AMAS: Attention Model for Attributed Sequence Classification

Wielkość: px
Rozpocząć pokaz od strony:

Download "AMAS: Attention Model for Attributed Sequence Classification"

Transkrypt

1 <latext sha1_base64="u5xncmv0ktxombnzjkhvjvo2ai=">aaab/3cbzdptsjaeman+a/xh+rrsymx8ural3ok8ciro4ajngs7tmug7xazuzuhdqcfwks+gjfj1ufxcxwnf+hbwc/z5jdvzjkzxyg508bzvp3sxubw9k55t7k3f3b4vd0+6eg0uxtbnowpegyjrs4etg0zhb+lqpkehlvh+hzw7z6h0wvd2ymuhilfjekdhwupcdf1ctexvvlncd/ajqukg1qp70hynnehsgcqj1z/ekcxkdkmcp5v+plesoyx9wkkqao8vmpu/fcokm3spv9wrhz9+9ethktj0looxnrnq1njp/q/uye90eormymyjoylgucdek7uzf7pappizplbcqml3vpsocdu2nautmywv4nhascn4qzmsq+eq7lu+82qnzpfrgc7ghc7bh2toqbna0aykmbzak7w5z8678+f8llpltjfzcktyvn4b5aywgg==</latext> <latext sha1_base64="a4gdxlto5jabzev2+erjztv9cjg=">aaab/3cbzbltgjbeizr8ix4ql266uhmxjeznrokccmsozwsmjcepgy69prmuntmyisfb3crr3bn3hout+a1bgawav5jj1/+qkpv/0eudau++0utrz3dvek+6wdw6pjk/lpwvvhqwlyyrgivtegggwx2dlccowmcmkucowek7t5vfoesvnyppppgn5er5khnffjrydkubuuk27vxyhsgpddbxi1b+wf/jbmaytsmeg17nluyvymksozwfmpn2pmkjvqefysshqh9rpfqtnyzz0hcwnlnzrk4f6dygk9tqkbgdezvv1+bmf7veasjbp+mysq1ktlwupokymmz/tyzcitnaoeyxe2thi2poszydfa2pmliiu5mjzumt57djrrrvc/yvvupn/kmnabl3anhtxahrrqhbywgmelvmkb8+y8ox/o57k14oqz57a5+sx50wwgw==</latext> <latext sha1_base64="hs+0g4zhdq59q6az3y7yjjbno18=">aaab/3cbzblsgnbeizr4vgv9slm8yguaozutblwe2wec0dkh0dgqsjj0ztxepeiyspibbpyi7cetrpihxsjpmwt+0pdxvxvv/qdscg1c99spbgxube8ud0t7+wehr+xjk5zouswwyrkrqe5anqoey9nwi7ajfdioengoxnezevsjlezj/ggmev2idmmeckantr5k/7pfrrhvdy6ydl4ofcjv6jd/eooeprhghgmqdddzpfezqgxnaqelxqprujamq+xajgme2s/mp07jhxugjeyufbehc/fvreyjrsdrydsjakz6ttyz/6t1uxpe+hmpzwowzotfysqiscjs32taftijjhyou9zestiksqmtwdpsyqhcne8ldlkvnuc1qf1vfus37uvwj3pqahnca6x4men1kaodwgcgyg8wcu8oc/ou/phfc5ac04+cwplcr5+aejeloq=</latext> <latext sha1_base64="cni8g7zineynnzmemfrpe11gc=">aaab/3cbzblsgnbeizr4vgv9slm8yguaoziugy4cbloybyrb6ojvjk56zprthcemwhscthsgdupuonsbr2elmyrj/apj4q4qq/gmpudau++0unja3tneku6w9/ypdo/lxsusnqwlyzilivcegggwpswm4edrcmkucgwh47tzvf2esvmkfjqtx5ehzepoapgwg+yf90vv9yqoxdzby+hcurq9ms/vuhc0ghjwwtvuuu50vgzvyyzgdnsl9uokrvtixytxjrc7wfzu6fkwjodebkvtquft3iqor1pmosj0rnso9wpuz/9w6qqlv/yzhmjuys8wmbxejgt2bzlgcpkrewuukw5vjwxefwxgpro0jzvdhtelmwy3moo69c6qnqw791krz5nviqzoidl8oagalchbjsbwrbe4bxengfn3flwphetbsefoyulov+/6newhq==</latext> <latext sha1_base64="zj4uys8vpwn7odxdrfwhvojj5tu=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xnja3tqu1+s6djlpfomneasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgiv2u4j+6k8cigbwgom682mcvfkagtrmuk27xe1mp6pkccygr/rsdqllqzqarowsrqd72wrvjg8te+awvvzlgyfsx0dgi61hkw+vetxper43jv/rdvmttvozl0lqqllpojav2mr4hcwouajmxmgcyhs3t2l2tbvlxsy/syvnbgpgmfdsmmq+h0xw0dwhft+6jfz1kvez7amddiqiokdtdi1uuacx9ia+0df6kx04zafq1kdsp1r4dtfmoxu/xeu4uw==</latext> <latext sha1_base64="e3suspg05b38qeervndokx/7ouk=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xnja3tqu1+s6djlpfomneasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgaxq3hnrtwouafkcbrrxap+9igzpbniwqbxuejcx/ywqw5mavnjlnssudekauhzkgohuz5o9ot60tiddwnkvdz6wfx0zjbqerb5vrtq86/nempyv101n2opnxcapacmm8juybpjcba44aqyesmlkfpc3orzm1wugrv/zjy0gsayv6xyzd5hbbbq/oewhzrntrxruzlti8o0be6by10tw6qr3e0bv6qt/op/thlj2qu59knvlh2uuz5ez9asxkufq=</latext> <latext sha1_base64="4aybh8rx2pm0qpnvgvrg0n1dlk=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaola6ihhgbeqpultfjnmpvh0nsh1qfex/8rdywdhyycqtgwjlyzae3r13d3p+irg2rvtwchywl5zxyquvtfwnzwqtvvwg41qxalnyxorrpxoel9a23ah4tbtqybfq8yex437ngztmsbw3owt6er1ihnjgjaw8mt8lilteyarmwounimzu6ulpcot48nmy74cv+zkvkh0dvpdwmxoukohdoteu/eqzxci3dseb6qajrqutde7amxxcynqbomqnzd4amn1floboqv3qphosyir1a10jji9d9bli3x/uwcxayk/ulwrp2ryojkdajylfkjonpdsbk//1uqkjw/2myyq1innvojav2mr4hcwouajmxmgcyhs3t2l2rbvlxsy/tsvnbgpgmfdsmmq2h3nw0dwft+6jfpriqmy2kv76aardibo0tw6qw3e0cv6rf/ou/tulj2qu/+voqxcs42mytn5ackwufy=</latext> <latext sha1_base64="suskbt71ekg0cgn6xemzyv6ml8m=">aaacyxcbza7t8mwfixd8c6vagmxwqjaag4faijggfgqlqgtvxkodffqunetgoqovxafgizaymrblhtbtpyzuth537x1zpbkrg2nvdeczawv1bx1jeqm1vbo7vu3n5hj5l0gajsnrtqduilqftubhwlcqgcsdgmrhejfupl6a0t+sdgaxqj+la8ogzaqzlu6wxqmrnjy/lel59bwgr319ffjlpnu8alxskxf3aapfbytxotgxhphg4bys+k3frxun3qtwoclqkoybn33sxcmlitbgao1l3paafu2u4e1bue5mgllihhudxsklj0p18srjar9yjczqoe6xbe/fvre5jrudxymmymmc93xub//w6myla/zzlndmg2xrrlalsejxofodcatnzavltu/yvzmfwxg5j+zjushcmbyvg0yzd6hrdfpnbkr77z6xu2z0tqqoun0jag6rxfobt2nmlodx2hb/rt+xa2hnfzn6jopzw5qdpl1h4bvpe4za==</latext> <latext sha1_base64="e3suspg05b38qeervndokx/7ouk=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xnja3tqu1+s6djlpfomneasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgaxq3hnrtwouafkcbrrxap+9igzpbniwqbxuejcx/ywqw5mavnjlnssudekauhzkgohuz5o9ot60tiddwnkvdz6wfx0zjbqerb5vrtq86/nempyv101n2opnxcapacmm8juybpjcba44aqyesmlkfpc3orzm1wugrv/zjy0gsayv6xyzd5hbbbq/oewhzrntrxruzlti8o0be6by10tw6qr3e0bv6qt/op/thlj2qu59knvlh2uuz5ez9asxkufq=</latext> <latext sha1_base64="1vmfuq/vvbb/jx6wo0glc55xy=">aaacyxcbza7t8mwfixd8c6vagmxwqjaag4goiyiarec1ibru5zk2x6jr7ycqkd+qn8dmwmgkg26bgbzc2dlrud/1tu6qcq6n571xnixfpewv1bxq+sbm1ra7s9vwsayytfgevuuua2cs2gzbgq8pqpohah4dazxo/7jcyjne/lghn0ytqxpokmgmv5luugennz8uu5hfdfqvjk99exru6aj0enpj0frs5hgcg5bpnr4ryjngjcazj/vpfrxvh3rjwvcclqkoybn33sxsmlitbgao1h3paaxu2u4e1buu5mgllib7uphsklj0l18vljab9yjczqoe6xby/fvre5jrydxymmymmc92xuz//u6mymavzzlndmg2wrrlalsejxkfodcatnaavltu/yvzmfwxg5j+1juv7cmbqvg0yzdahedfuhbor77z6xu2z0sqqox10ag6rxfobt2fmlodx2hb/rt+xdwhnfznabopzzzq1pl1h4bwdc4zq==</latext> <latext sha1_base64="suskbt71ekg0cgn6xemzyv6ml8m=">aaacyxcbza7t8mwfixd8c6vagmxwqjaag4faijggfgqlqgtvxkodffqunetgoqovxafgizaymrblhtbtpyzuth537x1zpbkrg2nvdeczawv1bx1jeqm1vbo7vu3n5hj5l0gajsnrtqduilqftubhwlcqgcsdgmrhejfupl6a0t+sdgaxqj+la8ogzaqzlu6wxqmrnjy/lel59bwgr319ffjlpnu8alxskxf3aapfbytxotgxhphg4bys+k3frxun3qtwoclqkoybn33sxcmlitbgao1l3paafu2u4e1bue5mgllihhudxsklj0p18srjar9yjczqoe6xbe/fvre5jrudxymmymmc93xub//w6myla/zzlndmg2xrrlalsejxofodcatnzavltu/yvzmfwxg5j+zjushcmbyvg0yzd6hrdfpnbkr77z6xu2z0tqqoun0jag6rxfobt2nmlodx2hb/rt+xa2hnfzn6jopzw5qdpl1h4bvpe4za==</latext> <latext sha1_base64="zj4uys8vpwn7odxdrfwhvojj5tu=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xnja3tqu1+s6djlpfomneasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgiv2u4j+6k8cigbwgom682mcvfkagtrmuk27xe1mp6pkccygr/rsdqllqzqarowsrqd72wrvjg8te+awvvzlgyfsx0dgi61hkw+vetxper43jv/rdvmttvozl0lqqllpojav2mr4hcwouajmxmgcyhs3t2l2tbvlxsy/syvnbgpgmfdsmmq+h0xw0dwhft+6jfz1kvez7amddiqiokdtdi1uuacx9ia+0df6kx04zafq1kdsp1r4dtfmoxu/xeu4uw==</latext> <latext sha1_base64="55emaey4r0asqk+uwtj5pqz7rjm=">aaacncbvhltswfjxdv5rjdnj2u+hgtsjmigqr0yyzzjo0hwazlskdkmbk+torkwujys3b+a/6g/mfs+8xvml40twuehzopvdhnbukgmvjefeo++tps+cvk+rz7xzvxf112/goskugxflrkkmaduguisr4ubanfva40dajfh/3fynv0bpnsg7s0lhedol5bfn1fjkr/+zhxdz2d1luytfvokwyh9+/1lkph/v6vttkxd1sbaidepd53oleksj3nhughiutnttujxa/viuz0fkll/k19vem1vv/gykbi0uvldv/4wdxowxsane1trgffss8pmpwjscazhpsynv3czejjy9clfodc4i+wcxgukhulwtv2/4mcxlpv4saqy2pw+rc3ju/1zpmj+oucyzqzinmjuzqjbbk8xqeouqjmxmycyhs3f8vsrrvlx5qzyvlt9ms6pnhhzmcazgntax+ifxvb2ugvxqe9ral4ghrpfazrei8tqx+ed88fpudw34167n49s1yln3qk9cr/9a0f7xqu=</latext> <latext sha1_base64="suskbt71ekg0cgn6xemzyv6ml8m=">aaacyxcbza7t8mwfixd8c6vagmxwqjaag4faijggfgqlqgtvxkodffqunetgoqovxafgizaymrblhtbtpyzuth537x1zpbkrg2nvdeczawv1bx1jeqm1vbo7vu3n5hj5l0gajsnrtqduilqftubhwlcqgcsdgmrhejfupl6a0t+sdgaxqj+la8ogzaqzlu6wxqmrnjy/lel59bwgr319ffjlpnu8alxskxf3aapfbytxotgxhphg4bys+k3frxun3qtwoclqkoybn33sxcmlitbgao1l3paafu2u4e1bue5mgllihhudxsklj0p18srjar9yjczqoe6xbe/fvre5jrudxymmymmc93xub//w6myla/zzlndmg2xrrlalsejxofodcatnzavltu/yvzmfwxg5j+zjushcmbyvg0yzd6hrdfpnbkr77z6xu2z0tqqoun0jag6rxfobt2nmlodx2hb/rt+xa2hnfzn6jopzw5qdpl1h4bvpe4za==</latext> <latext sha1_base64="zj4uys8vpwn7odxdrfwhvojj5tu=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xnja3tqu1+s6djlpfomneasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgiv2u4j+6k8cigbwgom682mcvfkagtrmuk27xe1mp6pkccygr/rsdqllqzqarowsrqd72wrvjg8te+awvvzlgyfsx0dgi61hkw+vetxper43jv/rdvmttvozl0lqqllpojav2mr4hcwouajmxmgcyhs3t2l2tbvlxsy/syvnbgpgmfdsmmq+h0xw0dwhft+6jfz1kvez7amddiqiokdtdi1uuacx9ia+0df6kx04zafq1kdsp1r4dtfmoxu/xeu4uw==</latext> <latext sha1_base64="e3suspg05b38qeervndokx/7ouk=">aaacyhcbva9t8mwehxdvykfbwgdxajcykaolkj0rgcaerafplakhodsrdpozdugksr/4y+wsrcxwojbzqatj1t6evfe3en5edauo57yvlaxlldk69xnja3tqu1+s6djlpfomneasnn2oqxelhccpgkvfai1/aoz+8hpcfx0bphst7m0qgh9gb5cfn1fjkq/m9aelrnuzkjlx6coi8u7u6ydpsoj1utuzlcwvb5osucl3z7jgqqypuwdg7kfgaxq3hnrtwouafkcbrrxap+9igzpbniwqbxuejcx/ywqw5mavnjlnssudekauhzkgohuz5o9ot60tiddwnkvdz6wfx0zjbqerb5vrtq86/nempyv101n2opnxcapacmm8juybpjcba44aqyesmlkfpc3orzm1wugrv/zjy0gsayv6xyzd5hbbbq/oewhzrntrxruzlti8o0be6by10tw6qr3e0bv6qt/op/thlj2qu59knvlh2uuz5ez9asxkufq=</latext> Abstract AMAS: Attenton Model for Attrbuted Sequence Classfcaton Zhongfang Zhuang Xangnan Kong Elke Rundenstener Classfcaton over sequental data s mportant for a wde range of applcatons from nformaton retreval, anomaly detecton to genomc analyss. Neural network approaches, n partcular recurrent neural networks, have been wdely used n such tasks due to ther strong capablty of feature learnng. However, recent nnovatons n sequence classfcaton learn from not only the sequences but also the assocated attrbutes, called attrbuted sequences. Whle recent work shows the attrbuted sequences to be useful n real-world applcatons, neural attenton models have not yet been explored for attrbuted sequence classfcaton. Ths paper s the frst to study the problem of attrbuted sequence classfcaton wth the neural attenton mechansm. Ths s challengng that now we need to assess the mportance of each tem n each sequence consderng both the sequence tself and the assocated metadata. We propose a framework, called AMAS, to classfy attrbuted sequences usng the nformaton from the sequences, metadata, and the computed attenton. Emprcal results on real-world datasets demonstrate that the proposed AMAS framework sgnfcantly mproves the performance of classfcaton over the state-of-the-art methods on attrbuted sequences. 1 Introducton Classfcaton over sequental data s mportant for a wde range of applcatons over a varety of research areas, ncludng document classfcaton n nformaton retreval and gene classfcaton n genomc analyss. The conventonal approaches to sequence classfcaton focus on only the sequental data, whereas the metadata assocated wth the sequences s often dscarded. However, metadata s has been shown to be useful for a varety of topcs [30, 26]. In the lterature, the data type of a sequence and ts assocated metadata as a unty s called attrbuted sequence. Attrbuted sequences are heterogeneously structured and thus not naturally represented as fxed-sze vectors. For example, genes can be represented as attrbuted sequences, where each gene conssts of a DNA sequence and a set of attrbutes {zzhuang, xkong, rundenst}@wp.edu, Computer Scence Department, Worcester Polytechnc Insttute Attrbuted Sequences p1 - p4 <latext sha1_base64="u5xncmv0ktxombnzjkhvjvo2ai=">aaab/3cbzdptsjaeman+a/xh+rrsymx8ural3ok8ciro4ajngs7tmug7xazuzuhdqcfwks+gjfj1ufxcxwnf+hbwc/z5jdvzjkzxyg508bzvp3sxubw9k55t7k3f3b4vd0+6eg0uxtbnowpegyjrs4etg0zhb+lqpkehlvh+hzw7z6h0wvd2ymuhilfjekdhwupcdf1ctexvvlncd/ajqukg1qp70hynnehsgcqj1z/ekcxkdkmcp5v+plesoyx9wkkqao8vmpu/fcokm3spv9wrhz9+9ethktj0looxnrnq1njp/q/uye90eormymyjoylgucdek7uzf7pappizplbcqml3vpsocdu2nautmywv4nhascn4qzmsq+eq7lu+82qnzpfrgc7ghc7bh2toqbna0aykmbzak7w5z8678+f8llpltjfzcktyvn4b5aywgg==</latext> <latext sha1_base64="cni8g7zineynnzmemfrpe11gc=">aaab/3cbzblsgnbeizr4vgv9slm8yguaoziugy4cbloybyrb6ojvjk56zprthcemwhscthsgdupuonsbr2elmyrj/apj4q4qq/gmpudau++0unja3tneku6w9/ypdo/lxsusnqwlyzilivcegggwpswm4edrcmkucgwh47tzvf2esvmkfjqtx5ehzepoapgwg+yf90vv9yqoxdzby+hcurq9ms/vuhc0ghjwwtvuuu50vgzvyyzgdnsl9uokrvtixytxjrc7wfzu6fkwjodebkvtquft3iqor1pmosj0rnso9wpuz/9w6qqlv/yzhmjuys8wmbxejgt2bzlgcpkrewuukw5vjwxefwxgpro0jzvdhtelmwy3moo69c6qnqw791krz5nviqzoidl8oagalchbjsbwrbe4bxengfn3flwphetbsefoyulov+/6newhq==</latext> Classfcaton on Attrbutes Classfcaton on Sequences Classfcaton on Attrbuted Sequences P4 can only be <latext sha1_base64="55emaey4r0asqk+uwtj5pqz7rjm=">aaacncbvhltswfjxdv5rjdnj2u+hgtsjmigqr0yyzzjo0hwazlskdkmbk+torkwujys3b+a/6g/mfs+8xvml40twuehzopvdhnbukgmvjefeo++tps+cvk+rz7xzvxf112/goskugxflrkkmaduguisr4ubanfva40dajfh/3fynv0bpnsg7s0lhedol5bfn1fjkr/+zhxdz2d1luytfvokwyh9+/1lkph/v6vttkxd1sbaidepd53oleksj3nhughiutnttujxa/viuz0fkll/k19vem1vv/gykbi0uvldv/4wdxowxsane1trgffss8pmpwjscazhpsynv3czejjy9clfodc4i+wcxgukhulwtv2/4mcxlpv4saqy2pw+rc3ju/1zpmj+oucyzqzinmjuzqjbbk8xqeouqjmxmycyhs3f8vsrrvlx5qzyvlt9ms6pnhhzmcazgntax+ifxvb2ugvxqe9ral4ghrpfazrei8tqx+ed88fpudw34167n49s1yln3qk9cr/9a0f7xqu=</latext> correctly classfed wth attrbuted sequences. Fgure 1: Usng both attrbutes and sequences s essental for predctng the of p 4. (e.g., PPI, gene ontology) ndcatng the propertes of the gene. Network traffc can also be modeled as attrbuted sequences. Namely, each network transmsson sesson conssts of a sequence of packages beng sent (or receved) by a router and a set of attrbutes characterzng the network traffc, (e.g., date, tme, sze sender prorty etc). Desgnng a classfer to correctly predct the class of an attrbuted sequence s benefcal for applcatons such as automatc network traffc proflng for cyber securty. However, t has been shown that t s challengng to classfy sequences by themselves [31, 24, 19, 25]. Wth dependences between attrbutes and sequences, the attrbuted sequence classfcaton must tackle several mportant desgn challenges. In ths paper, we study the problem of attrbuted sequence classfcaton. Ths problem s dfferent from pror sequence classfcaton work [24, 19] as we now need to extract feature vectors from not only the sequences but also ncorporatng the metadata as the attrbutes, along wth the dependences between attrbutes and sequences. We summarze the challenges below. Attrbute-sequence dependences. Contrary to the smplfyng assumpton that the attrbutes and sequences are ndependent, there are varous dependences between them. Dependences between at- 109

