Czujniki ciśnienia i temperatury

Wielkość: px
Rozpocząć pokaz od strony:

Download "Czujniki ciśnienia i temperatury"

Transkrypt

1 Czujniki ciśnienia i temperatury Czujniki ciśnienia i temperatury 1 1. Elektryczne urządzenia pomiarowo-kontrolne Ze względu na sposób przekazywania wyników pomiaru urządzenia pomiarowo-kontrolne podzielić można na dyskretne, w których elementem sygnalizacyjnym jest najczęściej lampka kontrolna i analogowe, wyposażone w mierniki wskazówkowe. Schemat typowego dyskretnego układu sygnalizującego spadek ciśnienia i nadmierny wzrost temperatury cieczy chłodzącej przedstawiano na rysunku 1. Nadajnik ciśnienia 1 połączony z układem smarowania silnika zawiera sprężystą przeponę 2 związaną z ruchomym stykiem 3. Gdy ciśnienie panujące w komorze jest niskie, połączony z masą styk 3 jest zwarty z nieruchomym stykiem 4, co powoduje palenie się lampki kontrolnej 5. We wnętrzu nadajnika temperatury 6 znajduje się sprężyna termobimetalowa 7 zmieniająca kształt pod wpływem zmian temperatury. Przy jej nadmiernym wzroście sprężyna 7 przybiera kształt łuku (linia przerywana) i zwiera styki nadajnika powodując zaświecenie lampki 9. Z uwagi na groźne następstwa spadku ciśnienia oleju w układzie smarowania stosuje się częsta połączenie obydwu lamp 5 i 9 za pomocą diody 10. Dzięki takiemu rozwiązaniu, w chwili zwarcia styków nadajnika ciśnienia zapalają się obydwie lampki kontrolne, co eliminuje niebezpieczeństwo niezauważenia tego stanu na skutek np. przepalenia się jednej z żarówek {prawdopodobieństwo równoczesnego przepalenia się obydwu żarówek jest niezmiernie małe). Innym celem stosowania diody jest kontrola funkcjonowania obydwu żarówek po włączeniu instalacji elektrycznej, gdy przy zimnym silniku styki nadajnika temperatury są rozwarte i po włączeniu zapłonu lampka sygnalizatora temperatury nie zaświeciłaby się, uniemożliwiając tym samym jej kontrolę. Rysunek 1. Elektryczny sygnalizator przyrostu temperatury i spadku ciśnienia 1 - nadajnik ciśnienia; 2 - przepona sprężysta; 3 - styk ruchomy nadajnika ciśnienia; 4 - styk nieruchomy nadajnika ciśnienia; 5 - lampka kontrolna spadku ciśnienia; 6 - nadajnik temperatury; 7 - sprężana t.ermobimetalowa; 8 - styki nadajnika temperatury; 9 - lampka kontrolna temperatury; 10 - dioda Na ogół analogowe układy pomiarowo-kontrolne z miernikami wskazówkowymi należącymi do jednej z dwóch grupy magnetoelektrycznych mierników ilorazowych - tzw. logometrów lub amperomierzy termoelektrycznych, stosowane są najczęściej w samochodach starszych. Ponieważ identyfikacja rodzaju miernika (magnetoelektryczny czy termoelektryczny) jest ważna ze względów diagnostycznych, należy pamiętać, że cechą charakterystyczną układów logometrycznych jest gwałtowny skok wskazówki po włączeniu zasilania (stacyjki). Wskazania amperomierza termoelektrycznego w podobnych warunkach zmieniają się powoli i płynnie. We wskaźnikach ciśnienia funkcję nadajnika spełnia potencjometr drutowy 1, którego suwak 2 połączony jest z przeponą metalową 3 (rysunek 2). W nadajniku temperatury (rysunek 3) wykorzystano tzw. termistor, tj. opornik wykonany z materiału zmieniającego swoją rezystywność (oporność właściwą) przy zmianie temperatury.

2 Czujniki ciśnienia i temperatury 2 Rysunek 2. Nadajnik ciśnienia 1 - potencjometr; 2 - suwak potencjometru; 3 - przepona sprężysta; 4 - końcówka nadajnika Rysunek 3. Nadajnik temperatury 1 - obudowa; 2 - termistor Dzięki tej własności nadajnik ten w przeciwieństwie do poprzednio opisanych nie zawiera żadnych elementów ruchomych. Zaletą logometrycznych układów pomiarowych jest wysoka dokładność wynikająca z niewrażliwości układu na wahania napięcia zasilającego i niewielki pobór prądu. Wadą układu jest mała bezwładność wskazówki. 2. Kontrola pracy układu chłodzenia Urządzenie do pomiaru temperatury płynu chłodzącego (rysunek 4) w układzie chłodzenia silnika składa się z czujnika temperatury płynu chłodzącego i połączonego z nim wskaźnika temperatury tego płynu. Zasada działania takiego urządzenia polega na odkształceniu się bimetalowej płytki czujnika pod wpływem temperatury, jak również odkształceniu podobnej płytki wskaźnika z nim współpracującego. Przy wyłączonym napięciu zasilania układu styki 1 i 2 czujnika są zwarte, wskazówka 7 wskaźnika odchyla się poza 100 C (stan zimny). Po włączeniu napięcia wyłącznikiem 9 w obwodzie popłynie prąd. Płytka bimetalowa 6 wskaźnika nagrzewa się i powoduje odchylenie wskazówki 7 w skrajne prawe położenie, odpowiadające temperaturze ok. 40 C. Jednocześnie nagrzewa się płytka bimetalowa 4 czujnika od ciepła wytworzonego przez uzwojenie grzejne 3, powodując rozwarcie styków 1 i 2. Następuje przerwa w obwodzie, płytki stygną, a styki 1 i 2 zwierają się ponownie. Ten cykl pracy powtarza się z coraz mniejszą częstotliwością w miarę nagrzewania się silnika. Ze wzrostem temperatury płynu chłodzącego ulegają zmianie czasy stygnięcia i nagrzewania się płytki bimetalowej 4 czujnika. Rysunek 4. Schemat urządzenia do pomiaru temperatury wody 1, 2 - styki czujnika; 3 - uzwojenie grzejne czujnika; 4 - płytka bimetalowa czujnika; 5 - zacisk czujnika; 6 - płytka bimetalowa wskaźnika; 7- wskazówka; 8 - uzwojenie grzejne wskaźnika; 9 - wyłącznik zapłonu; 10 - wskaźnik; 11 - płyn chłodzący; 12 - korpus silnika

