ZNACZENIE POJEMNOŚCI KABLA W UKŁADACH ZASILAJĄCYCH SILNIKI INDUKCYJNE ZA POŚREDNICTWEM PRZEKSZTAŁTNIKÓW CZĘSTOTLIWOŚCI
|
|
- Leszek Marek
- 9 lat temu
- Przeglądów:
Transkrypt
1 Zeszyty Problemowe Maszyny Elektryczne Nr 74/ Marek Trajdos, T-System Projekt Sp. z o.o., Łódź Robert Pastuszka, Ireneusz Sosnowski, Helukabel Polska Sp. z o.o., Poznań ZNACZENIE POJEMNOŚCI KABLA W UKŁADACH ZASILAJĄCYCH SILNIKI INDUKCYJNE ZA POŚREDNICTWEM PRZEKSZTAŁTNIKÓW CZĘSTOTLIWOŚCI IMPORTANCE OF CABLE S CAPACITY IN MOTOR - FREQUENCY CONVERTER CONFIGURATION Abstract: The paper shows the influence of capacity of motor cables on proper functioning of system included frequency converter. Its shows the methods of reduction of cables capacity and results of using a cables about incorrect parameters. Its shows also all the conditions which has to be comply by the cables functioning of system included frequency converter. 1. Wstęp Wszystkie współczesne przekształtniki prądu przemiennego pracują w oparciu o zasadę modulacji szerokości impulsu (PWM). Powyższe warunkuje występowanie w widmie harmonicznych napięcia zasilającego silnik poza pierwszą harmoniczną o regulowanej częstotliwości (zwykle w zakresie 0-60 Hz) pasm wyższych harmonicznych będących wielokrotnością podstawowej częstotliwości modulacji, która jest z reguły nastawiana jednym z parametrów konfiguracyjnych falownika. Z reguły nastawa fabryczna wynosi od 2,5 do 4,5 khz, ale użytkownik może zmieniać tę częstotliwość w zakresie nawet do 16 khz. Dopuszczalny prąd znamionowy w % Częstotliwość impulsowania [khz] Rys.1. Przykładowa charakterystyka przedstawiająca możliwości modulatora PWM. [1] W zależności od wielkości urządzenia dany przedział dopuszczalnej zmienności częstotliwości impulsowania zmienia się w sposób uwidoczniony na rys.1 2. Pojemność jako wartość wynikająca z geometrii i zastosowanych materiałów Każdy kabel będący układem jednej lub wielu żył przewodzących, ewentualnie umieszczonych w przewodzącym ekranie, charakteryzuje własna indukcyjność oraz pojemność. Pojemność wynika z istnienia elementów przewodzących, na których można zgromadzić ładunek, oddzielonych izolatorem, pomiędzy którymi występuje różnica potencjałów, czyli napięcie. Na wielkość pojemności wpływa zarówno rodzaj wprowadzonego pomiędzy elementy przewodzące izolatora, jak i geometria całego układu. W przypadku kondensatora płaskiego, czyli najprostszego do analizy układu, pojemność jest określona wzorem [2]: ε wε 0 Cp = S d Cp pojemność kondensatora płaskiego ε w przenikalność dielektryczna względna ε 0 przenikalność dielektryczna próżni (8, F/m.) S pole powierzchni elektrod d odległość pomiędzy elektrodami (1) Przy układzie walcowym, który bardziej trafne odzwierciedla budowę kabla, sposób obliczania pojemności jest podobny i wyraża się wzorem: 2πε wε 0L Cw = R (2) ln r
2 98 Zeszyty Problemowe Maszyny Elektryczne Nr 74/2006 Cw - pojemność w układzie walców współosiowych ε w - przenikalność dielektryczna względna ε 0 - przenikalność dielektryczna bezwzględna (8, F/m.) L - długość układu [m] r- promień walca wewnętrznego (żyły) R- promień walca zewnętrznego (ekranu) W przypadku układu płaskiego oraz układu walcowego widać, że pojemność zależy jedynie od geometrii układu i własności dielektrycznych materiału izolacyjnego. Jedynie zmiana tych dwóch parametrów wpływa na zmianę pojemności kabla i daje możliwość jej obniżenia. Własnością materiału izolacyjnego która wpływa na pojemność układu jest przenikalność dielektryczna względna ε w. Wielkość ta wskazuje ile razy wzrasta pojemność kondensatora po wstawieniu między okładki dielektryku w stosunku do kondensatora próżniowego o takiej samej geometrii. Wartość ε w zmienia się dla różnych materiałów w dość szerokich granicach w zależności od natury dielektryka, ale zawsze ε w >1 [2]. Dla materiału najczęściej stosowanego na izolację kabli, czyli polichlorku winylu (PVC) ma ona wartość z zakresu od 4 do 8. Przy produkcji kabli o obniżonej pojemności do zastosowań specjalnych stosuje się jako materiał izolacyjny polietylen (PE). Większość własności pozaelektrycznych (np. temperatury pracy kabla) nie ulega zmianie w stosunku do kabli izolowanych PVC, natomiast zaletą PE jest jego niska w stosunku do PVC przenikalność dielektryczna, która wynosi 2,3 i pozostaje taka sama bez względu na to czy jest to polietylen otrzymywany metodą wysokociśnieniową, czy niskociśnieniową [3,4]. Oznacza to, że pojemność kabla izolowanego polietylenem jest co najmniej 1,74 razy niższa od kabla izolowanego PVC o takiej samej