielu dziedzin techniki jest jednak niemożliwy bez metali nieżelaznych i ich stopów. Podstawy

Bardziej szczegółowo

PIERWIASTKI STOPOWE W STALACH. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PIERWIASTKI STOPOWE W STALACH. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PIERWIASTKI STOPOWE W STALACH Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stal stopowa stop żelaza z węglem, zawierający do ok. 2% węgla i pierwiastki

Bardziej szczegółowo

WPŁYW ZABIEGÓW USZLACHETNIANIA NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE

WPŁYW ZABIEGÓW USZLACHETNIANIA NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE WYDZIAŁ ODLEWNICTWA AGH ODDZIAŁ KRAKOWSKI STOP XXXII KONFERENCJA NAUKOWA z okazji Ogólnopolskiego Dnia Odlewnika 2009 Kraków, 11 grudnia 2009 r. Marcin PIĘKOŚ 1, Stanisław RZADKOSZ 2, Janusz KOZANA 3,Witold

Bardziej szczegółowo

PODSTAWY OBRÓBKI CIEPLNEJ

PODSTAWY OBRÓBKI CIEPLNEJ PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU

Bardziej szczegółowo

ZAGADNIENIA EGZAMINACYJNE

ZAGADNIENIA EGZAMINACYJNE ZAGADNIENIA EGZAMINACYJNE - zagadnienia, na które należy zwrócić szczególną uwagę 1. Omówić budowę atomu. 2. Co to jest masa atomowa? 3. Omówić budowę układu okresowego pierwiastków. 4. Wyjaśnić strukturę

Bardziej szczegółowo

KONSTRUKCJE METALOWE - LABORATORIUM. Produkcja i budowa stali

KONSTRUKCJE METALOWE - LABORATORIUM. Produkcja i budowa stali KONSTRUKCJE METALOWE - LABORATORIUM Produkcja i budowa stali Produkcja stali ŻELAZO (Fe) - pierwiastek chemiczny, w stanie czystym miękki i plastyczny metal o niezbyt dużej wytrzymałości STAL - stop żelaza

Bardziej szczegółowo

w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych

w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych Spoiwa krzemianowe Kompozyty krzemianowe (silikatowe) kity, zaprawy, farby szkło wodne Na 2 SiO 3 + 2H 2 O H 2 SiO 3 +

Bardziej szczegółowo

STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW CHARAKTERYSTYKA FAZ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stop tworzywo składające się z metalu stanowiącego osnowę, do którego

Bardziej szczegółowo

PIERWIASTKI STOPOWE W STALACH

PIERWIASTKI STOPOWE W STALACH PIERWIASTKI STOPOWE W STALACH Stal stopowa - stop żelaza z węglem, zawierający do ok. 2 % węgla i pierwiastki (dodatki stopowe) wprowadzone celowo dla nadania stali wymaganych właściwości, otrzymany w

Bardziej szczegółowo

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. I. Wyżarzanie

OBRÓBKA CIEPLNA STOPÓW ŻELAZA. Cz. I. Wyżarzanie OBRÓBKA CIEPLNA STOPÓW ŻELAZA Cz. I. Wyżarzanie Przemiany przy nagrzewaniu i powolnym chłodzeniu stali A 3 A cm A 1 Przykład nagrzewania stali eutektoidalnej (~0,8 % C) Po przekroczeniu temperatury A 1

Bardziej szczegółowo

Politechnika Gdańska. Wydział Chemiczny. Katedra Elektrochemii, Korozji i Inżynierii Materiałowej. Materiały Konstrukcyjne

Politechnika Gdańska. Wydział Chemiczny. Katedra Elektrochemii, Korozji i Inżynierii Materiałowej. Materiały Konstrukcyjne Politechnika Gdańska Wydział Chemiczny Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Materiały Konstrukcyjne Stopy aluminium i stopy miedzi Juliusz Orlikowski Gdańsk 2009 Wprowadzenie Teoretyczne