3 Czujniki ciśnienia i temperatury 3 Czas stanu zwarcia styków 1 i 2 zmniejsza się (ciepło otoczenia wpływa na bimetal), natomiast czas stanu rozwarcia styków znacznie się zwiększa, ponieważ dłużej trwa przejmowanie ciepła z nagrzanego bimetalu przez powietrze wewnątrz czujnika. Wskaźnik wskazuje coraz wyższą temperaturę płynu chłodzącego, odpowiadającą wzrastającemu nagrzewaniu silnika. W celu wyeliminowania wpływu zmiennej temperatury otoczenia na wskaźnik, kształtuje się jego płytkę bimetalową 6 w kształcie litery U. Przy zmianach temperatury obydwa ramiona bimetalu wskaźnika wyginają się jednakowo, lecz w przeciwnych kierunkach, wskutek czego położenie swobodnego końca ramienia roboczego nie ulega zmianie, a więc i wskazówka nie zmienia swego odchylenia. W wielu samochodach czujnikiem układu chłodzenia jest termistor umieszczony w obudowie, która styka się bezpośrednio z płynem chłodzącym. Działanie układu jest związane z właściwością termistora, polegającą na zmniejszeniu (termistory typu NTC) lub wzroście (termistory typu PTC) jego rezystancji przy wzroście temperatury. Wskaźnik układu składa się z nieruchomych cewek oraz ruchomego organu ze wskazówką. Zasadę działania układu wyjaśniono na rysunek 5.. Działanie układu omówione zostanie przy założeniu występowania w układzie termistora typu NTC. Cewki 1 i 2 są ustawione prostopadle względem cewki 3. Przy przepływie przez nie prądu powstają prostopadłe do siebie pola magnetyczne. Pole wypadkowe działa na organ ruchomy 4, powodując jego wychylenie. Cewki wskaźnika i termistor 5 są połączone szeregowo-równolegle i zasilane napięciem. Przy zmianach rezystancji termistora zmienia się rozpływ prądów w cewkach i wypadkowe pole magnetyczne. Jeżeli temperatura płynu chłodzącego jest niska, to rezystancja termistora jest duża, prąd w cewce 1 osiąga wartość najmniejszą, natomiast w cewkach 2 i 3 największą. Wypadkowe pole magnetyczne działa na organ ruchomy w ten sposób, że powoduje wychylanie wskazówki w lewą stronę. W miarę wzrostu temperatury płynu chłodzącego zmniejsza się rezystancja termistora, prąd w cewce 1 wzrasta, a w cewkach 2 i 3 maleje. Wypadkowe pole magnetyczne zmienia swój kierunek, powodując wychylenie organu ruchomego ze wskazówką w prawą stronę. Zamiast wskaźnika temperatury może być stosowana tylko lampka kontrolna zapalająca się przy przekroczeniu maksymalnej dopuszczalnej temperatury silnika. W układzie takim jest stosowany czujnik termobimetalowy. Rysunek 5. Schemat układu do kontroli temperatury silnika 1, 2, 3 - cewki wskaźnika; 4 - organ ruchomy ze wskazówką; 5 - czujnik termistorowy; 6 - bezpiecznik

4 Czujniki ciśnienia i temperatury 4 3. Kontrola pracy układu ciśnienia oleju Układ do pomiaru ciśnienia oleju (rysunek 6) składa się z czujnika ciśnienia oleju i połączonego z nim wskaźnika ciśnienia oleju. Przy wyłączonym napięciu zasilania układu styki 1 i 2 są zwarte, wskazówka 7 wskaźnika odchyla się do wartości podziałki. Po włączeniu napięcia wyłącznikiem 8 płynie prąd przez uzwojenie grzejne czujnika 3 i wskaźnika 6. Płytki bimetalowe czujnika 4 i wskaźnik nagrzewają się, w czujniku rozwierają się styki 1 i 2, prąd przestaje płynąć. Po wystygnięciu płytek styki zwierają się ponownie. Prąd w obwodzie płynie i nagrzewa płytki, kiedy styki są zwarte, a zależy to od docisku styków, który zmienia się w zależności od ciśnienia wywieranego przez olej na membranę 10. Przy większym ciśnieniu czas zwarcia płytek jest dłuższy, więc dłużej płynie prąd powodując przekazanie większej ilości ciepła płytce bimetalowej wskaźnika, zatem większe jest odchylenie wskazówki 7 wskaźnika. Do kontroli ciśnienia oleju w układzie smarowania silnika jest również stosowany system sygnalizacyjny, składający się z czujnika oporowego i lampki kontrolnej. Czujnik oporowy pracuje na zasadzie sprężystego odkształcenia membrany pod wpływem ciśnienia. Rysunek 6. Schemat urządzenia do pomiaru ciśnienia oleju 1, 2 - styki czujnika; 3 - uzwojenie grzejne czujnika; 4 - płytka bimetalowa czujnika; 5 - płytka bimetalowa wskaźnika; 6 - uzwojenie grzejne wskaźnika; 7 - wskazówka; 8 - wyłącznik zapłonu; 9 wskaźnik; 10 - membrana; 11 - sprężyna ze stykiem Budowę czujnika przedstawia rysunek 7. Membrana 1 pod wpływem ciśnienia oleju odkształca się i pokonując opór sprężyny 2, powoduje rozwarcie styków 3 i 4. Jeżeli ciśnienie obniży się poniżej dopuszczalnej wartości (np. w samochodzie. FSO 1500 poniżej 0,08 MPa), to sprężyna pokonując opór membrany, dociśnie styk ruchomy do styku nieruchomego. Styk 3 jest wyprowadzony na zewnątrz w postaci płaskiej końcówki konektorowej, a nieruchomy styk 4 jest połączony z masą. Czujnik jest połączony z lampką kontrolną 5, a układ zasilany napięciem. Przy prawidłowym ciśnieniu oleju membrana utrzymuje styki w stanie rozwartym, a tym samym lampka kontrolna nie pali się. Gdy ciśnienie obniży się poniżej dopuszczalnej wartości, wówczas styki czujnika zwierają się, powodując włączenie lampki kontrolnej. Rysunek 7. Schemat układu do kontroli ciśnienia oleju w silniku 1 - membrana czujnika; 2 - sprężyna czujnika; 3 - styk ruchomy czujnika; 4 - styk nieruchomy czujnika; 5 - lampka kontrolna W samochodzie Polonez, oprócz lampki kontrolnej, jest stosowany wskaźnik ciśnienia oleju. Czujnik jest wkręcany końcówką gwintowaną w kadłub silnika. Wewnątrz obudowy czujnika jest umieszczony rezystor drutowy. Jest to płaska płytka izolacyjna z nawiniętymi zwojami drutu oporowego, po którym przesuwa się styk ślizgacza. Jeden koniec ślizgacza jest ułożyskowany na