geometrii. Kolejną zaletą stosowania PE jako izolacji kabla jest niższy współczynnik strat dielektrycznych tgδ[3]. Nie ma to zbyt dużego znaczenia przy kablach o napięciu pracy do 1kV, jednak może być zauważalne w przypadku kabli średniego napięcia (np. przeznaczonych do zasilania silników o napięciu pracy powyżej 1kV) Ponieważ kable do przekształtników są kablami ekranowanymi w kablu takim zawsze wystąpią dwa rodzaje pojemności: pomiędzy żyłami roboczymi i pomiędzy żyłami a ekranem. Producenci kabli specjalistycznych przeznaczonych do współpracy z silnikiem indukcyjnym i przekształtnikiem podają wśród parametrów wartości pojemności właściwej zdefiniowanej np. w [nf/km]. Wartość tej pojemności zmienia się oczywiście w zależności od przekroju żyły i zawiera się w granicach: od 70 (4x1,5 mm 2 ) do 250 (4x95 mm 2 ) nf/km wartość między żyłami od 110 (4x1,5 mm 2 ) do 410 (4x95 mm 2 ) nf/km wartość między żyłą a ekranem. Dla wyższych przekrojów wartość już znacząco nie wzrasta [5,6]. 3. Zjawiska związane z pojemnością kabla W przypadku występowania pojemności można wyznaczyć wartość impedancji pojemnościowej, która jest zależna od pojemności oraz częstotliwości impulsowania, jest ona określona następującym wzorem: Z C 1 = 2πf C f i - częstotliwość impulsowania i δ L (3) C δ - całkowita (wypadkowa) pasożytnicza pojemność jednostki długości kabla L - długość kabla łączącego falownik z silnikiem Widać zatem, że impedancja maleje wraz ze wzrostem zaprogramowanej częstotliwości impulsów, pojemności właściwej kabla (będącej jego parametrem konstrukcyjnym) oraz długości przewodów zasilających silnik. Im mniejsza jest wartość wypadkowej impedancji pojemnościowej układu przewodów zasilających silnik, tym większy prąd płynie przez pojemności pasożytnicze. Wartość tego prądu sumuje się z właściwym obciążeniem przekształtnika, co w krytycznym przypadku może prowadzić do konieczności przewymiarowania falownika w aplikacjach z bardzo długimi kablami.
3 Zeszyty Problemowe Maszyny Elektryczne Nr 74/ a) b) Rys.2. Przekroje kabli przeznaczonych do połączenia silnika z przekształtnikiem: TOPFLEX- EMV (a) i TOPFLEX-EMV-3PLUS (b) [5,6] Producenci przekształtników niekiedy podają proponowane dopuszczalne długości kabli, lecz z natury rzeczy są to dane bardzo szacunkowe, ponieważ nie jest określony konkretny producent kabli. Jednocześnie większość producentów nie prowadzi nawet badań takich parametrów jak pojemność właściwa dla swoich wyrobów. W wypadku przekształtników rodziny Master Drives VC podaje się, że możliwe jest zwiększenie do 150% dopuszczalnej długości kabli zasilających silnika przy zastosowaniu przewodów specjalnych. Biorąc pod uwagę, że kable są zazwyczaj wykonywane jako czterożyłowe (rys.2.a) należy przy obliczaniu pojemności wypadkowej uwzględnić, że na jednostkę długości kabla składa się sześć połączonych równolegle kondensatorów międzyżyłowych oraz cztery zastępcze kondensatory typu żyła/ekran. Pamiętając, że dla połączenia równoległego kondensatorów ich pojemność sumujemy, możemy obliczyć wypadkową pojemność kabla uwzględniającą wszystkie pojemności pasożytnicze Cδ = 6C ż + 4C e (4) C ż pojemność między żyłami C e pojemność między żyłą a ekranem Tak więc przykładowo wypadkowa właściwa pojemność pasożytnicza dla kabla 4x16 mm 2, którego pojemność pomiędzy żyłami wynosi 140 nf/km a pojemność żyła ekran wynosi 230 nf/km [6], pojemność wypadkowa wyniesie 1760 nf/km. Pojemności te mają jeszcze mniejsze wartości dla kabli ekranowanych o konstrukcji symetrycznej 3 plus (rys. 2b) Natomiast obliczenie wartości prądu płynącego w wyniku występowania zjawiska upływu przez pojemności pasożytnicze można wykonać w oparciu o następujące przykładowe założenia: wartość skuteczna harmonicznej zgodnej z częstotliwością impulsowania 2,5 khz wynosi 15% wartości pierwszej harmonicznej napięcia zasilającego 400 V, czyli 0,15 x 400 = 60V. napięcie skuteczne powyższej harmonicznej pomiędzy żyłami wynosi zatem 60V, natomiast dla układów sieci z uziemionym punktem zerowym transformatora (nie IT) 0,5 x 60V=30V. zatem sumaryczny upływ prądu między żyłami wynosi dla kabla 4x16 mm 2 o długości 100m: I=U/ Z ż +U/2 Z e (5) Z e =1/2πf i 4C e L=692,33 Ω (6) Z ż =1/2πf i 6C ż L=758,27 Ω (7) I = 60V/758,27Ω+30V/692,33Ω = 0,12A (8) Jak widać powyżej, już sam prąd upływu do ekranu wynosi 40mA, wystarcza więc do zadziałania wyłącznika różnicowo-prądowego o znamionowym prądzie wyzwolenia I n =30 ma. Oczywiście w celu wykonania pełnych obliczeń należy wziąć pod uwagę również dalsze harmoniczne częstotliwości impulsowania, jednak uwzględnienie ich wpłynie jedynie na podwyższenie wyników obliczeń prądu upływu. W przypadku zastosowania kabla w izolacji PVC wartości pojemności pasożytniczych kabla (przy zachowaniu jego geometrii) wzrosły by o co najmniej 1,74 raza i ich suma wyniosłaby w najlepszym przypadku Cδ=3062 nf/km. W tej sytuacji wartość całkowita prądu płynącego przez pojemności pasożytnicze wyniesie ok. 210mA, a sama wartość prądu ekranowego wyniesie ok. 75mA. Podobnie wzrost innych parametrów, takich jak długość kabla zasilającego silnik, czy częstotliwość f i, spowoduje dalszy