Bardziej szczegółowo

CIENKOŚCIENNE KONSTRUKCJE METALOWE

CIENKOŚCIENNE KONSTRUKCJE METALOWE CIENKOŚCIENNE KONSTRUKCJE METALOWE Wykład 2: Materiały, kształtowniki gięte, blachy profilowane MATERIAŁY Stal konstrukcyjna na elementy cienkościenne powinna spełniać podstawowe wymagania stawiane stalom:

Bardziej szczegółowo

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu Instrukcja do ćwiczeń laboratoryjnych z przedmiotów Materiałoznawstwo i Nauka o materiałach Identyfikacja materiałów

Bardziej szczegółowo

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STALE STOPOWE KONSTRUKCYJNE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STALE STOPOWE KONSTRUKCYJNE Ważniejsze grupy stali: stale spawalne o podwyższonej

Bardziej szczegółowo

Stopy żelaza z węglem

Stopy żelaza z węglem WYKŁAD 7 Stopy żelaza z węglem Odmiany alotropowe Fe Fe α - odmiana alotropowa żelaza charakteryzująca się komórka sieciową A2, regularną przestrzennie centrowaną. Żelazo w odmianie alotropowej alfa występuje

Bardziej szczegółowo

BADANIA WTRĄCEŃ TLENKOWYCH W BRĄZIE KRZEMOWYM CUSI3ZN3MNFE METODĄ MIKROANALIZY RENTGENOWSKIEJ

BADANIA WTRĄCEŃ TLENKOWYCH W BRĄZIE KRZEMOWYM CUSI3ZN3MNFE METODĄ MIKROANALIZY RENTGENOWSKIEJ BADANIA WTRĄCEŃ TLENKOWYCH W BRĄZIE KRZEMOWYM CUSI3ZN3MNFE METODĄ MIKROANALIZY RENTGENOWSKIEJ R. ROMANKIEWICZ, F. ROMANKIEWICZ Uniwersytet Zielonogórski ul. Licealna 9, 65-417 Zielona Góra 1. Wstęp Jednym

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ Zakład Metaloznawstwa i Odlewnictwa

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ Zakład Metaloznawstwa i Odlewnictwa Zachodniopoorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ Zakład Metaloznawstwa i Odlewnictwa Przediot: Podstawy Nauki o Materiałach I i II, Materiały Konstrukcyjne, Współczesne Materiały

Bardziej szczegółowo

PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU I POWOLNYM CHŁODZENIU STALI 3.

PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU I POWOLNYM CHŁODZENIU STALI 3. PODSTAWY OBRÓBKI CIEPLNEJ STOPÓW ŻELAZA WYŻARZANIE 1. POJĘCIA PODSTAWOWE 2. PRZEMIANY PRZY NAGRZEWANIU I POWOLNYM CHŁODZENIU STALI 3. WYŻARZANIE 1. POJĘCIA PODSTAWOWE Definicja obróbki cieplnej Dziedzina

Bardziej szczegółowo

Metaloznawstwo II Metal Science II

Metaloznawstwo II Metal Science II Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

BUDOWA STOPÓW METALI

BUDOWA STOPÓW METALI BUDOWA STOPÓW METALI Stopy metali Substancje wieloskładnikowe, w których co najmniej jeden składnik jest metalem, wykazujące charakter metaliczny. Składnikami stopów mogą być pierwiastki lub substancje

Bardziej szczegółowo

STALE STOPOWE KONSTRUKCYJNE

STALE STOPOWE KONSTRUKCYJNE STALE STOPOWE KONSTRUKCYJNE Podział stali stopowych ze względu na zastosowanie: stale konstrukcyjne stale narzędziowe stale o szczególnych właściwościach STALE STOPOWE KONSTRUKCYJNE Ważniejsze grupy stali:

Bardziej szczegółowo

Materiały metalowe. Wpływ składu chemicznego na struktur i własnoci stali. Wpływ składu chemicznego na struktur stali niestopowych i niskostopowych