5 Czujniki ciśnienia i temperatury 5 ośce, dzięki czemu znajdujący się na przeciwległym końcu przesuwa się po rezystorze, wzdłuż wycinka okręgu. Ruch ślizgacza jest wymuszony przez membranę za pośrednictwem układu dzwigni. W stanie spoczynku (brak ciśnienia) sprężyna powrotna ślizgacza przesuwa w skrajne położenie, przy którym rezystancja jest największa. W miarę wzrostu ciśnienia oleju membrana, odkształcając się, przesuwa ślizgacz w kierunku zmniejszenia rezystancji. Zasada działania wskaźnika jest taka sama, jak wskaźnika z rysunku 2. Czujniki temperatury cieczy chłodzącej W celu określenia stanu cieplnego w jakim znajduje się silnik stosuje się czujniki temperatury CTS (ang. - Coolant Temperature Sensor) mierzące temperaturę płynu chłodzącego silnika. Przykładowy czujnik temperatury pokazano na rysunku 8, budowę czujnika - rysunek 9. Rysunek 8. Czujnik temperatury cieczy chłodzącej układu sterowania Multec i Motronic 3.8 Czujnik temperatury zawiera w swojej obudowie termistor typu NTC lub PTC. Rezystor NTC (ang. - Negative Temperature Coefficient) jest to element półprzewodnikowy, którego rezystancja maleje wraz ze wzrostem temperatury. Rezystor PTC (ang. - Positive Temperature Coefficient) jest to element półprzewodnikowy, którego rezystancja rośnie wraz ze wzrostem temperatury. W praktyce większe zastosowanie znalazły termistory NTC ze względu na bardziej liniowy przebieg zależności między rezystancją a temperaturą. Rysunek 9. Budowa czujnika temperatury: 1 - złącze elektryczne, 2 - obudowa, 3 rezystor

6 Czujniki ciśnienia i temperatury 6 Czujnik temperatury cieczy chłodzącej zastosowany w układzie sterowania Multec silnika samochodu Polonez zbudowany jest z rezystora NTC o ujemnym współczynniku temperatury (termistor) umieszczonego w metalowym korpusie. Termistor ma rezystancję równą R 25 =2,887 kω w temperaturze 25 C. Charakterystyka termistora opisana jest równaniem: ( R ) + 53,7057 T T = 23,7612 ln T gdzie: R T - rezystancja termistora w kω; T - temperatura w C. Przykładowe charakterystyki rezystancji czujników temperatury w funkcji temperatury cieczy chłodzącej prezentuje rysunek 10. Rysunek 10. Logarytmiczna charakterystyka rezystancji czujników temperatury układu sterowania Multec (dolna linia) i Mono-Motronic (górna linia) Czujnik udostępnia sterownikowi sygnał (napięcie), którego wartość zmienia się wraz ze zmianą temperatury cieczy chłodzącej. Czujnik temperatury zasilany jest napięciem 5V z centralnego urządzenia sterującego. Jest on wyposażony w dwa styki: zasilanie +5V i styk odniesienia o ujemnym potencjale - rysunek 11. Rysunek 11. Złącze czujnika temperatury

7 Czujniki ciśnienia i temperatury 7 Element pomiarowy umieszczony jest w obudowie ochronnej, która z kolei umożliwia połączenie z konektorem wiązki silnikowej. Rysunek 12. Sposób montażu czujnika temperatury cieczy chłodzącej W tabeli nr 1 zamieszczono podstawowe dane techniczne czujnika temperatury układu Multec. Tabela nr 1. Podstawowe dane techniczne czujnika temperatury układu Multec Temperatura pracy Błąd pomiaru 2 5% Maksymalny prąd zasilania Napięcie zasilania C 1mA < 5V Rysunek 13. Czujnik temperatury płynu chłodzącego: 1 - konektor, 2 - spinka, 3 - czujnik Najczęściej stosuje się trzy miejsca zamocowania czujnika temperatury cieczy chłodzącej. W układach sterowania Multec i Mono-Motronic czujnik jest zainstalowany w kolektorze dolotowym pod korpusem przepustnicy, w miejscu, gdzie ma styczność z płynem chłodzącym silnika. W układzie sterowania Motronic 3.8 w wersji dla silnika czterocylindrowego 20V czujnik umieszczony jest na boku kadłuba silnika, natomiast w silniku pięciocylindrowym V5 umieszczony jest na bloku silnika w pobliżu króćca wyjściowego cieczy chłodzącej z termostatu. W układzie sterowania silnika Holden 2,2L MPFI samochodu Lublin II czujnik temperatury płynu chłodzącego umieszczony jest w korpusie wykonanym z metalu i wkręcony w obudowę termostatu - rysunek 14.

8 Czujniki ciśnienia i temperatury 8 Rysunek 14. Miejsce lokalizacji czujnika temperatury cieczy chłodzącej w systemie Mono-Motronic Rysunek 15. Schemat lokalizacji czujnika temperatury cieczy chłodzącej Rysunek 16. Fotografia lokalizacji czujnika temperatury cieczy chłodzącej w silniku Holden 2,2L MPFI samochodu Lublin II

9 Czujniki temperatury powietrza Czujniki ciśnienia i temperatury 9 Podobnie jak czujnik temperatury cieczy chłodzącej również czujnik temperatury powietrza w kolektorze dolotowym działa na zasadzie rezystora cieplnego (termistora) o ujemnym współczynniku temperaturowym (NTC). W miarę wzrostu temperatury rezystancja czujnika zmniejsza się. Jest on zasilany napięciem 5V z urządzenia sterującego. Często używa się skrótu nazwy czujnika IAT (ang. - Inlet Air Temperature). Na rysunkach przedstawiono wygląd typowych czujników temperatury powietrza. Lokalizacja czujnika może mieć trzy główne warianty. W układzie sterowania Motronic 3.8 w wersji z przepływomierzem powietrza czujnik jest zintegrowany z przepływomierzem mimo tego, że jego praca nie jest związana z działaniem przepływomierza. W wersji bez przepływomierza czujnik jest umieszczony w kolektorze dolotowym. Rysunek 17. Czujnik temperatury powietrza układu Mono-Motronic Rysunek 18. Czujnik temperatury powietrza układu sterowania Delphi Rysunek 19. Czujnik temperatury powietrza układu Motronic 3.8

10 Czujniki ciśnienia i temperatury 10 Czujnik temperatury powietrza układu sterowania Mono-Motronic znajduje się w zespole wtryskiwacza. Jest to czujnik wykorzystujący rezystor NTC i służy do określania masy zasysanego powietrza. Zjawisko zmian natężenia prądu w obwodzie czujnika zostało wykorzystane jako wielkość regulacyjna. Jego charakterystyka jest podobna do charakterystyki czujnika temperatury silnika, lecz jest dla innego zakresu temperatur. Rysunek 20. Miejsce lokalizacji czujnika temperatury powietrza w układzie Mono-Motronic Jeżeli czujnik temperatury powietrza ulegnie uszkodzeniu, to urządzenie sterujące przyjmuje stałą temperaturę powietrza. W układzie Mono-Motronic jest to temperatura +40 C, w przypadku braku sygnału pomiaru temperatury w systemie Motronic 3.8 jednostka sterująca przyjmuje do obliczeń wartość 19,5 C.