2 (a) Classfcaton on data attrbutes [1] (c) Image classfcaton wth attenton [20]. 0.5 (b) Sequence classfcaton [31] logn search search book search (d) Sequence classfcaton wth attenton [28] logn search search book search (e) Sequence classfcaton wth attrbute-guded attenton. (ths paper) Fgure 2: A comparson of related classfcaton problems. trbutes and sequences rase problems when learnng to classfy attrbuted sequence data. For example, n network traffc data, the devce type of the router(.e., an attrbutes) may affect the pattern of sendng/recevng TCP/UDP packets (.e., sequences). Snce conventonal sequence classfcaton approaches focus on a sngle data type only, these dependences would thus not be captured. Attenton from both attrbutes and sequences. Recent sequence learnng research [34] has used neural attenton models to mprove the performance of sequence learnng, such as document classfcaton [34]. However, the attenton mechansm focuses on learnng the weght of certan tme steps or sub-sequences n each sequental nstance, wthout regards to ts assocated attrbutes. Wth nformaton from the attrbutes, the weght of tem or sub-sequence may be drastcally dfferent from the weght calculated by the attenton mechansm usng only sequences, whch would consequently have dfferent classfcaton results. To address the above challenges, we propose an endto-end soluton for attrbuted sequence classfcaton wth an attenton model, called AMAS. The AMAS model ncludes three man components: a Attrbute Net to encode the nformaton from attrbutes, a Sequence Net to encode the nformaton from sequences, and an Attenton Block learnng the attenton from not only the sequences but also the hybrd of nformaton from both attrbutes and sequences. Our paper offers the followng contrbutons: We formulate the problem of attrbuted sequence classfcaton. We desgn a deep learnng framework, called AMAS, wth two attenton-based models to explot the nformaton from attrbutes and sequences. We demonstrate that the proposed models sgnfcantly mprove the performance of attrbuted sequence classfcaton usng performance experments and case studes. 2 Problem Formulaton 2.1 Prelmnares. We ntroduce the key defntons n ths secton. The mportant notatons are summarzed n Table 1. Defnton 1. (Sequence) Gven a fnte set I com- posed of r categorcal tems, a sequence s = x (1),, x (t) s an ordered lst of t tems, where x (t) I. We use the subscrpt to dstngush dfferent sequence nstances. Followng common pre-processng steps for deep learnng, we apply zero-paddng on the sequences of varable-length, n whch each sequence s padded to the maxmum length of the sequences n a dataset usng 0 s. The second step s to one-hot encode each sequence s [10]. We denote the one-hot encoded form of sequence s as a matrx s = x (1),, x (t). Learnng models are capable of dsregardng the paddng so that the paddng has no effect on the tranng of models. Defnton 2. (Attrbuted Sequence) Gven a u- dmensonal attrbute vector v s composed of u attrbutes, an attrbuted sequence p s a par composed of an attrbute vector v and a one-hot encoded sequence s, denoted as p = (v, s ). 2.2 Problem Defnton. We formulate the attrbuted sequence classfcaton problem as the problem of fndng the parameters θ of a predctor Θ that mnmzes the predcton error of class s. Intutvely, we want to maxmze the possblty of correctly predctng s when gven a tranng set P = {p 1,, p k } of k attrbuted sequences. Thus, we formulate the tranng process as an optmzaton process: (2.1) arg mn θ Pr(l ) log Pr (Θ (p )) 110