Materiały metalowe. Wpływ składu chemicznego na struktur i własnoci stali. Wpływ składu chemicznego na struktur stali niestopowych i niskostopowych i własnoci stali Prezentacja ta ma na celu zaprezentowanie oraz przyblienie wiadomoci o wpływie pierwiastków stopowych na struktur stali, przygotowaniu zgładów metalograficznych oraz obserwacji struktur

Bardziej szczegółowo

Stopy metali FAZY

Stopy metali FAZY Stopy metali Czyste metale są w technice stosowane stosunkowo rzadko. Powszechne zastosowanie znajdują stopy metali - w wielu przypadkach wykazujące lepsze własności niż czyste metale. Stopy są substancjami

Bardziej szczegółowo

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach

Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu. Materiałoznawstwo i Nauka o materiałach Akademia Morska w Szczecinie Instytut InŜynierii Transportu Zakład Techniki Transportu Instrukcja do ćwiczeń laboratoryjnych z przedmiotów Materiałoznawstwo i Nauka o materiałach Wpływ róŝnych rodzajów

Bardziej szczegółowo

Austenityczne stale nierdzewne

Austenityczne stale nierdzewne Stowarzyszenie Stal Nierdzewna ul. Ligocka 103 40-568 Katowice e-mail: ssn@stalenierdzewne.pl www.stalenierdzewne.pl Austenityczne stale nierdzewne Strona 1 z 7 Skład chemiczny austenitycznych stali odpornych

Bardziej szczegółowo

Wykaz norm będących w zakresie działalności Komitetu Technicznego KT 301 ds. Odlewnictwa aktualizacja na dzień

Wykaz norm będących w zakresie działalności Komitetu Technicznego KT 301 ds. Odlewnictwa aktualizacja na dzień Wykaz norm będących w zakresie działalności Komitetu Technicznego KT 301 ds. Odlewnictwa aktualizacja na dzień 15.12.2016 Numer PN Odlewy PN-EN 1559-1:2011P PN-EN 1559-1:2011E PN-EN 1559-2:2014-12E PN-EN

Bardziej szczegółowo

LAF-Polska Bielawa 58-260, ul. Wolności 117 NIP: 882-152-92-20 REGON: 890704507 http://www.laf-polska.pl

LAF-Polska Bielawa 58-260, ul. Wolności 117 NIP: 882-152-92-20 REGON: 890704507 http://www.laf-polska.pl Podstawowe informacje o stali Stal jest stopem żelaza, węgla i innych pierwiastków stopowych o zawartości do 2,14 % węgla. W praktyce, jako stale oznacza się stopy, które najczęściej zawierają żelazo,

Bardziej szczegółowo

Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania

Wykład 8. Przemiany zachodzące w stopach żelaza z węglem. Przemiany zachodzące podczas nagrzewania Wykład 8 Przemiany zachodzące w stopach żelaza z węglem Przemiany zachodzące podczas nagrzewania Nagrzewanie stopów żelaza powyżej temperatury 723 O C powoduje rozpoczęcie przemiany perlitu w austenit

Bardziej szczegółowo

2012-03-21. Charakterystyka składników - ŻELAZO Duże rozpowszechnienie w przyrodzie ok. 5% w skorupie ziemskiej. Rudy żelaza:

2012-03-21. Charakterystyka składników - ŻELAZO Duże rozpowszechnienie w przyrodzie ok. 5% w skorupie ziemskiej. Rudy żelaza: WYKRES RÓWNOWAGI FAZOWEJ STOPÓW Fe -C Zakres tematyczny 1 Charakterystyka składników - ŻELAZO Duże rozpowszechnienie w przyrodzie ok. 5% w skorupie ziemskiej Rudy żelaza: MAGNETYT - Fe 3 O 4 (ok. 72% mas.