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA

EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE Rok 2018 CZĘŚĆ PRAKTYCZNA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu Układ graficzny CKE 2018 Nazwa kwalifikacji: Wykonywanie obsługi liniowej statków powietrznych i obsługi hangarowej wyposażenia

Bardziej szczegółowo

Przekaźniki elektryczne. Budowa, zasada działania, sterowanie

Przekaźniki elektryczne. Budowa, zasada działania, sterowanie Przekaźniki elektryczne. Budowa, zasada działania, sterowanie Przekaźnik elektryczny. Budowa 30-87...obwód główny przekaźnika 85-86...obwód sterowania przekaźnika Rys.330-1 Schemat budowy przekaźnika elektrycznego

Bardziej szczegółowo

Układy zasilania samochodowych silników spalinowych. Bartosz Ponczek AiR W10

Układy zasilania samochodowych silników spalinowych. Bartosz Ponczek AiR W10 Układy zasilania samochodowych silników spalinowych Bartosz Ponczek AiR W10 ECU (Engine Control Unit) Urządzenie elektroniczne zarządzające systemem zasilania silnika. Na podstawie informacji pobieranych

Bardziej szczegółowo

5 05: OBWODY ELEKTRYCZNE UKŁADÓW ROZRUCHU I ZASILANIA SILNIKA SPALINOWEGO, WYKONYWANIE POMIARÓW I OCENA STANU TECHNICZNEGO.

5 05: OBWODY ELEKTRYCZNE UKŁADÓW ROZRUCHU I ZASILANIA SILNIKA SPALINOWEGO, WYKONYWANIE POMIARÓW I OCENA STANU TECHNICZNEGO. Dwiczenie nr 5 Temat 05: OBWODY ELEKTRYCZNE UKŁADÓW ROZRUCHU I ZASILANIA SILNIKA SPALINOWEGO, WYKONYWANIE POMIARÓW I OCENA STANU TECHNICZNEGO. Cel: Pomiar elektryczny obwodu niskiego i wysokiego napięcia

Bardziej szczegółowo

Badanie przepływomierzy powietrza typu LMM i HFM

Badanie przepływomierzy powietrza typu LMM i HFM Badanie przepływomierzy powietrza typu LMM i HFM 1. Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie badania oraz określenie charakterystyk dla przepływomierza z przegrodą spiętrzającą oraz termo-anemometru,

Bardziej szczegółowo

PRZETWORNIKI POMIAROWE

PRZETWORNIKI POMIAROWE PRZETWORNIKI POMIAROWE PRZETWORNIK POMIAROWY element systemu pomiarowego, który dokonuje fizycznego przetworzenia z określoną dokładnością i według określonego prawa mierzonej wielkości na inną wielkość

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

Zaznacz właściwą odpowiedź

Zaznacz właściwą odpowiedź EUOEEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 200/20 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź Zadanie Kondensator o pojemności C =

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

PL B1 (12) OPIS PATENTOWY (19) PL (11) (13) B1. (51) Int.Cl.5: G01R 27/02. (21) Numer zgłoszenia:

PL B1 (12) OPIS PATENTOWY (19) PL (11) (13) B1. (51) Int.Cl.5: G01R 27/02. (21) Numer zgłoszenia: RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 158969 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 275661 (22) Data zgłoszenia: 04.11.1988 (51) Int.Cl.5: G01R 27/02

Bardziej szczegółowo

Akumulatorowe układy zapłonowe

Akumulatorowe układy zapłonowe Akumulatorowe układy zapłonowe 1 Akumulatorowe układy zapłonowe Układy zapłonowe silników spalinowych w silnikach ZI służą do wytworzenia wyładowania iskrowego wewnątrz komory spalania silnika. Stosowane

Bardziej szczegółowo

BADANIE WYŁĄCZNIKA SILNIKOWEGO

BADANIE WYŁĄCZNIKA SILNIKOWEGO BADANIE WYŁĄCZNIKA SILNIKOWEGO Z WYZWALACZEM BIMETALOWYM Literatura: Wprowadzenie do urządzeń elektrycznych, Borelowski M., PK 005 Elektrotechnika i elektronika dla nieelektryków, Hempowicz P i inni, WNT

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Silniki prądu stałego z komutacją bezstykową (elektroniczną)

Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silnik bezkomutatorowy z fototranzystorami Schemat układu przekształtnikowego zasilającego trójpasmowy silnik bezszczotkowy Pojedynczy cykl

Bardziej szczegółowo

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Prawa promieniowania: Plancka, Stefana-Boltzmana.

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Badanie półprzewodnikowych elementów bezzłączowych

Badanie półprzewodnikowych elementów bezzłączowych Instrukcja do ćwiczenia: Badanie półprzewodnikowych elementów bezzłączowych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia. Celem ćwiczenia jest: Poznanie podstawowych właściwości i

Bardziej szczegółowo

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu

Bardziej szczegółowo

PL B1. Sposób zabezpieczania termiczno-prądowego lampy LED oraz lampa LED z zabezpieczeniem termiczno-prądowym

PL B1. Sposób zabezpieczania termiczno-prądowego lampy LED oraz lampa LED z zabezpieczeniem termiczno-prądowym PL 213343 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 213343 (13) B1 (21) Numer zgłoszenia: 391516 (51) Int.Cl. F21V 29/00 (2006.01) F21S 8/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów

Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Lekcja 69. Budowa przyrządów pomiarowych.

Lekcja 69. Budowa przyrządów pomiarowych. Lekcja 69. Budowa przyrządów pomiarowych. Metrologia jest jednym z działów nauki zajmująca się problemami naukowo-technicznymi związanymi z pomiarami, niezależnie od rodzaju wielkości mierzonej i od dokładności

Bardziej szczegółowo

KODY MIGOWE CITROEN (Sprawdzone na modelu Xantia 1.8i 8V 1994r.)