3 Table 1: Important Mathematcal Notatons Notaton Descrpton R The set of real numbers. P A set of attrbuted sequences. r The number of all possble tems n sequences. s A sequence of categorcal tems. x (t) The t-th tem n sequence s. t max The maxmum length of sequences. s A one-hot encoded sequence n the form of a matrx s R t max r. x (t) A one-hot encoded tem at t-th tme step. v An attrbute vector. p An attrbuted sequence..e.,, p = (v, s ) p A feature vector of attrbuted sequence p. µ Attenton weghts. α Attenton vector. Our goal s to fnd the parameters that mnmze the categorcal cross-entropy loss between the predcted s usng parameters n functon Θ and the true s for all attrbuted sequences n the dataset. 3 Attrbuted Sequence Attenton Mechansm The proposed AMAS model has three components, one Attrbute Net for learnng the attrbute nformaton, one Sequence Net to learn the sequental nformaton, and one Attenton Block to learn the attenton from both attrbutes and sequences. 3.1 Network Components Attrbute Net. We buld Attrbute Net usng fully connected neural network denoted as: (3.2) f (A; W r, b r ) = tanh(w r A + b r ) where W a and b a are two tranable parameters n the Attrbute Net, denotng the weght matrx and bas vector, respectvely. We use the actvaton functon tanh here n our Attrbute Net based on our emprcal studes. Other choces, such as ReLu or sgmod, may work equally well n other real-world scenaros. When gven an attrbuted sequence p = (v, s ), Attrbute Net takes the attrbutes as nput and generates an attrbute vector r = f(v ; W r, b r ). Dfferent from prevous work n [4, 27] usng stacked fully connected neural network as autoencoder, where the tranng goal s to mnmze the reconstructon error, our goal of Attrbute Net s to work together wth other network components to maxmze the possblty of predctng the correct s Sequence Net. Dfferent from the attrbutes beng unordered, tems n our sequences have a temporal orderng. The nformaton about the sequences s n both the tem values and the orderng of tems. The temporal orderngs requre a model that s capable of handlng the dependences between dfferent tems. There have been extensve studes on usng recurrent neural networks (RNN) to handle temporal dependences. However, RNN suffers from the problem of explodng and vanshng gradent durng the tranng, where the gradent value becomes too large or too small and thus the network becomes untranable. Long Short- Term Memory (LSTM) [13] s desgned as one varaton and expanson of the RNN to handle such ssues. LSTM s capable of rememberng values over long tme ntervals by ntroducng addtonal nternal varables (.e., varous gates and cell states ). We use an LSTM to handle the dependences. Wth a varable X (t) at tme t, the Sequence Net can be expressed as: (3.3) (t) = σ W X (t) + U h (t 1) + b f (t) = σ W f X (t) + U f h (t 1) + b f o (t) = σ W o X (t) + U o h (t 1) + b o g (t) = tanh W c X (t) + U c h (t 1) + b c c (t) = f (t) c (t 1) + (t) g (t) h (t) = o (t) tanh c (t) where denotes the btwse multplcaton, σ s a sgmod actvaton functon, (t), f (t) and o (t) are the nternal gates of the LSTM, and c (t) and h (t) are the cell and hdden states of the LSTM, respectvely. We denote the Sequence Net as: (3.4) g(x (t) ; W s, U s, b s ) = h (t) where W s = [W, W f, W o, W c ], U s = [U, U f, U o, U c ] and b s = [b, b f, b o, b c ]. Wth the sequence s = x (1),, x (t) as part of an attrbuted sequence p, the hdden states for nput x (t) are g x (t) ; W s, U s, b s = h (t) Attenton Block. Recent work [20, 6] has dentfed that even LSTM-based solutons cannot fully handle the sequence learnng on long sequences that the nformaton over a long tme may be lost. One popular soluton to ths problem s to ncorporate the attenton mechansm nto the model. The attenton mechansm effectvely summarzes the data wth the am to leverage the mportance of each tem n the sequental nput. Attrbuted Sequence Attenton (ASA). Dfferent from the common sequence attenton models, we now need to ncorporate the attrbute nformaton nto 111