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) 185228

(12) OPIS PATENTOWY (19) PL (11) 185228 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 185228 (21) Numer zgłoszenia: 331212 ( 13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 04.07.1997 (86) Data i numer zgłoszenia

Bardziej szczegółowo

Obróbka cieplna stali

Obróbka cieplna stali Obróbka cieplna stali Obróbka cieplna stopów: zabiegi cieplne, które mają na celu nadanie im pożądanych cech mechanicznych, fizycznych lub chemicznych przez zmianę struktury stopu. Podstawowe etapy obróbki

Bardziej szczegółowo

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Wykresy układów równowagi faz stopowych Ilustrują skład fazowy

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 8 Temat: Stopy metali nieżelaznych. Stopy Cu, Al i stopy łożyskowe. Łódź 2010 Wprowadzenie

Bardziej szczegółowo

Metale i niemetale. Krystyna Sitko

Metale i niemetale. Krystyna Sitko Metale i niemetale Krystyna Sitko Substancje proste czyli pierwiastki dzielimy na : metale np. złoto niemetale np. fosfor półmetale np. krzem Spośród 115 znanych obecnie pierwiastków aż 91 stanowią metale

Bardziej szczegółowo

MIKROSKOPIA METALOGRAFICZNA

MIKROSKOPIA METALOGRAFICZNA MIKROSKOPIA METALOGRAFICZNA WYKŁAD 4 Żeliwa. Stale wysokostopowe dr inż. Michał Szociński Spis zagadnień Ogólna charakterystyka żeliw o o o Żeliwo szare Żeliwo sferoidalne Żeliwo białe Grafityzacja żeliwa

Bardziej szczegółowo

Materiały konstrukcyjne

Materiały konstrukcyjne Materiały konstrukcyjne 2 Stal Stal jest to materiał zawierający (masowo): więcej żelaza niż jakiegokolwiek innego pierwiastka; o zawartości węgla w zasadzie mniej niż 2%; zawierający również inne pierwiastki.

Bardziej szczegółowo

Nowoczesne stale bainityczne

Nowoczesne stale bainityczne Nowoczesne stale bainityczne Klasyfikacja, projektowanie, mikrostruktura, właściwości oraz przykłady zastosowania Wykład opracował: dr hab. inż. Zdzisław Ławrynowicz, prof. nadzw. UTP Zakład Inżynierii

Bardziej szczegółowo

PL 203790 B1. Uniwersytet Śląski w Katowicach,Katowice,PL 03.10.2005 BUP 20/05. Andrzej Posmyk,Katowice,PL 30.11.2009 WUP 11/09 RZECZPOSPOLITA POLSKA

PL 203790 B1. Uniwersytet Śląski w Katowicach,Katowice,PL 03.10.2005 BUP 20/05. Andrzej Posmyk,Katowice,PL 30.11.2009 WUP 11/09 RZECZPOSPOLITA POLSKA RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203790 (13) B1 (21) Numer zgłoszenia: 366689 (51) Int.Cl. C25D 5/18 (2006.01) C25D 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Wydajność w obszarze HSS

Wydajność w obszarze HSS New czerwiec 2017 Nowe produkty dla techników obróbki skrawaniem Wydajność w obszarze HSS Nowe wiertło HSS-E-PM UNI wypełnia lukę pomiędzy HSS a VHM TOTAL TOOLING = JAKOŚĆ x SERWIS 2 WNT Polska Sp. z o.o.

Bardziej szczegółowo

Stale narzędziowe - stopy przeznaczone na narzędzia tj. przedmioty służące do rozdzielania i rozdrabniania materiałów bądź nadawania kształtu przez

Stale narzędziowe - stopy przeznaczone na narzędzia tj. przedmioty służące do rozdzielania i rozdrabniania materiałów bądź nadawania kształtu przez STALE NARZĘDZIOWE Stale narzędziowe - stopy przeznaczone na narzędzia tj. przedmioty służące do rozdzielania i rozdrabniania materiałów bądź nadawania kształtu przez obróbkę skrawaniem lub przez przeróbkę