KODY MIGOWE CITROEN (Sprawdzone na modelu Xantia 1.8i 8V 1994r.) KODY MIGOWE CITROEN (Sprawdzone na modelu Xantia 1.8i 8V 1994r.) Odczyt kodów: - wyłączyć zapłon - podłączyć diodę LED miedzy wyjściem C1 (K-line) w kostce diagnostycznej a plusem akumulatora czyli A1

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.

Bardziej szczegółowo

Czujniki prędkości obrotowej silnika

Czujniki prędkości obrotowej silnika Czujniki prędkości obrotowej silnika Czujniki prędkości obrotowej silnika 1 Jednym z najważniejszych sygnałów pomiarowych używanych przez program sterujący silnikiem spalinowym ZI jest sygnał kątowego

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 21/11

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 21/11 PL 218599 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218599 (13) B1 (21) Numer zgłoszenia: 390920 (51) Int.Cl. G01K 15/00 (2006.01) H01L 35/34 (2006.01) Urząd Patentowy Rzeczypospolitej

Bardziej szczegółowo

Pomiar oporu elektrycznego za pomocą mostka Wheatstone a

Pomiar oporu elektrycznego za pomocą mostka Wheatstone a Ćwiczenie E3 Pomiar oporu elektrycznego za pomocą mostka Wheatstone a E3.1. Cel ćwiczenia Celem ćwiczenia jest pomiar oporu elektrycznego pojedynczych rezystorów oraz układu rezystorów połączonych szeregowo

Bardziej szczegółowo

GALWANOMETR UNIWERSALNY V 5-99

GALWANOMETR UNIWERSALNY V 5-99 GALWANOMETR UNWERSALNY V 5-99 Przyrząd jest miernikiem elektrycznym systemu magnetoelektrycznego przystosowanym do pomiarów prądów i napięć stałych oraz zmiennych. Pomiar prądów i napięć zmiennych odbywa

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Opis æwiczeñ. Podzespo³y wykonawcze zawory

Opis æwiczeñ. Podzespo³y wykonawcze zawory Opis æwiczeñ Podzespo³y wykonawcze zawory POZNAÑ 00 I. Zestawienie paneli wchodz¹cych w sk³ad æwiczenia lp. 7 8 9 0 7 8 Wyposa enie podstawowe Nazwa panelu Kod il. szt. W³acznik masy 0 0 0 W³acznik zap³onu

Bardziej szczegółowo

BADANIE AMPEROMIERZA

BADANIE AMPEROMIERZA BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy

Bardziej szczegółowo

Schemat elektryczny Range Rover Evoque łatwiejsza naprawa dzięki cennym wskazówkom

Schemat elektryczny Range Rover Evoque łatwiejsza naprawa dzięki cennym wskazówkom Schemat elektryczny Range Rover Evoque łatwiejsza naprawa dzięki cennym wskazówkom data aktualizacji: 2018.03.16 Dzięki uprzejmości firmy Texa Poland Sp. z o.o. publikujemy kolejne schematy. Liczymy, że

Bardziej szczegółowo

Schemat elektryczny Opel Corsa łatwiejsza naprawa dzięki cennym wskazówkom

Schemat elektryczny Opel Corsa łatwiejsza naprawa dzięki cennym wskazówkom Schemat elektryczny Opel Corsa łatwiejsza naprawa dzięki cennym wskazówkom data aktualizacji: 2017.09.14 Dzięki uprzejmości firmy Texa Poland Sp. z o.o. publikujemy kolejne schematy. Liczymy, że w jeszcze

Bardziej szczegółowo

Instrukcje do doświadczeń. Elektronika

Instrukcje do doświadczeń. Elektronika Instrukcje do doświadczeń Elektronika 1 Spis doświadczeń 1 Dioda podstawowy obwód elektryczny...7 2 Dioda badanie charakterystyki...8 3 Dioda jako prostownik...9 4 LED podstawowy obwód elektryczny...10

Bardziej szczegółowo

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 14W DTR Katowice, ul. Szopienicka 62 C tel/fax.: + 48 (32)

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 14W DTR Katowice, ul. Szopienicka 62 C tel/fax.: + 48 (32) HiTiN Sp. z o. o. 40 432 Katowice, ul. Szopienicka 62 C tel/fax.: + 48 (32) 353 41 31 www.hitin.pl Przekaźnik kontroli temperatury RTT 14W DTR Katowice, 2001r. 1 1. Wstęp. Przekażnik elektroniczny RTT-14W

Bardziej szczegółowo

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki indukcyjne Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki pierścieniowe to takie silniki indukcyjne, w których

Bardziej szczegółowo

Opisy kodów błędów. www.obd.net.pl

Opisy kodów błędów. www.obd.net.pl Opisy kodów błędów. P0010 Przestawiacz zmieniający kąt ustawienia wałka rozrządu A, wadliwe działanie układu dolotowego/lewego/przedniego (blok cylindrów nr 1) zmiany faz rozrządu P0011 Kąt ustawienia

Bardziej szczegółowo

Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp)

Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny

Bardziej szczegółowo

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 14 DTR Katowice, ul. Szopienicka 62 C tel/fax.: +48 (32)

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 14 DTR Katowice, ul. Szopienicka 62 C tel/fax.: +48 (32) HiTiN Sp. z o. o. 40 432 Katowice, ul. Szopienicka 62 C tel/fax.: +48 (32) 353 41 31 www.hitin.pl Przekaźnik kontroli temperatury RTT 14 DTR Katowice, 2001 r. 1 1. Wstęp. Przekażnik elektroniczny RTT-14

Bardziej szczegółowo

Miernik poziomu cieczy MPC-1

Miernik poziomu cieczy MPC-1 - instrukcja obsługi - (dokumentacja techniczno-ruchowa) Spis treści 1. Przeznaczenie 2. Budowa 3. Zasada działania 4. Dane techniczne 5. Sterowanie i programowanie 6. Oznaczenie i zamawianie 7. Zamocowanie

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY IŃSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr1 KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY 1.WPROWADZENIE Przewodzenie ciepła (kondukcja) jest to wymiana ciepła między

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH

Bardziej szczegółowo

3. Przebieg ćwiczenia I. Porównanie wskazań woltomierza wzorcowego ze wskazaniami woltomierza badanego.

3. Przebieg ćwiczenia I. Porównanie wskazań woltomierza wzorcowego ze wskazaniami woltomierza badanego. Badanie woltomierza 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rożnymi układami nastawienia napięcia oraz metodami jego pomiaru za pomocą rożnych typów woltomierzy i nabranie umiejętności posługiwania