4 100 Zeszyty Problemowe Maszyny Elektryczne Nr 74/2006 wzrost prądów pasożytniczych, które wpływają na obciążenie falownika. Należy w tym miejscu zwrócić szczególną uwagę na szkodliwość prądu ekranowego, którego wzrost powoduje również wzrost prądu płynącego przez łożyska silnika (oraz maszyny napędzanej, jeśli nie jest ona połączona z silnikiem za pomocą izolowanego sprzęgła). Rys.3. a) Droga prądu ekranowego, b) droga prądu łożyskowego, przy izolowanym jednym łożysku silnika i nie izolowanym sprzęgle. Przykładowy przebieg prądu ekranowego pokazano na rysunku. Prąd łożyskowy, szczególnie w przypadku maszyn większych mocy, może doprowadzić do zniszczenia łożysk, co pociąga za sobą przestój maszyny. Rys.4. Uszkodzenie bieżni łożyska wywołane przepływem prądu łożyskowego W konstrukcji kabla specjalnego w celu obniżenia pojemności stosuje się następujące zabiegi: zastosowanie specjalnej konstrukcji kabla w szczególności zmiana geometrii w stosunku do kabla tradycyjnego, polegającej na zwiększeniu odstępów izolacyjnych. zastosowanie innego materiału izolacyjnego niż w konstrukcjach tradycyjnych, dzięki czemu obniżana jest pojemność całego układu nawet przy takich samych wymiarach geometrycznych. zastosowanie w konstrukcji kabla izolacyjnej warstwy dystansowej pomiędzy żyłami, a ekranem, która oddalając ekran od żył obniża pojemność C e. 4. Inne wymogi stawiane kablom EMC w połączeniach silnik - przekształtnik Drugim istotnym aspektem zastosowania właściwych kabli jest potrzeba spełnienia wymogów kompatybilności elektromagnetycznej (EMC). Specjalne kable są wyposażone w podwójny ekran, składający się z wewnętrznej warstwy foliowej oraz zewnętrznego oplotu elastycznego zapewniających szczelność elektromagnetyczną porównywalną z kablami sygnałowymi. Należy podkreślić, że kable z pojedynczym ekranem oraz tzw. kable opancerzone nie spełniają w pełni wymogów kompatybilności elektromagnetycznej. Nie spełniają jej również kable, których ekran nie został obustronnie uziemiony, najlepiej na całym obwodzie oplotu. W praktyce stosuje się specjalne dławiki z kontaktem dla ekranu. Rozpatrując parametry izolacji kabla do zasilania przekształtnikowego należy rozpatrzyć odporność napięciową na przebicie oraz odporność na stromość narastania napięcia (du/dt). Warunki napięciowe, którym jest poddawana izolacja kabla znacznie różnią się od typowych warunków obwodów sinusoidalnych. Wynika to z zasilania silnika przebiegiem prostokątnym o amplitudzie impulsów wynikającej z wartości napięcia w obwodzie pośredniczącym przekształtnika oraz stromości zboczy wynikającej z czasu przełączania kluczy tranzystorowych falownika. Wobec powyższego przy zasilaniu przekształtnika napięciem np. 3x400V AC powinien być stosowany kabel o podwyższonych parametrach odporności napięciowej 600V (a nie 400V jak zwykle) oraz o zwiększonej do ok V/µs wytrzymałości stromościowej [5]. Wytrzymałość stromościowa izolacji nie jest z reguły podawana przez producentów kabli, dlatego kierujemy się zasadą, że napięcie pracy kabla powinno wynosić U 0 /U=0,6/1 kv. Na
5 Zeszyty Problemowe Maszyny Elektryczne Nr 74/ długości kabla zasilającego silnik, ze względu na podwyższoną częstotliwość impulsów PWM oraz ich prostokątny kształt w obecności pasożytniczych indukcyjności i pojemności ujawniają się zjawiska falowe. Owocuje to wzrostem amplitudy impulsów PWM wraz ze wzrostem długości kabla przy czym największe odkształcenia napięcia zasilającego występują na zaciskach silnika. Amplituda napięcia może osiągać wartości chwilowe nawet do 1,8 kv [5]. Dodatkowym wymogiem jest zalecana budowa żył przewodzących kabla. Powinny być one wykonane z wysokogatunkowej (czystej) miedzi oraz mieć konstrukcję wielodrutową. Użycie linki jest przy tym uzasadnione głównie względami mechanicznymi i przeciwdziała przenoszeniu się drgań z silnika na szafę sterującą. Typową konstrukcją kabla jest układ czterech żył (3 fazy+pe) w ekranie lub dla najnowszej generacji sześciu żył (3 fazy + 3xPE) o różniących się przekrojach (Rys.2.b). Stosowane są przekroje z szeregu typowego dla innych kabli siłowych. 