4 <latext sha1_base64="+newlwycyydy8+le/yujfrp7bbk=">aaacbxcbzc7sgnbfiznvcz41ralabbkuzaabmwsrnbxcs7hnnj2wtizowwfyesqx0aw30eo7h1oxwcx8njsovj/ghg4z/ncm78wrumyd49jy2t7z3dkt75f2dw6pjyslpw2dwewrjgwqm2anjapogwoydkuczbmgnwr8n6t3nkbpmokhm5eqczwunkueg2c9rpinebd92q9ug1owl78oyqfvvkjzr/xeg4xydsiqhrxuhye0cy6voytbtbxzdrktmr5cz6hahhsczw+e+pfogfhpptwtxp+7fydyzlwe8mr1cmxgeru2m/+r9axjb+occmkncljylfrmm8yf/d4fuaxesikdtbr1t/pkhbumxmw0tmxkoqiyt8sumxa1h3vox9dcx/dbtd4omqhc3sbrlcibladnvattrbbhl2gv/tmpxvv3of3uwjd8iqzm7qk7+sxbhszxw==</latext> <latext sha1_base64="2ydszne4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1ssnhm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjnmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetnp6fkccbajs40pjqn6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx54n4p1hvz1yry8no6jxxde7bjdersm9tebokiendelaqnb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="gtmv6ivthka+4horls3tcoxpqlm=">aaacfhcbvdlssnafj34rpuvfdy4gsxcxvgsxey4kblcvybbqyt6u07dpjgzkumn/wa9zqj7gtt+79an/dszufbt1w4xdovdzd8wloplksb2nldw19y7o0vd7e2d3bnw8o2zjkbiuwjxgkuh6rwfkilcuuh24sgaqeh443vs39zmiyalwxk1caiydjnpkffacs3jfkduypptueayh7sqxhzxdz65zswqwvpgzwixpiiknf3zpz+iabjaqcgnuvzsk1zosorlenw7csyklhzag9tumsghtsaf4mn2llgp1i6akvnqp/l1issdkjpl2zp5wlx7+5/us5d84kqvjrefiz4/8hgmv4bwmpgacqoittqgvtgffdeqeoupxnvclyccyjyvdtp2yg/lph1zszw/syr1rtfrcz2gu1rfnrpgddratdrcfd2hf/sk3oxn4934md5nqytgcxoe5mb8/qigqz6q</latext> <latext sha1_base64="xg38qqc07e6ma225thsezgyyqsy=">aaab/ncbzdlsgmxfiyzxmu9jyorn8e1ivlrhe6lljpsok9qdsomttthazkgsemgz4km5ckolw53dn252s9dwhwif/zmhc/jhklftpo/bwvldw9/ylg2vt3d29/bdg8o2tlkfsqsnlfhdcgncqcatqw0jxaki4hejnwh8o613honsnbh3zjjwnfq0jhzkwvusd9yanm5f9ykomppacxp3novvxat5mcbn8aqgudn0v/qdbkeccimz0rrne9iegvkgykbycj/vrci8rkpssygqjzrizufn8mw6axgnyj5h4mz9pzehrvwer7atizps7wp+v+tl5r4jsokkkhas8xxsmdjohtlocakoinm1hawff7k8qjpba2nrgydcff/piytc9rvuu7r1jvfhguwak4bvxgg2tqbw3qbc2aqqaewst4c56cf+fd+z3rjjfzbh4i+fzb/fhlm0=</latext> <latext sha1_base64="2ydszne4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1ssnhm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjnmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetnp6fkccbajs40pjqn6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx54n4p1hvz1yry8no6jxxde7bjdersm9tebokiendelaqnb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="ke/ptvz4zdrkas+upaaqfp1c+2q=">aaacfhcbvdlssnafj34rpuvfdy4crahlxjn7osuomygn1ag8nketmonuzczeqomb/hb7jvt3anbt37bf6gkzyl23rgwugce7mh48emsmxb38ba+sbm1nzpp7y7t39wab4dd2sucajterfi9hwsgveobuuvg14saic+g64/uc397missn+r6yxuceecrpqgpwwppn0egi19on0nhn0ia0qj17vlzpprng1ewzrltgfqaaclc/8gqwjkotafwfyyr5jx8pnsvcummjkg0rcjmkej6cvkcchsded5c+sc60mrsaseryzurfxshuk5dx2/maewyl4v/ef1ebtdusnmckobk/himkuky/dglibrlgpjpgiqrnaziwfjkpxtvaluccyjkvdtpocg+rpfovozrf2zvgs+ohm7qoaob12jbmqfmojgp7qc3pfb8az8w58gj/z1twjudlbczc+fgefdp6p</latext> <latext sha1_base64="l7u7aa1n2mxz5g7ot1dxzmoeikg=">aaab/ncbzdlsgmxfiyzxmu9jyorn8e1ivlphtdftx0wcfeob2htjppq5nmsdjcgqz8ftcufhhrc7jzbuzbwwjrd4gp/5zdofkjyag2nvftrk1vbg5tl3bku3v7b4fu0xfhj6ncpi0tlqhehdrhvjc2oyarnlqe8yrbjs5ndw7j0rpmoh7m5uk4ggkaewxmtyk3dob5fem85a+zfutungf65d56fa8mjcxxaw/gaoo1ardr8ewwsknwmcgto77njrbhpshmjg8peg1kqhp0ij0lqreq6y+fk5vldoemajsk8yohd/t2siaz3lke3kyiz1cm1m/lfrpya+ctiqzgqiwitfccqgseasczkmddphyqvttecveykysntaxsq/cxv7wknxrnt3znvrrnio4soapnoap8ca0aoalaoa0wymazeavvzppz4rw7h4vwnaeyoqf/5hz+ao/blmw=</latext> <latext sha1_base64="2ydszne4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1ssnhm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjnmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetnp6fkccbajs40pjqn6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx54n4p1hvz1yry8no6jxxde7bjdersm9tebokiendelaqnb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="ppmkzzdoerbr3fzpsrauq4anq2e=">aaacf3cbzc7sgnbfiznvcz4w7usm8egxmkwq4wwazuuecwfknwznzwkq2z3h7kiyqk+hw9gq49gj7awpogv4ersmmqfbj7+cw7nzb8jzpt2vg9nzxvtfwmzt5xf3tnd23cpdusqnzjcjay8lc2ikoasgzpmmkntscbxxkerdw7h9cyjsmxs5f4pbqqx6swsyyjr1grd47aii9w2gndrjyf7yio6zbdx56pqlxglbyk8dp4mcmmauj+tdspntekmnkvmv3ha4yijwjheb5tlegcb2qhrqsjqgfwstl4zwmxu6ujtk+xknj+7fyzesg3jyhbgrpfvym1s/ldrgd29ctkwckmhodnfxcoxtve4d9xheqjmqwuesmzvxbrpjkhapja3xyebbm8jyzfzghzahflnzld16hxjlllemn6bqvky+uurlvubxveevp6aw9ojfn2xl3ppzpaeukm5s5qnnyvn4b3lufna==</latext> <latext sha1_base64="h6mcvzrsgm5unpml8x+0mrweya=">aaacf3cbzc7sgnbfiznvcz4w7usm8egxmkwm0blge3kcoycsvxmjyfjknndys5cwbafwwew1uewe1tln8dxchiptoipax//oydz5g8fz0p73reztr6xubwd28nv7u0fhlphxw2vgemhthoeyfzifhawq10zzaeljjao5namr7etevmrpgjjfk/harorgcsszyjr1grc046iqtwxgnaxjaf7sis6yfflyyxwc17jmwqvgj+hapqrfrg/nv5ctqsxppwo1fy9obspkzprdlm+yxqiqkdkag2lmyladdppfzj8yz0e7fsvljjqft3iwruumotj0r0uo1xjuy/9xarvdvumlhdeq09mvufyj3sb+4xcvtzsqvcjbo3yjokklbtu1vyysraaoyyve3gx85hfrrlkm/5ztuqvomcugmnam8te1qqaqqqe6ougjvabx9oy8o+/oh/m5a11z5jmnaeho1y/cwj+b</latext> <latext sha1_base64="sgwewobqlwop/xciuubipjmyn+4=">aaacf3cbzdlsgmxfiyz9vbrrepk3aslubewgte6lljpsok9qkcomfs0du1mqpiryjd4hd6aw30ed+lwpu/ga5hefrb1h8dhf87hnpyh5ewb1/12cmvrg5tb+e3czu7e/khx8kp40rrancyx6odeg2crdawzhboswvehbxa4eh2um89gtisju7nwejxkehe+owsy62geojlewi/kytliqnyq1o2abv0lrkgwhir7lr4fbw5lnbc9ad44/dmgidove647nstnntkmcsgkfqjbejoa+hyjiga3u2nx8jwuxv6ub8r+ykdp+7fzqircctj2cmkferk3m/2qdxprvumlzgigornf/yrje+njhrjhffddxxyivczeumqkekntw1hsyihcmcufwwy3nioq9c8qnw79xsttbpki9o0rkqiw9doyqqotpqiiqe0at6rw/os/pufdfs9acm585rgtyvn4b2ywfmg==</latext> <latext sha1_base64="mnwra8armv44xzwgxnstrea/fm=">aaacfxcbzc7tsmwfiadcvlfmbgylgokmpsjswwvmlpwcr6kdoqoe5ja9vjlntbqqi8bw/aco/ahlzeqjea7fnqft+ydkn/5yjc/whgjolhefbkm1sbm3vlhcre/shh0f28ulhjamk0kyjt2qviao46gtmebqexjifhdobpo7wb37bfkxjh7quwfereyxcxkl2l+ftyquyahqsbcjinphroa9tlv7ttvp+7mhdfblackcrv8+2cwtggaqawpj0r1xudolynsm8ohrwxsbylqcrlb32bmilbenv9aj+nm8rhis2lnz67fycyek1jqltgre9vqu1mflfrz/q8nblwcxsdtfdlaptjnwcz2ngiznanz8aifqycyumyyij1sazps2pgemasv4xybroaxd57rugr53qo1mkveznamlvemuuken1eqt1eyu5egfvai369l6tz6sz0vryspmttgsrk9f6wefka==</latext> <latext sha1_base64="fihe3xjkd6ju2rqnmqg1cqc+qw=">aaacfhcbvdlssnafj3uv62vqodgtbaidwfj3oy4kblcvybbqyt6u07ddijmxohxpygh+bwp8gduhxvf/gbttosboubc4dz7uuejh8zkpvtfxultfwnza3ydmvnd2//wdw86sgoeqtajgkr6plyaqmc2ooqbr1yaa59bl1/cpv73ucqkkb8xk1jcem84jsgbcsteebjimrq7afpoppoq1pthr10ljlprnp1ewzrltgfqaiclc/8gqwjkotafwfyyr5jx8pnsvcummgqg0rcjmkej6cvkcchsded5c+sc60mrsaseryzurfxshuk5dx2/maewyl4v/ef1ebtdusnmckobk/himkuky/dglibrlgpjpgiqrnaziwfjkpxtvaluccyjjvddpocg+rphnvdzs/s6unztfrgz2m1rddrpgddreldrgbd2hf/sk3oxn4934md7nqywjudlgczc+fgedc56o</latext> <latext sha1_base64="vbafdyn+0zk7w+2mnb7mw66wfo=">aaab/ncbzdlsgmxfiyz9vbrbvrcuqkwos4sm250wxdtzqv7gxycmmmmdu0yickizrjwvdy4umstz+hotzftz6gtpwq+/nmo5+spjkpaen63u1pb39jckm9xdnb39g/cw6ootlkfsrsnlfg9cgncqcbtqw0jpaki4hej3whyo6t3h4nsnbh3zpjwnfi0jhzkwvucdyanm5f9ygomppas+hd56fa9ujcxxaw/gcoo1ardr8ewwsknwmcgto77njrbhpshmjg8mkg1kqhp0ij0lqreq6y+fk5plfoemajsk8yohd/t2siaz3lke3kyiz1cm1m/lfrpya+ctiqzgqiwitfccqgseasczkmddphyqvttecveykysntaxq/cxv7wknau6b/noqzaarrxlcaroqa344bo0qbo0qbtgkifn8arencfnxxl3phatjaeyoqz/5hz+ao5vlms=</latext> <latext sha1_base64="2ydszne4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1ssnhm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjnmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetnp6fkccbajs40pjqn6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx54n4p1hvz1yry8no6jxxde7bjdersm9tebokiendelaqnb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="4stvxtr8vdpbr6fgmjp1ow2tlui=">aaacencbvdlssnafj34rpuvhzs3g0wom5k40wxbtzcv7apagbtm3bozbjmjkin+qs/wk1+gjtx6w/4bf6gkzyl23rgwugce7mh48ecke0439ba+sbm1nzpp7y7t39wab8dt1wusaotgvfidn2gdmblc00h24sgyq+h44/uc39znixsjxr6cxdeiyexglggjefzppyr67afpoppyq1rvhrvmplv1jwz8cpxc1jbbzqe/dmfrjqjqwjkvi914n1icvsm8ohk/ctbtghezkcnqgchkag6sx9h+mmsrbjm0ijwfq34uuhepnq99s5lnvspel/3m9rac3g5sjoneg6pxrkhcsi5xxgydmatv8aghkpmsmi6jjfsbwha+jpfiakyysmngxe5hlbsvaq7hd06l3g6kqezdi6qyexxqi4aqilakin9ije0zv1bl1bh9bnfhxnkm5o0aksr18taz42</latext> <latext sha1_base64="adkmcmxvsu2nnlos2dzqtmth55m=">aaab+ncbzc7tsmwfiadcvllsliylehlavkwgcsxnkxspqtsfyxke1ajuw7ycqkedhyqahvp6ejbfbbtnayy9z+vsfc3so/0gyqo3nftuljc2t7z3ybmvv/+dwyk0ed3wskkw6oggj6kdie0yf6rhqgollrrcpgolf05t5vfdalkajudmzsqkoxolgfcnjrdctdwpmpmh9d6rm5be5kfb8xreqnad/ajqofa7dl+gowsnnadgdj64hvsbblshmjg8sow1uqpevjmraoecc6yban5/dcomyj8o+yedc/t2ria71jee2kymz0au1uflfbzca+driqjcpiqivf8upgyab8xzgcqcdztzqfhreyvee6qqnjatg3bx/3yonqvg77lw6/wbbvxlmepoan14imr0aqt0aydgmejeaav4m15cl6cd+dj2vpypkt8efo5w9qajqf</latext> <latext sha1_base64="+newlwycyydy8+le/yujfrp7bbk=">aaacbxcbzc7sgnbfiznvcz41ralabbkuzaabmwsrnbxcs7hnnj2wtizowwfyesqx0aw30eo7h1oxwcx8njsovj/ghg4z/ncm78wrumyd49jy2t7z3dkt75f2dw6pjyslpw2dwewrjgwqm2anjapogwoydkuczbmgnwr8n6t3nkbpmokhm5eqczwunkueg2c9rpinebd92q9ug1owl78oyqfvvkjzr/xeg4xydsiqhrxuhye0cy6voytbtbxzdrktmr5cz6hahhsczw+e+pfogfhpptwtxp+7fydyzlwe8mr1cmxgeru2m/+r9axjb+occmkncljylfrmm8yf/d4fuaxesikdtbr1t/pkhbumxmw0tmxkoqiyt8sumxa1h3vox9dcx/dbtd4omqhc3sbrlcibladnvattrbbhl2gv/tmpxvv3of3uwjd8iqzm7qk7+sxbhszxw==</latext> <latext sha1_base64="2ydszne4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1ssnhm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjnmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetnp6fkccbajs40pjqn6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx54n4p1hvz1yry8no6jxxde7bjdersm9tebokiendelaqnb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="ppmkzzdoerbr3fzpsrauq4anq2e=">aaacf3cbzc7sgnbfiznvcz4w7usm8egxmkwq4wwazuuecwfknwznzwkq2z3h7kiyqk+hw9gq49gj7awpogv4ersmmqfbj7+cw7nzb8jzpt2vg9nzxvtfwmzt5xf3tnd23cpdusqnzjcjay8lc2ikoasgzpmmkntscbxxkerdw7h9cyjsmxs5f4pbqqx6swsyyjr1grd47aii9w2gndrjyf7yio6zbdx56pqlxglbyk8dp4mcmmauj+tdspntekmnkvmv3ha4yijwjheb5tlegcb2qhrqsjqgfwstl4zwmxu6ujtk+xknj+7fyzesg3jyhbgrpfvym1s/ldrgd29ctkwckmhodnfxcoxtve4d9xheqjmqwuesmzvxbrpjkhapja3xyebbm8jyzfzghzahflnzld16hxjlllemn6bqvky+uurlvubxveevp6aw9ojfn2xl3ppzpaeukm5s5qnnyvn4b3lufna==</latext> <latext sha1_base64="xg38qqc07e6ma225thsezgyyqsy=">aaab/ncbzdlsgmxfiyzxmu9jyorn8e1ivlrhe6lljpsok9qdsomttthazkgsemgz4km5ckolw53dn252s9dwhwif/zmhc/jhklftpo/bwvldw9/ylg2vt3d29/bdg8o2tlkfsqsnlfhdcgncqcatqw0jxaki4hejnwh8o613honsnbh3zjjwnfq0jhzkwvusd9yanm5f9ykomppacxp3novvxat5mcbn8aqgudn0v/qdbkeccimz0rrne9iegvkgykbycj/vrci8rkpssygqjzrizufn8mw6axgnyj5h4mz9pzehrvwer7atizps7wp+v+tl5r4jsokkkhas8xxsmdjohtlocakoinm1hawff7k8qjpba2nrgydcff/piytc9rvuu7r1jvfhguwak4bvxgg2tqbw3qbc2aqqaewst4c56cf+fd+z3rjjfzbh4i+fzb/fhlm0=</latext> <latext sha1_base64="gtmv6ivthka+4horls3tcoxpqlm=">aaacfhcbvdlssnafj34rpuvfdy4gsxcxvgsxey4kblcvybbqyt6u07dpjgzkumn/wa9zqj7gtt+79an/dszufbt1w4xdovdzd8wloplksb2nldw19y7o0vd7e2d3bnw8o2zjkbiuwjxgkuh6rwfkilcuuh24sgaqeh443vs39zmiyalwxk1caiydjnpkffacs3jfkduypptueayh7sqxhzxdz65zswqwvpgzwixpiiknf3zpz+iabjaqcgnuvzsk1zosorlenw7csyklhzag9tumsghtsaf4mn2llgp1i6akvnqp/l1issdkjpl2zp5wlx7+5/us5d84kqvjrefiz4/8hgmv4bwmpgacqoittqgvtgffdeqeoupxnvclyccyjyvdtp2yg/lph1zszw/syr1rtfrcz2gu1rfnrpgddratdrcfd2hf/sk3oxn4934md5nqytgcxoe5mb8/qigqz6q</latext> <latext sha1_base64="2ydszne4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1ssnhm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjnmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetnp6fkccbajs40pjqn6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx54n4p1hvz1yry8no6jxxde7bjdersm9tebokiendelaqnb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="h6mcvzrsgm5unpml8x+0mrweya=">aaacf3cbzc7sgnbfiznvcz4w7usm8egxmkwm0blge3kcoycsvxmjyfjknndys5cwbafwwew1uewe1tln8dxchiptoipax//oydz5g8fz0p73reztr6xubwd28nv7u0fhlphxw2vgemhthoeyfzifhawq10zzaeljjao5namr7etevmrpgjjfk/harorgcsszyjr1grc046iqtwxgnaxjaf7sis6yfflyyxwc17jmwqvgj+hapqrfrg/nv5ctqsxppwo1fy9obspkzprdlm+yxqiqkdkag2lmyladdppfzj8yz0e7fsvljjqft3iwruumotj0r0uo1xjuy/9xarvdvumlhdeq09mvufyj3sb+4xcvtzsqvcjbo3yjokklbtu1vyysraaoyyve3gx85hfrrlkm/5ztuqvomcugmnam8te1qqaqqqe6ougjvabx9oy8o+/oh/m5a11z5jmnaeho1y/cwj+b</latext> <latext sha1_base64="l7u7aa1n2mxz5g7ot1dxzmoeikg=">aaab/ncbzdlsgmxfiyzxmu9jyorn8e1ivlphtdftx0wcfeob2htjppq5nmsdjcgqz8ftcufhhrc7jzbuzbwwjrd4gp/5zdofkjyag2nvftrk1vbg5tl3bku3v7b4fu0xfhj6ncpi0tlqhehdrhvjc2oyarnlqe8yrbjs5ndw7j0rpmoh7m5uk4ggkaewxmtyk3dob5fem85a+zfutungf65d56fa8mjcxxaw/gaoo1ardr8ewwsknwmcgto77njrbhpshmjg8peg1kqhp0ij0lqreq6y+fk5vldoemajsk8yohd/t2siaz3lke3kyiz1cm1m/lfrpya+ctiqzgqiwitfccqgseasczkmddphyqvttecveykysntaxsq/cxv7wknxrnt3znvrrnio4soapnoap8ca0aoalaoa0wymazeavvzppz4rw7h4vwnaeyoqf/5hz+ao/blmw=</latext> <latext sha1_base64="ke/ptvz4zdrkas+upaaqfp1c+2q=">aaacfhcbvdlssnafj34rpuvfdy4crahlxjn7osuomygn1ag8nketmonuzczeqomb/hb7jvt3anbt37bf6gkzyl23rgwugce7mh48emsmxb38ba+sbm1nzpp7y7t39wab4dd2sucajterfi9hwsgveobuuvg14saic+g64/uc397missn+r6yxuceecrpqgpwwppn0egi19on0nhn0ia0qj17vlzpprng1ewzrltgfqaaclc/8gqwjkotafwfyyr5jx8pnsvcummjkg0rcjmkej6cvkcchsded5c+sc60mrsaseryzurfxshuk5dx2/maewyl4v/ef1ebtdusnmckobk/himkuky/dglibrlgpjpgiqrnaziwfjkpxtvaluccyjkvdtpocg+rpfovozrf2zvgs+ohm7qoaob12jbmqfmojgp7qc3pfb8az8w58gj/z1twjudlbczc+fgefdp6p</latext> <latext sha1_base64="2ydszne4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1ssnhm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjnmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetnp6fkccbajs40pjqn6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx54n4p1hvz1yry8no6jxxde7bjdersm9tebokiendelaqnb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="sgwewobqlwop/xciuubipjmyn+4=">aaacf3cbzdlsgmxfiyz9vbrrepk3aslubewgte6lljpsok9qkcomfs0du1mqpiryjd4hd6aw30ed+lwpu/ga5hefrb1h8dhf87hnpyh5ewb1/12cmvrg5tb+e3czu7e/khx8kp40rrancyx6odeg2crdawzhboswvehbxa4eh2um89gtisju7nwejxkehe+owsy62geojlewi/kytliqnyq1o2abv0lrkgwhir7lr4fbw5lnbc9ad44/dmgidove647nstnntkmcsgkfqjbejoa+hyjiga3u2nx8jwuxv6ub8r+ykdp+7fzqircctj2cmkferk3m/2qdxprvumlzgigornf/yrje+njhrjhffddxxyivczeumqkekntw1hsyihcmcufwwy3nioq9c8qnw79xsttbpki9o0rkqiw9doyqqotpqiiqe0at6rw/os/pufdfs9acm585rgtyvn4b2ywfmg==</latext> <latext sha1_base64="vbafdyn+0zk7w+2mnb7mw66wfo=">aaab/ncbzdlsgmxfiyz9vbrbvrcuqkwos4sm250wxdtzqv7gxycmmmmdu0yickizrjwvdy4umstz+hotzftz6gtpwq+/nmo5+spjkpaen63u1pb39jckm9xdnb39g/cw6ootlkfsrsnlfg9cgncqcbtqw0jpaki4hej3whyo6t3h4nsnbh3zpjwnfi0jhzkwvucdyanm5f9ygomppas+hd56fa9ujcxxaw/gcoo1ardr8ewwsknwmcgto77njrbhpshmjg8mkg1kqhp0ij0lqreq6y+fk5plfoemajsk8yohd/t2siaz3lke3kyiz1cm1m/lfrpya+ctiqzgqiwitfccqgseasczkmddphyqvttecveykysntaxq/cxv7wknau6b/noqzaarrxlcaroqa344bo0qbo0qbtgkifn8arencfnxxl3phatjaeyoqz/5hz+ao5vlms=</latext> <latext sha1_base64="fihe3xjkd6ju2rqnmqg1cqc+qw=">aaacfhcbvdlssnafj3uv62vqodgtbaidwfj3oy4kblcvybbqyt6u07ddijmxohxpygh+bwp8gduhxvf/gbttosboubc4dz7uuejh8zkpvtfxultfwnza3ydmvnd2//wdw86sgoeqtajgkr6plyaqmc2ooqbr1yaa59bl1/cpv73ucqkkb8xk1jcem84jsgbcsteebjimrq7afpoppoq1pthr10ljlprnp1ewzrltgfqaiclc/8gqwjkotafwfyyr5jx8pnsvcummgqg0rcjmkej6cvkcchsded5c+sc60mrsaseryzurfxshuk5dx2/maewyl4v/ef1ebtdusnmckobk/himkuky/dglibrlgpjpgiqrnaziwfjkpxtvaluccyjjvddpocg+rphnvdzs/s6unztfrgz2m1rddrpgddreldrgbd2hf/sk3oxn4934md7nqywjudlgczc+fgedc56o</latext> <latext sha1_base64="2ydszne4xjmbmh06scqwyesuh50=">aaacghcbvhlsgmxfm2m7/qqulbweyyc6ktra4el3ypypvos1djnonhmyyq5jryjab/9iv0m8wbweh1ssnhm4998fjkaqujed9oo7c/ml0vjkzxvtfwozurx9qjnmmewrctqoaaabjfqmdwiee4v0dgq8bqmr8f1p1dqmfywyxs6md0ihnegtww8qvvvra2zuzlet48xwerx5/c1xkphvab7rsfrgyiwtebqwucvynxoqi959woabkqtxv1sm5v2+sotjl4warp+efx615x94k8cwgjahmm796mcvtfgwgzrmuk27xetnp6fkccbajs40pjqn6qc6fkoag+7nk4skfgzeeejsk8apgf/duq01noub1yzu/o/9bg5h+1bmavj/nms0msdzdfgucmwspjcchv8cmgflamel2vsxeqklm2o/5tsvlx54n4p1hvz1yry8no6jxxde7bjdersm9tebokiendelaqnb1eemftkbzq6z57rukxvkqnudcqehfqr3itvgufaxg==</latext> <latext sha1_base64="mnwra8armv44xzwgxnstrea/fm=">aaacfxcbzc7tsmwfiadcvlfmbgylgokmpsjswwvmlpwcr6kdoqoe5ja9vjlntbqqi8bw/aco/ahlzeqjea7fnqft+ydkn/5yjc/whgjolhefbkm1sbm3vlhcre/shh0f28ulhjamk0kyjt2qviao46gtmebqexjifhdobpo7wb37bfkxjh7quwfereyxcxkl2l+ftyquyahqsbcjinphroa9tlv7ttvp+7mhdfblackcrv8+2cwtggaqawpj0r1xudolynsm8ohrwxsbylqcrlb32bmilbenv9aj+nm8rhis2lnz67fycyek1jqltgre9vqu1mflfrz/q8nblwcxsdtfdlaptjnwcz2ngiznanz8aifqycyumyyij1sazps2pgemasv4xybroaxd57rugr53qo1mkveznamlvemuuken1eqt1eyu5egfvai369l6tz6sz0vryspmttgsrk9f6wefka==</latext> <latext sha1_base64="adkmcmxvsu2nnlos2dzqtmth55m=">aaab+ncbzc7tsmwfiadcvllsliylehlavkwgcsxnkxspqtsfyxke1ajuw7ycqkedhyqahvp6ejbfbbtnayy9z+vsfc3so/0gyqo3nftuljc2t7z3ybmvv/+dwyk0ed3wskkw6oggj6kdie0yf6rhqgollrrcpgolf05t5vfdalkajudmzsqkoxolgfcnjrdctdwpmpmh9d6rm5be5kfb8xreqnad/ajqofa7dl+gowsnnadgdj64hvsbblshmjg8sow1uqpevjmraoecc6yban5/dcomyj8o+yedc/t2ria71jee2kymz0au1uflfbzca+driqjcpiqivf8upgyab8xzgcqcdztzqfhreyvee6qqnjatg3bx/3yonqvg77lw6/wbbvxlmepoan14imr0aqt0aydgmejeaav4m15cl6cd+dj2vpypkt8efo5w9qajqf</latext> <latext sha1_base64="4stvxtr8vdpbr6fgmjp1ow2tlui=">aaacencbvdlssnafj34rpuvhzs3g0wom5k40wxbtzcv7apagbtm3bozbjmjkin+qs/wk1+gjtx6w/4bf6gkzyl23rgwugce7mh48ecke0439ba+sbm1nzpp7y7t39wab8dt1wusaotgvfidn2gdmblc00h24sgyq+h44/uc39znixsjxr6cxdeiyexglggjefzppyr67afpoppyq1rvhrvmplv1jwz8cpxc1jbbzqe/dmfrjqjqwjkvi914n1icvsm8ohk/ctbtghezkcnqgchkag6sx9h+mmsrbjm0ijwfq34uuhepnq99s5lnvspel/3m9rac3g5sjoneg6pxrkhcsi5xxgydmatv8aghkpmsmi6jjfsbwha+jpfiakyysmngxe5hlbsvaq7hd06l3g6kqezdi6qyexxqi4aqilakin9ije0zv1bl1bh9bnfhxnkm5o0aksr18taz42</latext> (a) Attrbuted Sequence Attenton (ASA). (b) Attrbuted Sequence Hybrd Attenton (ASHA). Fgure 3: Two types of attenton for attrbuted sequence classfcaton n ths paper, where µ = µ (1),, µ (t) s the attenton weghts. the learnng process. Here, we desgn the Attenton Block as follows: Frst, we need to compute the attenton weght µ (t) at t-th tme as: g x (t) = h (t) exp g x (t) µ (t) = t j=1 g x (j) Then, the attenton weght s multpled wth the hdden state at each tme step: (3.5) α (t) = µ (t) g x (t), t = 1, 2,, t The attenton weght µ (t) at t tme s randomly ntalzed and ncrementally adjusted durng the tranng process. The output at each tme step s then augmented wth the outputs from Attrbute Net as: p (t) = f(v ) α (t) At the last tme step t, we denote p = p (t) to smply the notaton. Attrbuted Sequence Hybrd Attenton (ASHA). Dfferent from the prevous ASA approach, the outputs of Attrbute Net and Sequence Net are augmented wth the Attenton Block. The attenton weght s wrtten as: d v, x (t) µ (t) = = f(v ) g d exp t j=1 d v, x (t) x (t) v, x (j) Then, the vectors used for classfcaton s: (3.6) α (t) = µ (t) d v, x (t), t = 1, 2,, t 3.2 Attrbuted Sequence Classfcaton. In the soluton of attrbuted sequence classfcaton wthout attenton, the Attrbute Net and the Sequence Net are frst concatenated as: (3.7) p = d v, x (t) = r h (t) Here, denotes the concatenaton and t denotes the last tem n s. Although all attrbuted sequences n the dataset are zero-padded to the maxmum length t max, the padded zero values are masked and not used n the computaton. We model the process of predctng the for each attrbuted sequence as: σ(w pp + b p), ASA or No Attenton Θ(p ) = σ W pα (t ) + b p, ASHA where σ s a sgmod actvaton functon and ˆl = Θ(p ) s the predcted. The W p and b p are both tranable n our model. 3.3 Tranng Regularzaton. We adopt multple strateges for dfferent components n our AMAS network. We emprcally select the followng regularzaton strateges n our model based on: (1). For Sequence Net, we apply l 2 -regularzaton to the recurrent unt. (2). 112