Bardziej szczegółowo

Schemat elektryczny Jeep Renegade łatwiejsza naprawa dzięki cennym wskazówkom

Schemat elektryczny Jeep Renegade łatwiejsza naprawa dzięki cennym wskazówkom Schemat elektryczny Jeep Renegade łatwiejsza naprawa dzięki cennym wskazówkom data aktualizacji: 2018.01.15 Dzięki uprzejmości firmy Texa Poland Sp. z o.o. publikujemy kolejne schematy. Liczymy, że w jeszcze

Bardziej szczegółowo

ZAMEK CENTRALNY (BLOKADA DRZWI)

ZAMEK CENTRALNY (BLOKADA DRZWI) Page 1 of 5 ZAMEK CENTRALNY (BLOKADA DRZWI) 147 Page 2 of 5 ZAMEK CENTRALNY (BLOKADA DRZWI) - O Równoczesne uruchomienie zamków drzwi następuje w wyniku zadziałania: kluczykiem; przełączników (przycisków)

Bardziej szczegółowo

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 14 WD DTR Katowice, ul. Szopienicka 62 C tel/fax.: +48 (32)

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 14 WD DTR Katowice, ul. Szopienicka 62 C tel/fax.: +48 (32) HiTiN Sp. z o. o. 40 432 Katowice, ul. Szopienicka 62 C tel/fax.: +48 (32) 353 41 31 www.hitin.pl Przekaźnik kontroli temperatury RTT 14 WD DTR Katowice, 2002 r. 1 1. Wstęp. Przekażnik elektroniczny RTT-14WD

Bardziej szczegółowo

Zespól B-D Elektrotechniki

Zespól B-D Elektrotechniki Zespól B-D Elektrotechniki Laboratorium Elektroniki i Elektrotechniki Samochodowej Temat ćwiczenia: Badanie sondy lambda i przepływomierza powietrza w systemie Motronic Opracowanie: dr hab inż S DUER 39

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 209493 (13) B1 (21) Numer zgłoszenia: 382135 (51) Int.Cl. G01F 1/698 (2006.01) G01P 5/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Zjawisko Halla Referujący: Tomasz Winiarski

Zjawisko Halla Referujący: Tomasz Winiarski Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:

Bardziej szczegółowo

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Poznanie podstawowych własności tranzystora. Wyznaczenie prądów tranzystorów typu n-p-n i p-n-p. Czytanie schematów

Bardziej szczegółowo

Celem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych.

Celem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych. 1. Cel ćwiczenia. Celem ćwiczenia jest poznanie metod pomiaru podstawowych wielkości fizycznych w obwodach prądu stałego za pomocą przyrządów pomiarowych. 2. Wstęp teoretyczny. Pomiary podstawowych wielkości

Bardziej szczegółowo

DPS-3203TK-3. Zasilacz laboratoryjny 3kanałowy. Instrukcja obsługi

DPS-3203TK-3. Zasilacz laboratoryjny 3kanałowy. Instrukcja obsługi DPS-3203TK-3 Zasilacz laboratoryjny 3kanałowy Instrukcja obsługi Specyfikacje Model DPS-3202TK-3 DPS-3203TK-3 DPS-3205TK-3 MPS-6005L-2 Napięcie wyjściowe 0~30V*2 0~30V*2 0~30V*2 0~60V*2 Prąd wyjściowy

Bardziej szczegółowo

PL B 1 (12) OPIS PATENTOWY (19) PL (11) (13) B1 F24H 1/10 F24H 9/20

PL B 1 (12) OPIS PATENTOWY (19) PL (11) (13) B1 F24H 1/10 F24H 9/20 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 178428 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 310708 (22) Data zgłoszenia: 28.09.1995 (51) IntCl6: F24H 1/10 F24H

Bardziej szczegółowo

Audi A6 2,4 l, silnik benzynowy (130 kw, 6-cylindrowy), kod literowy BDW

Audi A6 2,4 l, silnik benzynowy (130 kw, 6-cylindrowy), kod literowy BDW Page 1 of 19 Audi A6 Schemat elektryczny nr 3 / 1 Wydanie 07.2005 Audi A6 2,4 l, silnik benzynowy (130 kw, 6-cylindrowy), kod literowy BDW od modelu roku 2005 Wskazówki: Informacje zawierają rozmieszczenie

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

PRZEKAŹNIKI CZASOWE W PRZEKAŹNIKI CZASOWE I KONTROLI SERIA 5 PRZEKAŹNIKI MODUŁOWE SERIA 6 PRZEKAŹNIKI PRZEMYSŁOWE. strona 440

PRZEKAŹNIKI CZASOWE W PRZEKAŹNIKI CZASOWE I KONTROLI SERIA 5 PRZEKAŹNIKI MODUŁOWE SERIA 6 PRZEKAŹNIKI PRZEMYSŁOWE. strona 440 PRZEKAŹNIKI CZASOWE W PRZEKAŹNIKI CZASOWE I KONTROLI SERIA 5 PRZEKAŹNIKI MODUŁOWE 440 SERIA 6 PRZEKAŹNIKI PRZEMYSŁOWE PRZEKAŹNIKI CZASOWE W PRZEKAŹNIKI CZASOWE W SERIA 5 PRZEKAŹNIKI MODUŁOWE WSKAŹNIK PRACY

Bardziej szczegółowo

Schemat elektryczny Toyota Yaris łatwiejsza naprawa dzięki cennym wskazówkom

Schemat elektryczny Toyota Yaris łatwiejsza naprawa dzięki cennym wskazówkom Schemat elektryczny Toyota Yaris łatwiejsza naprawa dzięki cennym wskazówkom data aktualizacji: 2017.11.15 Dzięki uprzejmości firmy Texa Poland Sp. z o.o. publikujemy kolejne schematy. Liczymy, że w jeszcze

Bardziej szczegółowo

Schemat elektryczny Mercedes-Benz łatwiejsza naprawa dzięki cennym wskazówkom

Schemat elektryczny Mercedes-Benz łatwiejsza naprawa dzięki cennym wskazówkom Schemat elektryczny Mercedes-Benz łatwiejsza naprawa dzięki cennym wskazówkom data aktualizacji: 2018.10.09 Dzięki uprzejmości firmy Texa Poland Sp. z o.o. publikujemy kolejne schematy. Liczymy, że w jeszcze

Bardziej szczegółowo

3.5 Wyznaczanie stosunku e/m(e22)

3.5 Wyznaczanie stosunku e/m(e22) Wyznaczanie stosunku e/m(e) 157 3.5 Wyznaczanie stosunku e/m(e) Celem ćwiczenia jest wyznaczenie stosunku ładunku e do masy m elektronu metodą badania odchylenia wiązki elektronów w poprzecznym polu magnetycznym.