5. Wnioski Zasilanie silników indukcyjnych za pomocą nowoczesnych układów przekształtnikowych jest związane z występowaniem szeregu zjawisk, mogących mieć niekorzystny wpływ na pracę całego układu. Zjawiska te są wywołane przez specyficzny kształt napięcia zasilającego (PWM), oraz jego wysoką częstotliwość. Elementem o największych wymiarach, a co za tym idzie o największej pojemności, w układzie przekształtnik kabel silnik, jest kabel zasilający. Mamy tu do czynienia z następującymi niekorzystnymi zjawiskami: występowanie prądu upływu pomiędzy żyłami(fazami), występowanie prądu upływu pomiędzy żyłami a ekranem, przepływ prądu ekranowego, występowanie prądu łożyskowego, występowanie oscylacyjnych, gasnących drgań napięcia w przebiegu napięcia zasilającego przepięcia. Wpływ tych zjawisk na pracę całego układu można ograniczyć stosując odpowiedni kabel łączący silnik z przekształtnikiem. Podstawową cechą takiego kabla jest obniżona pojemność. W przypadku kabli specjalistycznych pojemność jednostkowa jest podawana jako jeden z parametrów. Redukcja pojemności odbywa się na etapie projektowania i produkcji kabla. Osiąga się ją przez : zwiększenie odległości pomiędzy elementami przewodzącymi, zastosowanie odpowiedniego materiału izolacyjnego (o niskiej przenikalności dielektrycznej i odpowiedniej wytrzymałości napięciowej i stromościowej), zastosowanie dodatkowych warstw oddalających ekran od żył (redukcja prądu ekranowego). Stosowanie odpowiedniego kabla jest jednym z warunków poprawnej pracy układu przekształtnik-kabel zasilający-silnik. Literatura [1]. Marek Trajdos, Robert Pastuszka Jakie kable lubią falowniki Zeszyty Problemowe Maszyny Elektryczne Nr 71/2005, Katowice 2005 [2]. Andrzej S. Gajewski Elektryczność Statyczna poznanie, pomiar, zapobieganie, eliminowanie, Instytut Wydawniczy Związków Zawodowych, Warszawa 1987 [3]. Praca zbiorowa pod redakcją Hanny Mościckiej-Grzesiak, Inżynieria Wysokich Napięć w Elektroenergetyce, Tom 1, Wydawnictwo Politechniki Poznańskiej 1996 [4]. Aleksandra Rakowska, Właściwości eksploatacyjne usieciowanego polietylenu izolacyjnego stosowanego w wysokonapięciowych kablach elektroenergetycznych, Wydawnictwo Politechniki Poznańskiej 1998, seria rozprawy, nr 341 [5]. Robert Pastuszka, Marek Trajdos, Antoni Żuk Kable do zasilania silników w napędach z przekształtnikami częstotliwości, Helukabel 2005 [6]. Kable i przewody 2005/2006, Helukabel 2005 Autorzy Marek Trajdos T-System Projekt Sp.zo.o. ul. Narutowicza 120/ Łódź tel. 042 / tel. 042 / fax 042/ projekt@t-system.com.pl Robert Pastuszka, Ireneusz Sosnowski Helukabel Polska Sp. z o.o. tel tel fax 046/ biuro@helukabel.pl
Rys. 1. Przykładowa charakterystyka przedstawiająca moŝliwości modulatora PWM. [1]
Znaczenie pojemności kabla w układach zasilających silniki indukcyjne za pośrednictwem przekształtników częstotliwości. 1. Wstęp Wszystkie współczesne przekształtniki prądu przemiennego pracują w oparciu
PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL
PL 226485 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 226485 (13) B1 (21) Numer zgłoszenia: 409952 (51) Int.Cl. H02J 3/01 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Kable do zasilania silników w napędach z przekształtnikami częstotliwości, cz.ii
Kable do zasilania silników w napędach z przekształtnikami częstotliwości, cz.ii 3. Zjawiska pasoŝytnicze i ich eliminacja Głównymi zjawiskami pasoŝytniczymi występującymi przy zasilaniu silników za pomocą
42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM
42 Przekształtniki napięcia stałego na napięcie przemienne topologia falownika napięcia, sterowanie PWM Falownikami nazywamy urządzenia energoelektroniczne, których zadaniem jest przetwarzanie prądów i
Teletechnika sygnałowa i wizyjna Audio/Video
Teletechnika sygnałowa i wizyjna Audio/Video Kable stosowane w systemach audio muszą charakteryzować się jak najlepszymi parametrami. Budowa kabli wynika z ich zastosowania, dlatego mamy do czynienia z
Kable do zasilania silników w napędach z przekształtnikami częstotliwości
Kable do zasilania silników w napędach z przekształtnikami częstotliwości Robert Pastuszka HELUKABEL Polska Sp.z o.o. pastuszka@helukabel.pl Marek Trajdos T-System Projekt Sp.z o.o. marek.trajdos@t-system.com.pl
UKŁADY KONDENSATOROWE
UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej
2.3. Bierne elementy regulacyjne rezystory, Rezystancja znamionowa Moc znamionowa, Napięcie graniczne Zależność rezystancji od napięcia
2.3. Bierne elementy regulacyjne 2.3.1. rezystory, Rezystory spełniają w laboratorium funkcje regulacyjne oraz dysypacyjne (rozpraszają energię obciążenia) Parametry rezystorów. Rezystancja znamionowa
SZEROKI WYBÓR KABLI DO ZASILANIA PRZEKSZTAŁTNIKOWEGO. BiTservo 2YSLCH-J oraz. co wyróżnia kable Bitner... atrakcyjna cena
BiTservo SZEROKI WYBÓR KABLI DO ZASILANIA PRZEKSZTAŁTNIKOWEGO warto wiedzieć, że... kable sterownicze BiTservo produkcji Zakładów Kablowych BITNER to kable o specjalnej konstrukcji. Służą one do zasilania
POLE ELEKTRYCZNE PRAWO COULOMBA
POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim
Prąd przemienny - wprowadzenie
Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą
Przesył Energii Elektrycznej i Technika Zabezpieczeniowa
Wykład dla studentów II roku MSE Kraków, rok ak. 2006/2007 Przesył Energii Elektrycznej i Technika Zabezpieczeniowa Źródła wysokich napięć przemiennych Marcin Ibragimow Typy laboratoriów WN Źródła wysokich
Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni
KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz
I we. F (filtr) U we. Rys. 1. Schemat blokowy układu zasilania odbiornika prądu stałego z sieci energetycznej z zastosowaniem stabilizatora napięcia
22 ĆWICZENIE 3 STABILIZATORY NAPIĘCIA STAŁEGO Wiadomości wstępne Stabilizatory napięcia stałego są to układy elektryczne dostarczające do odbiornika napięcie o stałej wartości niezależnie od zmian w określonych
Zasilanie silnika indukcyjnego poprzez układ antyrównoległy
XL SESJA STUDENCKICH KÓŁ NAUKOWYCH Zasilanie silnika indukcyjnego poprzez układ antyrównoległy Wykonał: Paweł Pernal IV r. Elektrotechnika Opiekun naukowy: prof. Witold Rams 1 Wstęp. Celem pracy było przeanalizowanie
Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski
Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala
KABLE I PRZEWODY WYKAZ FIRM. EMITER SP. Z O.O. str. 93. EMOS PL SP. Z O.O. str. 93. HELUKABEL POLSKA SP. Z O.O. str. 94
WYKAZ FIRM ZAKŁAD PRODUKCJI PRZEWODÓW ELEKTRYCZNYCH ELTRIM SP. Z O.O. str. 92 EMITER SP. Z O.O. str. 93 EMOS PL SP. Z O.O. str. 93 HELUKABEL POLSKA SP. Z O.O. str. 94 KABLE I PRZEWODY KATALOG 2011 INTER-ELEKTRO
Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych
Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze
Wojciech BERKAN Piotr MAZUREK Andrzej MICHALSKI Andrzej PYTLAK Henryk ŚWIĄTEK
Wojciech BERKAN Piotr MAZUREK Andrzej MICHALSKI Andrzej PYTLAK Henryk ŚWIĄTEK 621.314.57 62-83.025 621.3.014.7 ANALIZA PRĄDÓW ZASILANIA I PRĄDÓW UPŁYWU W PRZEWODACH OCHRONNYCH PRZEKSZTAŁTNIKA CZĘSTOTLIWOŚCI
WPŁYW FILTRÓW WYJŚCIOWYCH NAPIĘCIOWYCH FALOWNIKÓW CZĘSTOTLIWOŚCI NA PRACĘ SILNIKÓW INDUKCYJNYCH KLATKOWYCH
Zeszyty Problemowe Maszyny Elektryczne Nr 85/2010 111 Adam Pozowski, Siemens, Katowice Henryk Krawiec, Akademia Górniczo-Hutnicza, Kraków WPŁYW FILTRÓW WYJŚCIOWYCH NAPIĘCIOWYCH FALOWNIKÓW CZĘSTOTLIWOŚCI
JAKIE KABLE LUBI FALOWNIKI
Zeszyty Problemowe Maszyny Elektryczne Nr 71/2005 31 Marek Trajdos, T-System Projekt Sp. z o.o., Łód Robert Pastuszka, HELUKABEL Polska Sp. z o.o., Pozna JAKIE KABLE LUBI FALOWNIKI WHAT KIND OF CABLES
Ćw. 27. Wyznaczenie elementów L C metoda rezonansu
7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R
PL B1. Sposób i układ tłumienia oscylacji filtra wejściowego w napędach z przekształtnikami impulsowymi lub falownikami napięcia
PL 215269 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 215269 (13) B1 (21) Numer zgłoszenia: 385759 (51) Int.Cl. H02M 1/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
WZORU UŻYTKOWEGO PL Y1. Zespół blach przyłączeniowych do tranzystorów HV-IGBT w przekształtniku energoelektronicznym wysokonapięciowym
PL 66868 Y1 RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS OCHRONNY WZORU UŻYTKOWEGO (21) Numer zgłoszenia: 119621 (22) Data zgłoszenia: 29.12.2010 (19) PL (11) 66868 (13) Y1
Przekształtniki impulsowe prądu stałego (dc/dc)
Przekształtniki impulsowe prądu stałego (dc/dc) Wprowadzenie Sterowanie napięciem przez Modulację Szerokości Impulsów MSI (Pulse Width Modulation - PWM) Przekształtnik obniżający napięcie (buck converter)
Przekształtniki napięcia stałego na stałe
Przekształtniki napięcia stałego na stałe Buck converter S 1 łącznik w pełni sterowalny, przewodzi prąd ze źródła zasilania do odbiornika S 2 łącznik diodowy zwiera prąd odbiornika przy otwartym S 1 U
POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C
ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.
Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna)
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej
ELEKTROTECHNIKA. Zagadnienia na egzamin dyplomowy dla studentów
ELEKTROTECHNIKA Zagadnienia na egzamin dyplomowy dla studentów Teoria obwodów 1. Jakimi parametrami (podać definicje) charakteryzowane są okresowe sygnały elektryczne? 2. Wyjaśnić pojecie indukcyjności
Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
MGR Prądy zmienne.
MGR 7 7. Prądy zmienne. Powstawanie prądu sinusoidalnego zmiennego. Wielkości charakteryzujące przebiegi sinusoidalne. Analiza obwodów zawierających elementy R, L, C. Prawa Kirchhoffa w obwodach prądu
Wybrane kryteria oceny i doboru izolacji elektroenergetycznych kabli górniczych
mgr inż. WINICJUSZ BORON mgr inż. MAREK BOGACZ Instytut Technik Innowacyjnych EMAG Wybrane kryteria oceny i doboru izolacji elektroenergetycznych kabli górniczych W artykule przedstawiono rodzaje izolacji
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu buck
KIERUNEK STUDIÓW: ELEKTROTECHNIKA NAZWA PRZEDMIOTU: TECHNIKA WYSOKICH NAPIĘĆ. (dzienne: 30h wykład, 30h laboratorium) Semestr: W Ć L P S V 2E 2
KIERUNEK STUDIÓW: ELEKTROTECHNIKA NAZWA PRZEDMIOTU: TECHNIKA WYSOKICH NAPIĘĆ (dzienne: 30h wykład, 30h laboratorium) Semestr: W Ć L P S V 2E 2 Cel zajęć: Celem zajęć jest podanie celowości i specyfiki
Parametry elektryczne kabli średniego napięcia w izolacji XLPE, 6-30 kv
Parametry elektryczne kabli średniego napięcia w izolacji XLPE, 6-30 kv Rezystancja żyły dla temperatury 20 C Żyła miedziana - Cu Ohm/km maksymalna wartość Żyła aluminiowa - Alu Ohm/km 25 0,727 1,20 35
Maszyna indukcyjna jest prądnicą, jeżeli prędkość wirnika jest większa od prędkości synchronicznej, czyli n > n 1 (s < 0).
Temat: Wielkości charakteryzujące pracę silnika indukcyjnego. 1. Praca silnikowa. Maszyna indukcyjna jest silnikiem przy prędkościach 0 < n < n 1, co odpowiada zakresowi poślizgów 1 > s > 0. Moc pobierana
WPŁYW PRZEMIENNIKÓW CZĘSTOTLIWOŚCI NA PRACĘ SILNIKÓW INDUKCYJNYCH W PODZIEMIACH KOPALŃ
17 WPŁYW PRZEMIENNIKÓW CZĘSTOTLIWOŚCI NA PRACĘ SILNIKÓW INDUKCYJNYCH W PODZIEMIACH KOPALŃ 17.1 MODEL BADAWCZY ORAZ WYNIKI BADAŃ SYMULACYJNYCH W podziemiach kopalń powszechnie stosuje się pośrednie przemienniki
Badanie zasilacza niestabilizowanego
UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie zasilacza niestabilizowanego Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie
1 przewodu. Mgr inż. Andrzej Makuch Podstawy Elektroenergetyki 2011/12
1. Charakterystyka przewodów. Tabela 1. Parametry przewodów miedzianych (Cu) gołych. Mgr inż. Andrzej Makuch Podstawy Elektroenergetyki 2011/12 znamionowy obliczeniowy Liczba drutów Średnica drutu Średnica
Dielektryki i Magnetyki
Dielektryki i Magnetyki Zbiór zdań rachunkowych dr inż. Tomasz Piasecki tomasz.piasecki@pwr.edu.pl Wydanie 2 - poprawione ponownie 1 marca 2018 Spis treści 1 Zadania 3 1 Elektrotechnika....................................
IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM
Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego
Pomiar pojemności i rezystancji izolacji międzyzwojowej uzwojeń transformatorów determinujące niezawodność
Pomiar pojemności i rezystancji izolacji międzyzwojowej uzwojeń transformatorów determinujące niezawodność Tadeusz Glinka Jakub Bernatt Instytut Napędów i Maszyn Elektrycznych KOMEL TRANSFORMER 17 6 11
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki
Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu boost
ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 8 Electrical Engineering 05 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016. Zadania z elektrotechniki na zawody I stopnia
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016 Zadania z elektrotechniki na zawody I stopnia Instrukcja dla zdającego 1. Czas trwania zawodów: 120 minut.
XXXIV OOwEE - Kraków 2011 Grupa Elektryczna
1. Przed zamknięciem wyłącznika prąd I = 9A. Po zamknięciu wyłącznika będzie a) I = 27A b) I = 18A c) I = 13,5A d) I = 6A 2. Prąd I jest równy a) 0,5A b) 0 c) 1A d) 1A 3. Woltomierz wskazuje 10V. W takim
PL B1. GRZENIK ROMUALD, Rybnik, PL MOŁOŃ ZYGMUNT, Gliwice, PL BUP 17/14. ROMUALD GRZENIK, Rybnik, PL ZYGMUNT MOŁOŃ, Gliwice, PL
PL 223654 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223654 (13) B1 (21) Numer zgłoszenia: 402767 (51) Int.Cl. G05F 1/10 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Układy przekładników prądowych
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Instrukcja
KOMPENSACJA MOCY BIERNEJ W SIECIACH OŚWIETLENIOWYCH
Przedmiot: SIECI I INSTALACJE OŚWIETLENIOWE KOMPENSACJA MOCY BIERNEJ W SIECIACH OŚWIETLENIOWYCH Wprowadzenie Kompensacja mocy biernej w sieciach oświetleniowych dotyczy różnego rodzaju lamp wyładowczych,
13 K A T E D R A F I ZYKI S T O S O W AN E J
3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony
Pulse width modulation control of three-phase three-level inverter Sterowanie modulacji szerokości impulsów trójpoziomowego trójfazowego falownika.