Bardziej szczegółowo

1. OZNACZANIE STALI WEDŁUG NORM EUROPEJSKICH

1. OZNACZANIE STALI WEDŁUG NORM EUROPEJSKICH 1. OZNACZANIE STALI WEDŁUG NORM EUROPEJSKICH Zgodnie z Normami Europejskimi obowiązują dwa systemy oznaczania stali: znakowy (według PN-EN 10027-1: 1994); znak stali składa się z symboli literowych i cyfr;

Bardziej szczegółowo

Wykresy równowagi układu żelazo-węgiel. Stabilny żelazo grafit Metastabilny żelazo cementyt

Wykresy równowagi układu żelazo-węgiel. Stabilny żelazo grafit Metastabilny żelazo cementyt Wykresy równowagi układu żelazo-węgiel Stabilny żelazo grafit Metastabilny żelazo cementyt UKŁAD RÓWNOWAGI FAZOWEJ ŻELAZO-CEMENTYT Schemat wykresu układu równowagi fazowej żelazo-węgiel i żelazo-cementyt

Bardziej szczegółowo

Co to jest stal nierdzewna? Fe Cr > 10,5% C < 1,2%

Co to jest stal nierdzewna? Fe Cr > 10,5% C < 1,2% Cr > 10,5% C < 1,2% Co to jest stal nierdzewna? Stop żelaza zawierający 10,5% chromu i 1,2% węgla - pierwiastki, przyczyniające się do powstania warstwy wierzchniej (pasywnej) o skłonności do samoczynnego

Bardziej szczegółowo

Newsletter nr 6/01/2005

Newsletter nr 6/01/2005 Newsletter nr 6/01/2005 Dlaczego stal nierdzewna jest odporna na korozję? (część II) Stalami nazywamy techniczne stopy żelaza z węglem i z innymi pierwiastkami, zawierające do 2 % węgla (symbol chemiczny

Bardziej szczegółowo

Stale narzędziowe. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Stale narzędziowe. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stale narzędziowe Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stale narzędziowe stopy przeznaczone na narzędzia tj. przedmioty służące do rozdzielania

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 8, Data wydania: 17 września 2009 r. Nazwa i adres organizacji

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1449

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1449 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1449 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 6 Data wydania: 31 sierpnia 2018 r. Nazwa i adres ARCELORMITTAL

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

Metale i ich stopy. Podręcznik akademicki do nauki metaloznawstwa i inżynierii materiałowej. Prof. Leszek A. Dobrzański

Metale i ich stopy. Podręcznik akademicki do nauki metaloznawstwa i inżynierii materiałowej. Prof. Leszek A. Dobrzański Metale i ich stopy Podręcznik akademicki do nauki metaloznawstwa i inżynierii materiałowej Prof. Leszek A. Dobrzański Gliwice, 2017 Metale i ich stopy Leszek A. Dobrzański 1 Centrum Badawczo-Projektowo-Produkcyjne

Bardziej szczegółowo

3. Stopy żelaza z węglem

3. Stopy żelaza z węglem 3. Stopy żelaza z węglem 3.1. Charakterystyka żelaza Żelazo jest pierwiastkiem metalicznym o temperaturze topnienia 1534 C i temperaturze wrzenia 3070 C. W przyrodzie występuje głównie w postaci tlenków,

Bardziej szczegółowo

Chłodnice CuproBraze to nasza specjalność

Chłodnice CuproBraze to nasza specjalność Chłodnice CuproBraze to nasza specjalność Dlaczego technologia CuproBraze jest doskonałym wyborem? LUTOWANIE TWARDE 450 C LUTOWANIE MIĘKKIE 1000 C 800 C 600 C 400 C 200 C Topienie miedzi Topienie aluminium

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ Zakład Metaloznawstwa i Odlewnictwa

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ Zakład Metaloznawstwa i Odlewnictwa Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MTERIŁOWEJ Zakład Metaloznawstwa i Odlewnictwa Przedmiot: Podstawy Nauki o Materiałach I i II, Materiały Konstrukcyjne, Współczesne Materiały