Bardziej szczegółowo

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC Wybrane elementy elektroniczne Rezystory NTC Czujniki temperatury Rezystancja nominalna 20Ω 40MΩ (typ 2kΩ 40kΩ) Współczynnik temperaturowy -2-5% [%/K] Max temperatura pracy 120 200 (350) [ºC] Współczynnik

Bardziej szczegółowo

Zespół B-D Elektrotechniki

Zespół B-D Elektrotechniki Zespół B-D Elektrotechniki Laboratorium Elektrotechniki i Elektroniki Samochodowej Temat ćwiczenia: Badanie elementów komputerowego układu zapłonowego w systemie MOTRONIC Opracowanie: dr hab. inż. S. DUER

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

Schemat pojazdu Peugeot 508 łatwiejsza naprawa dzięki cennym wskazówkom

Schemat pojazdu Peugeot 508 łatwiejsza naprawa dzięki cennym wskazówkom Schemat pojazdu Peugeot 508 łatwiejsza naprawa dzięki cennym wskazówkom data aktualizacji: 2016.11.15 Dzięki uprzejmości firmy Texa Poland Sp. z o.o. publikujemy kolejne schematy. Liczymy, że ułatwią one

Bardziej szczegółowo

Schemat elektryczny Škoda Fabia

Schemat elektryczny Škoda Fabia Schemat elektryczny Škoda Fabia data aktualizacji: 2018.11.08 Dzięki uprzejmości firmy Texa Poland Sp. z o.o. publikujemy kolejne schematy. Liczymy, że w jeszcze większym stopniu ułatwią one Państwu naprawę

Bardziej szczegółowo

Schemat pojazdu BMW 3 łatwiejsza naprawa dzięki cennym wskazówkom

Schemat pojazdu BMW 3 łatwiejsza naprawa dzięki cennym wskazówkom Schemat pojazdu BMW 3 łatwiejsza naprawa dzięki cennym wskazówkom data aktualizacji: 2016.12.19 Dzięki uprzejmości firmy Texa Poland Sp. z o.o. publikujemy kolejne schematy. Liczymy, że w jeszcze większym

Bardziej szczegółowo

Charakterystyka rozruchowa silnika repulsyjnego

Charakterystyka rozruchowa silnika repulsyjnego Silnik repulsyjny Schemat połączeń silnika repulsyjnego Silnik tego typu budowany jest na małe moce i używany niekiedy tam, gdzie zachodzi potrzeba regulacji prędkości. Układ połączeń silnika repulsyjnego

Bardziej szczegółowo

Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych. 1.1.1. Podstawowe wielkości i jednostki elektryczne

Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych. 1.1.1. Podstawowe wielkości i jednostki elektryczne Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych 1. Prąd stały 1.1. Obwód elektryczny prądu stałego 1.1.1. Podstawowe wielkości i jednostki elektryczne 1.1.2. Natężenie prądu

Bardziej szczegółowo

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 15 DTR Katowice, ul. Szopienicka 62 C Tel/fax.: +48 (32)

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 15 DTR Katowice, ul. Szopienicka 62 C Tel/fax.: +48 (32) HiTiN Sp. z o. o. 40 432 Katowice, ul. Szopienicka 62 C Tel/fax.: +48 (32) 353 41 31 www.hitin.pl Przekaźnik kontroli temperatury RTT 15 DTR Katowice 2010r. 1 1. Wstęp. Przekaźnik elektroniczny RTT-15

Bardziej szczegółowo

Ćwiczenie 3 Układy sterowania, rozruchu i pracy silników elektrycznych

Ćwiczenie 3 Układy sterowania, rozruchu i pracy silników elektrycznych Ćwiczenie 3 Układy sterowania, rozruchu i pracy silników elektrycznych 1. Przedmiot opracowania Celem ćwiczenia jest zilustrowanie sposobu sterowania, rozruchu i pracy silników indukcyjnych niskiego napięcia.

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Niezrównoważony mostek Wheatsone'a. Pomiar rezystancji technicznym mostkiem Wheatsone'a

Bardziej szczegółowo

OBSŁUGA ZASILACZA TYP informacje ogólne

OBSŁUGA ZASILACZA TYP informacje ogólne OBSŁUGA ZASILACZA TYP 5121 - informacje ogólne W trakcie zajęć z Laboratorrium odstaw ęlektroniki zasilacz typ 5121 wykorzystywany jest jako źróło napięcia głównie w trakcie pomiarów charakterystyk statycznych

Bardziej szczegółowo

Hamulce elektromagnetyczne. EMA ELFA Fabryka Aparatury Elektrycznej Sp. z o.o. w Ostrzeszowie

Hamulce elektromagnetyczne. EMA ELFA Fabryka Aparatury Elektrycznej Sp. z o.o. w Ostrzeszowie Hamulce elektromagnetyczne EMA ELFA Fabryka Aparatury Elektrycznej Sp. z o.o. w Ostrzeszowie Układy prostujące B2 1P Prostownik B2 1P stanowi kompletny zespół do bezpośredniego montażu. Wyposażony w listwę

Bardziej szczegółowo

URZĄDZENIA STYKOWO - DŹWIGNIOWE EZ / EM

URZĄDZENIA STYKOWO - DŹWIGNIOWE EZ / EM URZĄDZENIA STYKOWO - DŹWIGNIOWE EZ / EM DOKUMENTACJA TECHNICZNO-RUCHOWA ======================================= 2008 Wyd.2 1 Spis treści 1. Przeznaczenie...3 2. Zasada działania...3 3. Budowa...4 4. Dane

Bardziej szczegółowo

Stanowisko laboratoryjne do wyznaczania charakterystyk czasowo-prądowych wyłączników nadprądowych [Komunikat]

Stanowisko laboratoryjne do wyznaczania charakterystyk czasowo-prądowych wyłączników nadprądowych [Komunikat] ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY ZARZĄDZANIA OCHRONĄ PRACY W KATOWICACH Nr 1(3)/2007, s. 147-151 ISSN-1895-3794 Andrzej Kidawa Wyższa Szkoła Zarządzania Ochroną Pracy w Katowicach Andrzej Zieliński Wyższa