Krzysztof Sroka V rok Koło Naukowe Techniki Cyfrowej Dr inż. Wojciech Mysiński opiekun naukowy Pulse width modulation control of three-phase three-level inverter Sterowanie modulacji szerokości impulsów
SILNIK INDUKCYJNY KLATKOWY
SILNIK INDUKCYJNY KLATKOWY 1. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana
PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 26/16
PL 227999 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 227999 (13) B1 (21) Numer zgłoszenia: 412711 (51) Int.Cl. H02M 3/07 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO
Technik elektronik 311[07] moje I Zadanie praktyczne
1 Technik elektronik 311[07] moje I Zadanie praktyczne Firma produkująca sprzęt medyczny, zleciła opracowanie i wykonanie układu automatycznej regulacji temperatury sterylizatora o określonych parametrach
ODLEGŁOŚCI POMIĘDZY URZĄDZENIAMI DO OGRANICZANIA PRZEPIĘĆ A CHRONIONYM URZĄDZENIEM
ODLEGŁOŚCI POMIĘDZY URZĄDZENIAMI DO OGRANICZANIA PRZEPIĘĆ A CHRONIONYM URZĄDZENIEM Andrzej Sowa Politechnika Białostocka 1. Wstęp Tworząc niezawodny system ograniczania przepięć w instalacji elektrycznej
gdzie względna oznacza normalizację względem stałej dielektrycznej próżni ε 0 = F/m. Straty dielektryczne:
PROTOKÓŁ 6/218 Badania absorpcji dielektrycznej w temperaturze pokojowej w zakresie częstości -1 Hz 7 Hz dla Kompozytów Klej/Matryca ADR Technology Klient: Autorzy: Protokół autoryzował: ADR Technology
Maszyny i urządzenia elektryczne. Tematyka zajęć
Nazwa przedmiotu Maszyny i urządzenia elektryczne Wprowadzenie do maszyn elektrycznych Transformatory Maszyny prądu zmiennego i napęd elektryczny Maszyny prądu stałego i napęd elektryczny Urządzenia elektryczne
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
ABC TECHNIKI SATELITARNEJ
MARIAN POKORSKI MULTIMEDIA ACADEMY ABC TECHNIKI SATELITARNEJ ROZDZIAŁ 6 KABLE * ZŁĄCZA * NARZĘDZIA www.abc-multimedia.eu MULTIMEDIA ACADEMY *** POLSKI WKŁAD W PRZYSZŁOŚĆ EUROPY OD AUTORA Wprowadzenie Sygnał
Analiza przepięć pojawiających się na ekranie ogólnym przewodów oponowych średniego napięcia
dr inż. ADAM MAREK Politechnika Śląska Katedra Elektryfikacji i Automatyzacji Górnictwa Analiza przepięć pojawiających się na ekranie ogólnym przewodów oponowych średniego napięcia W artykule podjęto próbę
WPROWADZENIE. TWR = dr / (R * dt)
WPROWADZENIE Temperaturowy współczynnik rezystancji TCR (TWR) określa zmiany rezystancji pod wpływem temperatury. Im mniejsza wartość TCR tym bardziej stabilny rezystor. Temperaturowy współczynnik rezystancji
Wykład 2 Silniki indukcyjne asynchroniczne
Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa
Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.
Silniki indukcyjne Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki pierścieniowe to takie silniki indukcyjne, w których
Wyprowadzenie wzorów na impedancję w dwójniku RLC. ( ) Przez dwójnik przepływa przemienny prąd elektryczny sinusoidalnie zmienny opisany równaniem:
Wyprowadzenie wzorów na impedancję w dwójniku RLC. Dwójnik zbudowany jest z rezystora, kondensatora i cewki. Do zacisków dwójnika przyłożone zostało napięcie sinusoidalnie zmienne. W wyniku przyłożonego
Wytrzymałość układów uwarstwionych powietrze - dielektryk stały
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 8 Wytrzymałość
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Wykaz symboli, oznaczeń i skrótów
Wykaz symboli, oznaczeń i skrótów Symbole a a 1 operator obrotu podstawowej zmiennych stanu a 1 podstawowej uśrednionych zmiennych stanu b 1 podstawowej zmiennych stanu b 1 A A i A A i, j B B i cosφ 1
rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym
Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie
15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH
15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych
Podstawy Elektroenergetyki 2
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej Laboratorium z przedmiotu: Podstawy Elektroenergetyki 2 Kod: ES1A500 037 Temat ćwiczenia: BADANIE SPADKÓW
Ksiegarnia Budowlana Utworzono : 01 październik 2016
> Model : - Producent : KaBe Wydawnictwo "KaBe" s.c. Krosno, 2007 r. Wydanie drugie, poprawione. Format A5, ss. 312, okładka kartonowa, lakierowana, kolorowa. Książka jest przeznaczona dla elektryków wykonujących
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015
EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,
KABLE I PRZEWODY BEZHALOGENOWE
Kable elektroenergetyczne bezhalogenowe Kable telekomunikacyjne bezhalogenowe SPIS TREŚCI ROZDZIAŁU Kable energetyczne bezhalogenowe NHXMH-J(O) N2XH-J(O) N2XCH Kable telekomunikacyjne bezhalogenowe (ekw)
Zasady przyłączania rozdzielnic SF 6
Zasady przyłączania rozdzielnic SF 6 Marek Garbarski Małe wymiary pól, krótkie drogi upływu izolatorów przepustowych i niewielkie odległości izolacyjne w powietrzu sprawiają, że zaprojektowanie i wykonanie
PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 20/10. JAROSŁAW GUZIŃSKI, Gdańsk, PL WUP 05/15. rzecz. pat.