5 Table 2: Compared Methods Name Data Used Attenton Note BLA Attrbutes No [12] BLS Sequences No [28] BLAS Attrbutes Sequences No [35] SOA Sequences Yes [34] ASA Attrbutes Sequences Yes Ths paper ASHA Attrbutes Sequences Yes Ths paper Dropout wth a rate of 0.5 s used to regularze the fully connected layer n Attrbute Net. (3). Lastly, we use Dropout wth a rate of 0.2 n other fully connected layers n the model. Based on our observatons, usng regularzaton on Attenton Block has no sgnfcant mpact on the performance of AMAS Optmzer. We use an optmzer that computes the adaptve learnng rates for every parameters, referred to as Adaptve Moment Estmaton (Adam) [15]. The core dea s to keep (1). an exponentally decayng average of gradents n the past and (2). a squared past gradents. Adam counteracts the bases as: ω (t) = β 1ω (t 1) + (1 β 1 )m (t) 1 β t 1 ν (t) = β 2ν (t 1) + (1 β 2 ) m (t) 2 1 β t 2 where β 1 and β 2 are the decay rates, and m (t) s the gradent. We adopt β 1 = 0.9 and β 2 = as n [15]. Fnally, the Adam updates the parameters as: γ (t+1) = γ (t) ρ ν (t) + ω (t) where ρ s a statc learnng rate and s a constant wth a small value to avod dvson errors, such as dvson by zero. We emprcally select ρ = Experments 4.1 Datasets. Our soluton has been motvated by use case scenaros observed at Amadeus corporaton. For ths reason, we work wth the log fles of an Amadeus [2] nternal applcaton. The log fles contan user sessons n the form of attrbuted sequences. In addton, we apply our methodology to real-world, publcly avalable Wkspeeda data [29] and Reddt data [16]. For each type of data, we sample two subsets and conduct experments ndependently. We summarze the data descrptons as follows: Amadeus data (AMS-1, AMS-2) 1. We sampled sx datasets from the log fles of an nternal applcaton at Amadeus IT Group. Each attrbuted sequence s composed of a user profle contanng nformaton (e.g., system confguraton, offce name) and a sequence of functon names nvoked by web clck actvtes (e.g., logn, search) ordered by tme. Wkspeeda data (Wk-1, Wk-2). Wkspeeda s an onlne game requrng partcpants to clck through from a gven start page to an end page usng fewest clcks [29]. We select fnshed paths and extract several propertes of each path (e.g.,, the category of the start path, tme spent per clck). We also sample sx datasets from Wkspeeda. The Wkspeeda data s avalable through the Stanford Network Analyss Project 2 [17]. Reddt data (Reddt-1, Reddt-2). Reddt s an onlne forum. Two datasets that contan the content of reddt submssons are used. The Reddt data s avalable through the Stanford Network Analyss Project 3. We use 60% of the nstances n each dataset for the tranng and the rest 40% for testng. In the tranng, we holdout 20% of the tranng nstances for valdaton. 4.2 Compared Methods. We evaluate our two approaches, namely ASA and ASHA and compare them wth the followng baselne methods. We summarze all compared methods used n ths research n Table 2. BLA s bult usng a fully connected neural network to reduce the dmensonalty of the nput data, and then classfy each nstance. BLS classfes sequences only data usng an LSTM. BLAS utlzes the nformaton from both attrbutes and sequences. The resultng embeddngs generated by BLAS are then used for classfcaton. SOA bulds attenton on the sequence data for classfcaton, whle the attrbute data s not used. 4.3 Expermental Settng. Our paper focuses on mult-class classfcaton problem. We thus use accuracy as the metrc to evaluate the performance. A hgher accuracy score depcts more correct predctons of class s. For each method, we holdout 20% as the valdaton dataset randomly selected from tranng dataset. 1 Personal nformaton s not collected