Bardziej szczegółowo

Czujniki temperatury

Czujniki temperatury Czujniki temperatury Pomiar temperatury Pomiar temperatury jest jednym z najczęściej wykonywanych pomiarów wielkości nieelektrycznej w gospodarstwach domowych jak i w przemyśle. Do pomiaru temperatury

Bardziej szczegółowo

Projektowanie systemów pomiarowych

Projektowanie systemów pomiarowych Projektowanie systemów pomiarowych 10 Pomiar temperatury wybrane metody http://www.acse.pl/czujniki-temperatury 1 Pomiary temperatury Skale temperatury: - Celsjusza (1742) uporządkowana przez Stromera

Bardziej szczegółowo

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

Ćwiczenie 9. Mostki prądu stałego. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia: Ćwiczenie 9 Mostki prądu stałego Program ćwiczenia: 1. Pomiar rezystancji laboratoryjnym mostkiem Wheatsone'a 2. Pomiar rezystancji technicznym mostkiem Wheatsone'a. Pomiar rezystancji technicznym mostkiem

Bardziej szczegółowo

Badanie własności hallotronu, wyznaczenie stałej Halla (E2)

Badanie własności hallotronu, wyznaczenie stałej Halla (E2) Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie

Bardziej szczegółowo

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia MIKROSYSTEMY - laboratorium Ćwiczenie 3 Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia Zadania i cel ćwiczenia. W ćwiczeniu zostaną

Bardziej szczegółowo

Stanowisko do pomiaru fotoprzewodnictwa

Stanowisko do pomiaru fotoprzewodnictwa Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko

Bardziej szczegółowo

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia

Bardziej szczegółowo

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie

Bardziej szczegółowo

Silniki C14NZ, X14NZ. Kontrola układu zapłonowego i wtrysku paliwa Multec.

Silniki C14NZ, X14NZ. Kontrola układu zapłonowego i wtrysku paliwa Multec. Silniki C14NZ, X14NZ Kontrola układu zapłonowego i wtrysku paliwa Multec. Układ zapłonowy EZF-h: zapłon elektroniczny z czujnikiem Halla umieszczonym w rozdzielaczu zapłonu, z zaprogramowaną mapą kąta

Bardziej szczegółowo

BADANIE SILNIKA SKOKOWEGO

BADANIE SILNIKA SKOKOWEGO Politechnika Warszawska Instytut Maszyn Elektrycznych Laboratorium Maszyn Elektrycznych Malej Mocy BADANIE SILNIKA SKOKOWEGO Warszawa 00. 1. STANOWISKO I UKŁAD POMIAROWY. W skład stanowiska pomiarowego

Bardziej szczegółowo

Regulacja dwupołożeniowa (dwustawna)

Regulacja dwupołożeniowa (dwustawna) Regulacja dwupołożeniowa (dwustawna) I. Wprowadzenie Regulacja dwustawna (dwupołożeniowa) jest często stosowaną metodą regulacji temperatury w urządzeniach grzejnictwa elektrycznego. Polega ona na cyklicznym

Bardziej szczegółowo

Zespół B-D Elektrotechniki. Laboratorium Silników i układów przeniesienia napędów

Zespół B-D Elektrotechniki. Laboratorium Silników i układów przeniesienia napędów Zespół B-D Elektrotechniki Laboratorium Silników i układów przeniesienia napędów Temat ćwiczenia: Badanie komputerowego układu zapłonowego w systemie MOTRONIC Opracowanie: dr hab. inż. S. DUER 2 3. Instrukcja

Bardziej szczegółowo

Urządzenia stykowo-dźwigniowe EZ/EM

Urządzenia stykowo-dźwigniowe EZ/EM Instrukcja obsługi Urządzenia stykowo-dźwigniowe EZ/EM Instrukcja obsługi urządzeń stykowo dźwigniowych 10/2013 Strona 1 z 7 Spis treści 1. Przeznaczenie...3 2. Zasada działania...3 3. Budowa...4 4. Dane

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Przygotowanie zadania sterowania do analizy i syntezy zestawienie schematu blokowego

Bardziej szczegółowo

Spis treści. 1. Badanie układu samodiagnostyki w silniku benzynowym typu 11. 1.1. Struktura systemu sterowania silnikiem benzynowym typu

Spis treści. 1. Badanie układu samodiagnostyki w silniku benzynowym typu 11. 1.1. Struktura systemu sterowania silnikiem benzynowym typu 3 1. Badanie układu samodiagnostyki w silniku benzynowym typu 11 Motronic... 1.1. Struktura systemu sterowania silnikiem benzynowym typu Motronic.. 11 1.2. Algorytm pracy sterownika w silniku benzynowym

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Ćwiczenie 5 Temat: Pomiar napięcia i prądu stałego. Cel ćwiczenia Poznanie zasady pomiaru napięcia stałego. Zapoznanie się z działaniem modułu KL-22001. Obsługa przyrządów pomiarowych. Przestrzeganie przepisów

Bardziej szczegółowo

Zespół B-D Elektrotechniki. Laboratorium Silników i układów przeniesienia

Zespół B-D Elektrotechniki. Laboratorium Silników i układów przeniesienia Zespół B-D Elektrotechniki Laboratorium Silników i układów przeniesienia napędów Temat ćwiczenia: Badanie czujników i nastawników komputerowego układu zapłonowego w systemie MOTRONIC Opracowanie: dr hab.

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE DO ZDOBYCIA PUNKTÓW 50 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 Jest to powtórka przed etapem rejonowym (głównie elektrostatyka). ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte otwarte SUMA zadanie 1 1 pkt Po włączeniu

Bardziej szczegółowo

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych.

Badziak Zbigniew Kl. III te. Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. Badziak Zbigniew Kl. III te Temat: Budowa, zasada działania oraz rodzaje mierników analogowych i cyfrowych. 1. MIERNIKI ANALOGOWE Mierniki magnetoelektryczne. Miernikami magnetoelektrycznymi nazywamy mierniki,

Bardziej szczegółowo

Badanie bezzłączowych elementów elektronicznych

Badanie bezzłączowych elementów elektronicznych Temat ćwiczenia: Badanie bezzłączowych elementów elektronicznych - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - Dzień tygodnia: godzina wykonania ćwiczenia Lp. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

Schemat elektryczny Volvo XC 90 II

Schemat elektryczny Volvo XC 90 II Schemat elektryczny Volvo XC 90 II data aktualizacji: 2018.04.04 Dzięki uprzejmości firmy Texa Poland Sp. z o.o. publikujemy kolejne schematy. Liczymy, że w jeszcze większym stopniu ułatwią one Państwu

Bardziej szczegółowo