Bardziej szczegółowo

Skład chemiczny wybranych stopów niklu do obróbki plastycznej

Skład chemiczny wybranych stopów niklu do obróbki plastycznej Stopy innych metali Stopy niklu Konstrukcyjne (monele) Oporowe (chromel, alumel, nichromy, kanthal) O szczególnych własnościach fizycznych (inwar, kowar, elinwar, permalloy) Odporne na korozję(hastelloy)

Bardziej szczegółowo

Żelazo ARMCO (czyste technicznie)

Żelazo ARMCO (czyste technicznie) Żelazo ARMCO (czyste technicznie) powiększenie: 100x - widoczna struktura ferrytyczna ze zróżnicowaną wielkością ziarna z wydzieleniami cementytu III- ciorzędowego na granicach ziarn powiększenie: 200x

Bardziej szczegółowo

Stale austenityczne. Struktura i własności

Stale austenityczne. Struktura i własności Stale austenityczne Struktura i własności Ściśle ustalone składy chemiczne (tablica) zapewniające im paramagnetyczną strukturę austenityczną W celu uzyskania dobrej odporności na korozję wżerową w środowisku

Bardziej szczegółowo

O naszej konkurencyjności decydują: wysokie parametry jakościowe produktów, rzetelna obsługa, terminowość realizacji zamówień.

O naszej konkurencyjności decydują: wysokie parametry jakościowe produktów, rzetelna obsługa, terminowość realizacji zamówień. IMPEXMETAL S.A. Huta Aluminium Konin jest obecna na rynku europejskim od wielu lat. Łączymy w sobie cechy doświadczonego producenta i dostawcy otwartego na rynek oraz potrzeby klientów. Nasza strategia

Bardziej szczegółowo

Temat 3. Nauka o materiałach. Budowa metali i stopów

Temat 3. Nauka o materiałach. Budowa metali i stopów Temat 3 Nauka o materiałach Budowa metali i stopów BUDOWA MATERII SKALA 10-3 do 10-6 10-6 do 10-10 m m 10-10 do 10-16 m ~10-24 m? STRUKTURA MATERII WG TEORII STRUN: 1) kryształ; 2) sieć atomów; 3) atom;

Bardziej szczegółowo

10. METALE NIEŻELAZNE I ICH STOPY. Opracował: dr inż. Adam Bunsch

10. METALE NIEŻELAZNE I ICH STOPY. Opracował: dr inż. Adam Bunsch 10. METALE NIEŻELAZNE I ICH STOPY Opracował: dr inż. Adam Bunsch Metalami nieżelaznymi nazywa się wszystkie metale nie będące żelazem, a stopy metali nieżelaznych to stopy utworzone na bazie innych metali

Bardziej szczegółowo

Wykład 9 Obróbka cieplna zwykła

Wykład 9 Obróbka cieplna zwykła Wykład 9 Obróbka cieplna zwykła Rozróżniamy 3 rodzaje obróbki cieplnej: Obróbka cieplna zwykła, którą realizujemy stosując 2 parametry: t, τ Obróbka cieplno-chemiczna, którą realizujemy stosując parametry:

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

ĆWICZENIE Nr 5. Laboratorium Inżynierii Materiałowej. Akceptował: Kierownik Katedry prof. dr hab. B. Surowska. Opracował: dr inż.

ĆWICZENIE Nr 5. Laboratorium Inżynierii Materiałowej. Akceptował: Kierownik Katedry prof. dr hab. B. Surowska. Opracował: dr inż. POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Akceptował: Kierownik Katedry prof. dr hab. B. Surowska Laboratorium Inżynierii Materiałowej ĆWICZENIE Nr 5 Opracował: dr inż.