6 (a) ASM-1, 83 classes (b) Wk-1, 64 classes (c) Reddt-1, 140 classes (d) ASM-2, 83 classes (e) Wk-2, 64 classes (f) Reddt-2, 140 classes Fgure 4: Performance comparson on all sx datasets. For each expermental settng, we report the top-1 top-10 accuracy for each method. We ntalze our network usng the followng strateges: orthogonal matrces are used to ntalze the recurrent weghts, normalzed random dstrbuton [9] s used to ntalze weght matrces n Attrbute Net, and bas vectors are ntalzed as zero vector Accuracy Results. In Fgure 4, we compare the performance of our ASA and ASHA solutons wth the other state-of-the-art methods n Table 2. ASHA acheves the best performance of top-1 accuracy on most datasets. In most cases, ASHA outperforms other solutons sgnfcantly. We also observe a sgnfcant performance mprovement by ASA compared to other methods. That s, although the top-1 accuracy performance of ASA s beneath that of ASHA, t stll outperforms SOA wth sequence-only attenton and all other methods wthout attenton. The two closest compettors, the SOA utlzng the attenton mechansm and classfyng each nstance based on only the sequental data, and BLAS usng nformaton from both attrbutes and sequences, but wthout the help from an attenton mechansm, are outperformed by the our proposed models. 4.5 Parameter Senstvty Analyss Adaptve Samplng Accuracy. As ponted out n recent work [4], adaptve samplng s capable of mprovng the effcency of the optmzaton processes by adaptng the tranng sample sze n each teraton (.e., epoch). In ths set of experments, we evaluate the two models wth varyng adaptve samplng rates. We adopt the adaptve samplng functon as: N τ = N 1 λ (τ 1) Here, τ denotes the epoch number, N τ denotes the number of nstances used n the τ-th epoch and λ the rate of adaptve samplng. We choose λ = 1, 1.001, 1.005, and 1.01 n our experments, where λ = 1 means no adaptve samplng. The results presented n Fgure 5 shows that the adaptve samplng wth the above samplng rates can acheve smlar performance as the non-adaptve approach yet now wth much less tranng data Tranng wth Adaptve Samplng. Wth the contnuously ncreasng amount of tranng nstances, we expect the hstory of tranng loss to be jttery when a model encounters prevously unseen new nstances. Dfferent from prevous experments, where we use Early Stoppng strategy to avod overfttng, we now set a fxed number of 144 epochs for the ASHA model and 97 epochs for ASA model and collect the hstory of tranng and valdaton to study the adaptve tranng strategy. In Fgure 6a, we observe the tranng wth adaptve samplng s more aggressve compared to the non-adaptve approach. From Fgure 6b we conclude that wth a hgher adaptve rate, the model more easly becomes overftted. Smlar concluson can also be made from Fgure 6d. Selectng a hgher adaptve samplng rate can shorten the tranng tme but rskng a hgher chance of overfttng. 4.6 Case Studes. Fgure 7 demonstrates the weghts of each word of ten nstances from the Reddt-2 dataset. Hgher weghts are represented wth a darker color, whle lower weghts are represented wth a lghter 114