PL 219507 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219507 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 387564 (22) Data zgłoszenia: 20.03.2009 (51) Int.Cl.
Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu
Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód
Lekcja 19. Temat: Wzmacniacze pośrednich częstotliwości.
Lekcja 19 Temat: Wzmacniacze pośrednich częstotliwości. Wzmacniacze pośrednich częstotliwości zazwyczaj są trzy- lub czterostopniowe, gdyż sygnał na ich wejściu musi być znacznie wzmocniony niż we wzmacniaczu
Ćwiczenie 4. Pomiary rezystancji metodami technicznymi
Ćwiczenie 4 Pomiary rezystancji metodami technicznymi Program ćwiczenia: 1. Techniczna metoda pomiaru rezystancji wyznaczenie charakterystyki =f(u) elementu nieliniowego (żarówka samochodowa) 2. Pomiar
PL B1. Przekształtnik rezonansowy DC-DC o przełączanych kondensatorach o podwyższonej sprawności
PL 228000 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 228000 (13) B1 (21) Numer zgłoszenia: 412712 (51) Int.Cl. H02M 3/07 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora
E Rys. 2.11. Uproszczony schemat zastępczy turbogeneratora 2.3. Praca samotna Maszyny synchroniczne może pracować jako pojedynczy generator zasilający grupę odbiorników o wypadkowej impedancji Z. Uproszczony
29 PRĄD PRZEMIENNY. CZĘŚĆ 2
Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =
Modulatory PWM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE
Modulatory PWM CELE ĆWICZEŃ Poznanie budowy modulatora szerokości impulsów z układem A741. Analiza charakterystyk i podstawowych obwodów z układem LM555. Poznanie budowy modulatora szerokości impulsów
Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.
Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej
Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)
SIECI PRZESYŁOWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
SIECI PRZESYŁOWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego System elektroenergetyczny elektrownie (wszyscy wytwórcy energii elektrycznej) sieć
PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ
Andrzej Purczyński PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Materiały szkolenia technicznego, Jakość energii elektrycznej i jej rozliczanie, Poznań Tarnowo Podgórne II/2008, ENERGO-EKO-TECH
WNĘTRZOWY OGRANICZNIK PRZEPIĘĆ TYPU PROXAR IIW AC W OSŁONIE SILIKONOWEJ KARTA KATALOGOWA
WNĘTRZOWY OGRANICZNIK PRZEPIĘĆ TYPU PROXAR IIW AC W OSŁONIE SILIKONOWEJ KARTA KATALOGOWA ZASTOSOWANIE Ograniczniki przepięć typu PROXAR-IIW AC w osłonie silikonowej są przeznaczone do ochrony przepięciowej
Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH
METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w
WPŁYW USZKODZENIA TRANZYSTORA IGBT PRZEKSZTAŁTNIKA CZĘSTOTLIWOŚCI NA PRACĘ NAPĘDU INDUKCYJNEGO
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 69 Politechniki Wrocławskiej Nr 69 Studia i Materiały Nr 33 2013 Kamil KLIMKOWSKI*, Mateusz DYBKOWSKI* DTC-SVM, DFOC, silnik indukcyjny,
f r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy
PORTFOLIO: Opracowanie koncepcji wdrożenia energooszczędnego układu obciążenia maszyny indukcyjnej dla przedsiębiorstwa diagnostyczno produkcyjnego. (Odpowiedź na zapotrzebowanie zgłoszone przez przedsiębiorstwo
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO
Zeszyty Problemowe Maszyny Elektryczne Nr 78/
Zeszyty Problemowe Maszyny Elektryczne Nr 78/7 85 Jerzy Przybylski, Zbigniew Szulc Politechnika Warszawska, Warszawa DOŚWIADCZENIA Z EKSPLOATACJI NAPĘDÓW POMP DUŻYCH MOCY Z SILNIKAMI ZASILANYMI Z PRZEMIENNIKÓW
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński
ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA
Zeszyty Problemowe Maszyny Elektryczne Nr 4/2014 (104) 89 Zygfryd Głowacz, Henryk Krawiec AGH Akademia Górniczo-Hutnicza, Kraków ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU
2 K A T E D R A F I ZYKI S T O S O W AN E J
2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność
XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D
KOOF Szczecin: www.of.szc.pl XLVI OLIMPIADA FIZYCZNA (1996/1997). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej; Fizyka w Szkole Nr 1, 1998 Autor: Nazwa zadania: Działy:
Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny.
Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny. 1. Silnik komutatorowy jednofazowy szeregowy (silniki uniwersalne). silniki komutatorowe jednofazowe szeregowe maja budowę