Bardziej szczegółowo

Plan: 1) krutki opis w ramach wstępu 2) Występowanie 3) Otrzymywanie 4) Właściwości 5) Związki 6) Izotopy 7) Zastosowanie 8) Znaczenie biologiczne

Plan: 1) krutki opis w ramach wstępu 2) Występowanie 3) Otrzymywanie 4) Właściwości 5) Związki 6) Izotopy 7) Zastosowanie 8) Znaczenie biologiczne Mied ź Plan: 1) krutki opis w ramach wstępu 2) Występowanie 3) Otrzymywanie 4) Właściwości 5) Związki 6) Izotopy 7) Zastosowanie 8) Znaczenie biologiczne 1) krutki opis w ramach wstępu Miedź (Cu, łac.

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 193

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 193 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 193 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 15, Data wydania: 8 października 2015 r. AB 193 Kod identyfikacji

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 08/13

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 08/13 PL 223497 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223497 (13) B1 (21) Numer zgłoszenia: 399322 (51) Int.Cl. B23P 17/00 (2006.01) C21D 8/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Wpływ metody odlewania stopów aluminium i parametrów anodowania na strukturę i grubość warstwy anodowej 1

Wpływ metody odlewania stopów aluminium i parametrów anodowania na strukturę i grubość warstwy anodowej 1 Wpływ metody odlewania stopów aluminium i parametrów anodowania na strukturę i grubość warstwy anodowej 1 L. A. Dobrzański*, K. Labisz*, J. Konieczny**, J. Duszczyk*** * Zakład Technologii Procesów Materiałowych

Bardziej szczegółowo

STALE NARZĘDZIOWE (opracowanie dr Maria Głowacka) I. Ogólna charakterystyka Wysoka twardość Odporność na zużycie ścierne Odpowiednia hartowność

STALE NARZĘDZIOWE (opracowanie dr Maria Głowacka) I. Ogólna charakterystyka Wysoka twardość Odporność na zużycie ścierne Odpowiednia hartowność STALE NARZĘDZIOWE (opracowanie dr Maria Głowacka) I. Ogólna charakterystyka Stale narzędziowe są stopami przeznaczonymi na narzędzia tj. przedmioty służące do rozdzielania i rozdrabniania materiałów bądź

Bardziej szczegółowo

Schemat obróbki nożami tokarskimi. Oznaczenia noży tokarskich wg ISO, PN, DIN, F, Gost. ISO 2 NNZc-d 4972 302 2102. Nóż wygięty ISO 243 ISO 514.

Schemat obróbki nożami tokarskimi. Oznaczenia noży tokarskich wg ISO, PN, DIN, F, Gost. ISO 2 NNZc-d 4972 302 2102. Nóż wygięty ISO 243 ISO 514. Schemat obróbki nożami tokarskimi Oznaczenia noży tokarskich wg ISO, PN, DIN, F, Gost ISO 243 Nóż ISO 514 PN / M-58352 DIN F GOST (PN / M-58355) ISO 1 NNZa-b 4971 301 2100 Nóż prosty ISO 2 NNZc-d 4972

Bardziej szczegółowo

Tematy Prac Magisterskich Katedra Inżynierii Stopów i Kompozytów Odlewanych

Tematy Prac Magisterskich Katedra Inżynierii Stopów i Kompozytów Odlewanych Tematy Prac Magisterskich Katedra Inżynierii Stopów i Kompozytów Odlewanych 2014-2015 Lp. 1 2 3 4 5 6 Nazwisko i Imię dyplomanta Temat pracy Optymalizacja komputerowa parametrów procesu wypełniania wnęki

Bardziej szczegółowo

6. OBRÓBKA CIEPLNO - PLASTYCZNA

6. OBRÓBKA CIEPLNO - PLASTYCZNA 6. OBRÓBKA CIEPLNO - PLASTYCZNA 6.1. Cel ćwiczenia Zapoznanie się z rodzajami obróbki cieplno plastycznej i ich wpływem na własności metali. 6.2. Wprowadzenie Obróbką cieplno-plastyczną, zwaną potocznie