7 (a) ASA model on AMS-1 dataset. (b) ASA model on Wk-1 dataset. (c) ASA model on Reddt-1 dataset. (d) ASHA model on AMS-1 dataset. (e) ASHA model on Wk-1 dataset. (f) ASHA model on Reddt-1 dataset. Fgure 5: The performance comparson between non-adaptve tranng and adaptve samplng. (a) tran_loss of ASHA. (b) val_loss of ASHA. (c) tran_loss of ASA. (d) val_loss of ASA. Fgure 6: Comparson of the hstory of tranng and valdaton losses. color. Comparng the three cases, we fnd that the SOA has the most polarzed weghts among the three cases. Ths may be caused by the fact that the attenton produced by SOA s solely based on the sequences, whle ASHA and ASA have been nfluenced by attrbute data. 5 Related Work 5.1 Deep Learnng Deep learnng has receved sgnfcant nterests n recent years. Varous deep learnng models and optmzaton technques have been proposed n a wde range of applcatons such as mage recognton [14, 32] and sequence learnng [5, 24, 33, 22]. Many of these applcatons nvolve the learnng of a sngle data type [5, 24, 33, 22], whle some applcatons nvolve more than one data type [14, 32]. The applcaton of deep learnng n sequence learnng s popular wth one of the most popular works, sequence-to-sequence [24], usng a long short-term memory model n machne translaton. The hdden representatons of sentences n the source language are transferred to a decoder to reconstruct n the target language. The dea s that the hdden representaton can be used as a compact representaton to transfer smlartes between two sequences. Mult-task learnng [18] examnes three mult-task learnng settngs for sequence-to-sequence models that am to share ether an encoder or a decoder n an encoder-decoder model settng. Although the above work s capable of learnng the dependences wthn a sequence, none of them focuses on learnng the dependences between attrbutes and sequences. Multmodal deep neural networks [14, 23, 32] are desgned for nformaton sharng across multple neural networks, but none of these works focuses on the attrbuted sequence classfcaton problem we target here. 5.2 Attenton Network. Attenton network [20] has ganed a lot of research nterest recently. The attenton network has been appled n varous tasks, ncludng mage captonng [32, 21], mage generaton [11], speech recognton [6] and document classfcaton [34]. The goal of usng an attenton network n these tasks s to make the neural network focus on the nterestng parts of each nput, such as, a small regon of an mage or words that are most helpful to classfyng documents. 115

8 (a) ASHA (b) ASA (c) SOA Fgure 7: Weghts of each words from 10 nstances n Reddt-2. Hgher weghts are darker. There are varatons of attenton networks, ncludng herarchcal attenton [34] and dual attenton [21]. 5.3 Sequence Mnng. Recent work n sequence mnng area ams to fnd the most frequent subsequence patterns [19, 8]. Several recent works [3, 19] focus on fndng the most frequent subsequence that meets certan constrants. That s, they fnd the set of sequental patterns satsfyng varous lngustc constrants (e.g., syntactc, symbolc). Many sequence mnng works focus on frequent sequence pattern mnng. Recent work n [19] targets fndng subsequences of possble non-consecutve actons constraned by a gap wthn sequences. [7] ams at solvng pattern-based sequence classfcaton problems usng a parameter-free algorthm from the model space. [8] bulds a subsequence nterleavng model for mnng the most relevant sequental patterns. However, none of the above works supports attrbute data alongsde the sequences, nor do they classfy attrbuted sequences. 6 Concluson In ths paper, we propose a AMAS framework wth two models for classfyng attrbuted sequences. Our ASHA and ASA models progressvely ntegrate the nformaton from both attrbutes and sequences whle weghtng each tem n the sequence to mprove the classfcaton accuracy. Expermental results demonstrate that our models sgnfcantly outperform state-of-the-art methods. 7 Acknowledgement We would lke to thank the Amadeus IT Group for the generous supports n fundng, computng resources and data access. References [1] Z. Akata, F. Perronnn, Z. Harchaou, and C. Schmd, Label-embeddng for attrbute-based classfcaton, n Proceedngs of the IEEE Conference on Computer Vson and Pattern Recognton (CVPR), 2013, pp [2] Amadeus, Amadeus IT Group. com. Accessed:

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction

Bardziej szczegółowo

deep learning for NLP (5 lectures)

deep learning for NLP (5 lectures) TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The

Bardziej szczegółowo

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2 TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)

Bardziej szczegółowo

OpenPoland.net API Documentation

OpenPoland.net API Documentation OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets

Bardziej szczegółowo

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,

Bardziej szczegółowo

Hard-Margin Support Vector Machines

Hard-Margin Support Vector Machines Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==

Bardziej szczegółowo

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition) Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,

Bardziej szczegółowo

The Diagrammatic Coaction

The Diagrammatic Coaction E H U N I V E R S I T T Y O H F R G E D I N B U The Dagrammatc Coacton Enan Gard (Hggs Centre, Ednburgh) In collaboraton wth: Samuel Abreu, Ruth Brtto, Claude Duhr and James Matthew References: Phys.Rev.Lett.

Bardziej szczegółowo

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:

Bardziej szczegółowo

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Helena Boguta, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na

Bardziej szczegółowo

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition) Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically

Bardziej szczegółowo

tum.de/fall2018/ in2357

tum.de/fall2018/ in2357 https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning

Bardziej szczegółowo

Tychy, plan miasta: Skala 1: (Polish Edition)

Tychy, plan miasta: Skala 1: (Polish Edition) Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000

Bardziej szczegółowo

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Rozpoznawanie twarzy metodą PCA Michał Bereta   1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.

Bardziej szczegółowo

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4

Bardziej szczegółowo

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv

Bardziej szczegółowo

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards INSPIRE Conference 2010 INSPIRE as a Framework for Cooperation Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards Elżbieta Bielecka Agnieszka Zwirowicz

Bardziej szczegółowo

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution

Bardziej szczegółowo

Convolution semigroups with linear Jacobi parameters

Convolution semigroups with linear Jacobi parameters Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,

Bardziej szczegółowo

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

MaPlan Sp. z O.O. Click here if your download doesnt start automatically Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click

Bardziej szczegółowo

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register

Bardziej szczegółowo

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019 Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych

Bardziej szczegółowo

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==

Bardziej szczegółowo

Relaxation of the Cosmological Constant

Relaxation of the Cosmological Constant Relaxation of the Cosmological Constant with Peter Graham and David E. Kaplan The Born Again Universe + Work in preparation + Work in progress aaab7nicdvbns8nafhypx7v+vt16wsycp5kioseifw8ekthwaepzbf7apztn2n0ipfrhepggifd/jzf/jzs2brudwbhm5rhvtzakro3rfjqlpewv1bxyemvjc2t7p7q719zjphi2wcisdr9qjyjlbblubn6ncmkccoweo6vc7zyg0jyrd2acoh/tgeqrz9ryqdo7sdgq9qs1t37m5ibu3v2qqvekpqyfmv3qry9mwbajnexqrbuemxp/qpxhtoc00ss0ppsn6ac7lkoao/yns3wn5mgqiykszz80zkz+n5jqwotxhnhktm1q//zy8s+vm5nowp9wmwygjzt/fgwcmitkt5oqk2rgjc2hthg7k2fdqigztqgklwfxkfmfte/qnuw3p7xgzvfhgq7gei7bg3nowdu0oqumrvaiz/dipm6t8+q8zamlp5jzhx9w3r8agjmpzw==

Bardziej szczegółowo

Camspot 4.4 Camspot 4.5

Camspot 4.4 Camspot 4.5 User manual (addition) Dodatek do instrukcji obsługi Camspot 4.4 Camspot 4.5 1. WiFi configuration 2. Configuration of sending pictures to e-mail/ftp after motion detection 1. Konfiguracja WiFi 2. Konfiguracja

Bardziej szczegółowo

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX UNIWERSYTETU BIBLIOTEKA IEGO UNIWERSYTETU IEGO Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX 1. Make a new connection Open the System Preferences by going to the Apple menu

Bardziej szczegółowo

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in

Bardziej szczegółowo

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each

Bardziej szczegółowo

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016 Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016 Paweł Lula Cracow University of Economics, Poland pawel.lula@uek.krakow.pl Latent Dirichlet Allocation (LDA) Documents Latent

Bardziej szczegółowo

MESHING USING P-METHOD TWORZENIE MODELI DYSKRETNYCH ZA POMOCĄ MODELI TYPU P

MESHING USING P-METHOD TWORZENIE MODELI DYSKRETNYCH ZA POMOCĄ MODELI TYPU P MARTA ŻAKOWSKA MESHING USING P-METHOD TWORZENIE MODELI DYSKRETNYCH ZA POMOCĄ MODELI TYPU P Abstract Accuracy and effcency of analyss carred out thanks to the FEM method manly depends on the qualty of dscrete

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe

Bardziej szczegółowo

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition) Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition) Click here if your download doesn"t start automatically

Bardziej szczegółowo

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission

Bardziej szczegółowo

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta  1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

Extraclass. Football Men. Season 2009/10 - Autumn round

Extraclass. Football Men. Season 2009/10 - Autumn round Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+

Bardziej szczegółowo

European Crime Prevention Award (ECPA) Annex I - new version 2014

European Crime Prevention Award (ECPA) Annex I - new version 2014 European Crime Prevention Award (ECPA) Annex I - new version 2014 Załącznik nr 1 General information (Informacje ogólne) 1. Please specify your country. (Kraj pochodzenia:) 2. Is this your country s ECPA

Bardziej szczegółowo

Revenue Maximization. Sept. 25, 2018

Revenue Maximization. Sept. 25, 2018 Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time

Bardziej szczegółowo

Gradient Coding using the Stochastic Block Model

Gradient Coding using the Stochastic Block Model Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=

Bardziej szczegółowo

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and Fig 4 Measured vibration signal (top). Blue original signal. Red component related to periodic excitation of resonances and noise. Green component related. Rotational speed profile used for experiment

Bardziej szczegółowo

Previously on CSCI 4622

Previously on CSCI 4622 More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==

Bardziej szczegółowo

Compressing the information contained in the different indexes is crucial for performance when implementing an IR system

Compressing the information contained in the different indexes is crucial for performance when implementing an IR system 4.2 Compression Compressing the information contained in the different indexes is crucial for performance when implementing an IR system on current hardware it is typically much faster to read compressed

Bardziej szczegółowo

aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department

Bardziej szczegółowo

OSI Network Layer. Network Fundamentals Chapter 5. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved.

OSI Network Layer. Network Fundamentals Chapter 5. ITE PC v4.0 Chapter Cisco Systems, Inc. All rights reserved. OSI Network Layer Network Fundamentals Chapter 5 1 Network Layer Identify the role of the Network Layer, as it describes communication from one end device to another end device Examine the most common

Bardziej szczegółowo

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci

Bardziej szczegółowo

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Click here if your download doesn"t start automatically Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Emilka szuka swojej gwiazdy / Emily

Bardziej szczegółowo

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 OSI Network Layer Network Fundamentals Rozdział 5 Version 4.0 2 Objectives Identify the role of the Network Layer, as it describes communication

Bardziej szczegółowo

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction ECE 114-9 Arrays -II Dr. Z. Aliyazicioglu Electrical & Computer Engineering Electrical & Computer Engineering 1 Outline Introduction Arrays Declaring and Allocation Arrays Examples Using Arrays Passing

Bardziej szczegółowo

No matter how much you have, it matters how much you need

No matter how much you have, it matters how much you need CSR STRATEGY KANCELARIA FINANSOWA TRITUM GROUP SP. Z O.O. No matter how much you have, it matters how much you need Kancelaria Finansowa Tritum Group Sp. z o.o. was established in 2007 we build trust among

Bardziej szczegółowo

Internet of Things Devices

Internet of Things Devices Internet of Things Devices } Internet of Things (IoT) devices } Have access to an abundance of raw data } In home, work, or vehicle IoT: Raw Data & Processing } IoT is gaining ground with the widespread

Bardziej szczegółowo

SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION

SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION 1. Applicant s data Company s name (address, phone) NIP (VAT) and REGON numbers Contact person 2. PPROPERTIES HELD Address Type of property Property

Bardziej szczegółowo

Poland) Wydawnictwo "Gea" (Warsaw. Click here if your download doesn"t start automatically

Poland) Wydawnictwo Gea (Warsaw. Click here if your download doesnt start automatically Suwalski Park Krajobrazowy i okolice 1:50 000, mapa turystyczno-krajoznawcza =: Suwalki Landscape Park, tourist map = Suwalki Naturpark,... narodowe i krajobrazowe) (Polish Edition) Click here if your

Bardziej szczegółowo

Installation of EuroCert software for qualified electronic signature

Installation of EuroCert software for qualified electronic signature Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer

Bardziej szczegółowo

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Embeded systems Architektura układów PSoC (Cypress) Możliwości bloków cyfrowych i analogowych Narzędzia

Bardziej szczegółowo

Stargard Szczecinski i okolice (Polish Edition)

Stargard Szczecinski i okolice (Polish Edition) Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz

Bardziej szczegółowo

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition) Dolny Slask 1:300 000, mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition) Click here if your download doesn"t start automatically Dolny Slask 1:300 000, mapa turystyczno-samochodowa: Plan Wroclawia

Bardziej szczegółowo

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature A Surname _ Other Names For Examiner s Use Centre Number Candidate Number Candidate Signature Polish Unit 1 PLSH1 General Certificate of Education Advanced Subsidiary Examination June 2014 Reading and

Bardziej szczegółowo

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates

Bardziej szczegółowo

Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz

Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0  Zofia Kruczkiewicz Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 http://www.junit.org/ Zofia Kruczkiewicz 1. Aby utworzyć test dla jednej klasy, należy kliknąć prawym przyciskiem myszy w oknie Projects na wybraną

Bardziej szczegółowo

The Overview of Civilian Applications of Airborne SAR Systems

The Overview of Civilian Applications of Airborne SAR Systems The Overview of Civilian Applications of Airborne SAR Systems Maciej Smolarczyk, Piotr Samczyński Andrzej Gadoś, Maj Mordzonek Research and Development Department of PIT S.A. PART I WHAT DOES SAR MEAN?

Bardziej szczegółowo

Patients price acceptance SELECTED FINDINGS

Patients price acceptance SELECTED FINDINGS Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may

Bardziej szczegółowo

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS Piotr Mikulski 2006 Subversion is a free/open-source version control system. That is, Subversion manages files and directories over time. A tree of files is placed into a central repository. The repository

Bardziej szczegółowo

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June 2014. Reading and Writing TOTAL

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June 2014. Reading and Writing TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Section Mark Polish Unit 1 Reading and Writing General Certificate of Education Advanced Subsidiary

Bardziej szczegółowo

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d NOVUS IP CAMERAS CLASSIC CAMERAS Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. Resolution Bitrate FPS GOP Resolution Bitrate FPS GOP Audio Motion detection NVIP 5000

Bardziej szczegółowo

Presented by. Dr. Morten Middelfart, CTO

Presented by. Dr. Morten Middelfart, CTO Meeting Big Data challenges in Leadership with Human-Computer Synergy. Presented by Dr. Morten Middelfart, CTO Big Data Data that exists in such large amounts or in such unstructured form that it is difficult

Bardziej szczegółowo

ANALIZA EKSPLOATACYJNA TRWAŁOŚCI ZESTAWÓW KOŁOWYCH TRAMWAJÓW

ANALIZA EKSPLOATACYJNA TRWAŁOŚCI ZESTAWÓW KOŁOWYCH TRAMWAJÓW TRANSPORT PROBLEMS 202 PROBLEMY TRANSPORTU Volume 7 Issue 2 tram, wheel set, wear, lfe Stansław MŁYNARSKI, Paweł PIEC* Tadeusz Koścuszko Cracow Unversty of Technology, Faculty of Mechancal Engneerng Jana

Bardziej szczegółowo

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Jak zasada Pareto może pomóc Ci w nauce języków obcych? Jak zasada Pareto może pomóc Ci w nauce języków obcych? Artykuł pobrano ze strony eioba.pl Pokazuje, jak zastosowanie zasady Pareto może usprawnić Twoją naukę angielskiego. Słynna zasada Pareto mówi o

Bardziej szczegółowo

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:. W RAMACH POROZUMIENIA O WSPÓŁPRACY NAUKOWEJ MIĘDZY POLSKĄ AKADEMIĄ NAUK I... UNDER THE AGREEMENT

Bardziej szczegółowo

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego) 112 Informator o egzaminie maturalnym z języka angielskiego od roku szkolnego 2014/2015 2.6.4. Część ustna. Przykładowe zestawy zadań Przykładowe pytania do rozmowy wstępnej Rozmowa wstępna (wyłącznie

Bardziej szczegółowo

!850016! www.irs.gov/form8879eo. e-file www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C,

Bardziej szczegółowo

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw Strategic planning Jolanta Żyśko University of Physical Education in Warsaw 7S Formula Strategy 5 Ps Strategy as plan Strategy as ploy Strategy as pattern Strategy as position Strategy as perspective Strategy

Bardziej szczegółowo

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:

Bardziej szczegółowo

Rachunek lambda, zima

Rachunek lambda, zima Rachunek lambda, zima 2015-16 Wykład 2 12 października 2015 Tydzień temu: Własność Churcha-Rossera (CR) Jeśli a b i a c, to istnieje takie d, że b d i c d. Tydzień temu: Własność Churcha-Rossera (CR) Jeśli

Bardziej szczegółowo

Projekty Marie Curie Actions w praktyce: EGALITE (IAPP) i ArSInformatiCa (IOF)

Projekty Marie Curie Actions w praktyce: EGALITE (IAPP) i ArSInformatiCa (IOF) Gliwice, Poland, 28th February 2014 Projekty Marie Curie Actions w praktyce: EGALITE (IAPP) i ArSInformatiCa (IOF) Krzysztof A. Cyran The project has received Community research funding under the 7th Framework

Bardziej szczegółowo

Knovel Math: Jakość produktu

Knovel Math: Jakość produktu Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających

Bardziej szczegółowo

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy

Bardziej szczegółowo

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course. - University I would like to enroll at a university. Stating that you want to enroll I want to apply for course. Stating that you want to apply for a course an undergraduate a postgraduate a PhD a full-time

Bardziej szczegółowo

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE) Czy mobilność pracowników uczelni jest gwarancją poprawnej realizacji mobilności studentów? Jak polskie uczelnie wykorzystują mobilność pracowników w programie Erasmus+ do poprawiania stopnia umiędzynarodowienia

Bardziej szczegółowo

Systemy wbudowane. Poziomy abstrakcji projektowania systemów HW/SW. Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji

Systemy wbudowane. Poziomy abstrakcji projektowania systemów HW/SW. Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji Systemy wbudowane Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji Poziomy abstrakcji projektowania systemów HW/SW 12/17/2011 S.Deniziak:Systemy wbudowane 2 1 Model czasu 12/17/2011 S.Deniziak:Systemy

Bardziej szczegółowo

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI O tym, dlaczego warto budować pasywnie, komu budownictwo pasywne się opłaca, a kto się go boi, z architektem, Cezarym Sankowskim, rozmawia

Bardziej szczegółowo

Automatyczne generowanie testów z modeli. Bogdan Bereza Automatyczne generowanie testów z modeli

Automatyczne generowanie testów z modeli. Bogdan Bereza Automatyczne generowanie testów z modeli Automatyczne generowanie testów z modeli Numer: 1 (33) Rozkmina: Projektowanie testów na podstawie modeli (potem można je wykonywać ręcznie, lub automatycznie zwykle chce się automatycznie) A ja mówię

Bardziej szczegółowo

A PRAXIOLOGICAL MODEL OF A MACHINE MODERNISATION PROCESS

A PRAXIOLOGICAL MODEL OF A MACHINE MODERNISATION PROCESS Maksymlan SMOLNIK AGH Unversty of Scence and Technology, Faculty of Mechancal Engneerng and Robotcs, Cracow, Poland smolnk@agh.edu.pl Journal of Machne Constructon and Mantenance PROBLEMY EKSPLOATACJI

Bardziej szczegółowo

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku Juliusz and Maciej Zalewski eds. and A. D. Coleman et

Bardziej szczegółowo

Instructions for student teams

Instructions for student teams The EduGIS Academy Use of ICT and GIS in teaching of the biology and geography subjects and environmental education (junior high-school and high school level) Instructions for student teams Additional

Bardziej szczegółowo

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition) Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Click here if your download doesn"t start automatically Wybrzeze Baltyku, mapa turystyczna 1:50 000 (Polish Edition) Wybrzeze Baltyku, mapa

Bardziej szczegółowo

www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part

Bardziej szczegółowo

Instrukcja obsługi User s manual

Instrukcja obsługi User s manual Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja

Bardziej szczegółowo

Poniżej moje uwagi po zapoznaniu się z prezentowanymi zasadami:

Poniżej moje uwagi po zapoznaniu się z prezentowanymi zasadami: Witam wszystkich nawigatorów. Ostatnio zostały opublikowane nowe zasady CEC (opracowane przez Węgrów) dla zawodników i organizatorów CEC 2011, które obowiązują od tego sezonu. Choć w większości pokrywają

Bardziej szczegółowo

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

POLITYKA PRYWATNOŚCI / PRIVACY POLICY POLITYKA PRYWATNOŚCI / PRIVACY POLICY TeleTrade DJ International Consulting Ltd Sierpień 2013 2011-2014 TeleTrade-DJ International Consulting Ltd. 1 Polityka Prywatności Privacy Policy Niniejsza Polityka

Bardziej szczegółowo

Country fact sheet. Noise in Europe overview of policy-related data. Poland

Country fact sheet. Noise in Europe overview of policy-related data. Poland Country fact sheet Noise in Europe 2015 overview of policy-related data Poland April 2016 The Environmental Noise Directive (END) requires EU Member States to assess exposure to noise from key transport

Bardziej szczegółowo

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy DZIAŁANIE 3.2 EDUKACJA OGÓLNA PODDZIAŁANIE 3.2.1 JAKOŚĆ EDUKACJI OGÓLNEJ Projekt współfinansowany przez Unię Europejską w

Bardziej szczegółowo

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ Part-financed by EU South Baltic Programme w w w. p t m e w. p l PROSPECTS OF THE OFFSHORE WIND ENERGY DEVELOPMENT IN POLAND - OFFSHORE WIND INDUSTRY IN THE COASTAL CITIES AND PORT AREAS PORTS AS LOGISTICS

Bardziej szczegółowo

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019 Neural Networks (The Machine-Learning Kind) BCS 247 March 2019 Neurons http://biomedicalengineering.yolasite.com/neurons.php Networks https://en.wikipedia.org/wiki/network_theory#/media/file:social_network_analysis_visualization.png

Bardziej szczegółowo

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:

Bardziej szczegółowo

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Transport Layer Network Fundamentals Chapter 4 Version 4.0 1 OSI Transport Layer Network Fundamentals Rozdział 4 Version 4.0 2 Objectives Explain the role of Transport Layer protocols and services

Bardziej szczegółowo

Please fill in the questionnaire below. Each person who was involved in (parts of) the project can respond.

Please fill in the questionnaire below. Each person who was involved in (parts of) the project can respond. Project CARETRAINING PROJECT EVALUATION QUESTIONNAIRE Projekt CARETRAINING KWESTIONARIUSZ EWALUACJI PROJEKTU Please fill in the questionnaire below. Each person who was involved in (parts of) the project

Bardziej szczegółowo