Bardziej szczegółowo

Metody łączenia metali. rozłączne nierozłączne:

Metody łączenia metali. rozłączne nierozłączne: Metody łączenia metali rozłączne nierozłączne: Lutowanie: łączenie części metalowych za pomocą stopów, zwanych lutami, które mają niższą od lutowanych metali temperaturę topnienia. - lutowanie miękkie

Bardziej szczegółowo

Ewolucja we frezowaniu trochoidalnym

Ewolucja we frezowaniu trochoidalnym New Nowe Lipiec 2016 produkty dla techników obróbki skrawaniem Ewolucja we frezowaniu trochoidalnym Frezy trzpieniowe CircularLine skracają czas obróbki i wydłużają żywotność TOTAL TOOLING = JAKOŚĆ x SERWIS

Bardziej szczegółowo

Temat 3. Nauka o materiałach. Budowa metali i stopów

Temat 3. Nauka o materiałach. Budowa metali i stopów Temat 3 Nauka o materiałach Budowa metali i stopów BUDOWA MATERII SKALA 10-3 do 10-6 10-6 do 10-10 m m 10-10 do 10-16 m ~10-24 m? STRUKTURA MATERII WG TEORII STRUN: 1) kryształ; 2) sieć atomów; 3) atom;

Bardziej szczegółowo

Występujące w technicznych stopach żelaza pierwiastki (inne niż Fe i C) można podzielić na:

Występujące w technicznych stopach żelaza pierwiastki (inne niż Fe i C) można podzielić na: Materiały lotnicze WBMiL I ML ZI (PRz 2012/2013) dr inż. Maciej Motyka (08/06/13) 1 Stopy żelaza konspekt Stal niestopowa, staliwo i żeliwo Występujące w technicznych stopach żelaza pierwiastki (inne niż

Bardziej szczegółowo

APARATURA W OCHRONIE ŚRODOWISKA - 3. MATERIAŁY KONSTRUKCYJNE

APARATURA W OCHRONIE ŚRODOWISKA - 3. MATERIAŁY KONSTRUKCYJNE APARATURA W OCHRONIE ŚRODOWISKA - 3. MATERIAŁY KONSTRUKCYJNE Wykład dla kierunku Ochrona Środowiska Wrocław, 2015 r. Materiały do budowy aparatury procesowej Do budowy aparatury procesowej wykorzystać

Bardziej szczegółowo

C/Bizkargi, 6 Pol. Ind. Sarrikola E LARRABETZU Bizkaia - SPAIN

C/Bizkargi, 6 Pol. Ind. Sarrikola E LARRABETZU Bizkaia - SPAIN Mosiądz Skład chemiczny Oznaczenia Skład chemiczny w % (mm) EN Symboliczne Numeryczne Cu min. Cu maks. Al maks. Fe maks. Ni maks. Pb min. Pb maks. Sn maks. Zn min. Inne, całkowita maks. CuZn10 CW501L EN

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego: RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 164647 Urząd Patentowy Rzeczypospolitej Polskiej (96) Data i numer zgłoszenia patentu europejskiego: 06.09.0 0019300.2 (97)

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 6 Temat: Stale w stanie ulepszonym cieplnie Łódź 2010 Cel ćwiczenia Zapoznanie się

Bardziej szczegółowo

Stal stopowa - stop żelaza z węglem, zawierający do ok. 2 % węgla i pierwiastki (dodatki stopowe) wprowadzone celowo dla nadania stali wymaganych

Stal stopowa - stop żelaza z węglem, zawierający do ok. 2 % węgla i pierwiastki (dodatki stopowe) wprowadzone celowo dla nadania stali wymaganych STALE STOPOWE Stal stopowa - stop żelaza z węglem, zawierający do ok. 2 % węgla i pierwiastki (dodatki stopowe) wprowadzone celowo dla nadania stali wymaganych właściwości, otrzymany w procesach stalowniczych,

Bardziej szczegółowo