Sieci Ethernet w przemyśle
|
|
- Jerzy Komorowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Sieci Ethernet w przemyśle Modyfikacje dla potrzeb aplikacji przemysłowych Bazą dla prowadzenia różnych operacji przemysłowych jest sprawna, niezawodna i wykonywana w czasie rzeczywistym wymiana danych pomiędzy poszczególnymi komponentami systemu. Rosnąca ilość danych wymagających przesłania i/lub przetworzenia wymusiła opracowanie nowych standardów dla sieci przemysłowych. Nie bez znaczenia jest też fakt, że współczesne systemy sterujące i zarządzające produkcją muszą komunikować się z modułami sprawozdawczymi przedsiębiorstwa, a to rodzi pewne problemy. Wynika z tego fakt, że sieci przemysłowe nie mogą już istnieć same dla siebie, ale muszą również komunikować się z całą infrastrukturą przedsiębiorstwa czy to bezpośrednio, czy z użyciem pomostów. Sieci cyfrowe najczęściej są budowane w oparciu o Ethernet. Transmisja danych zgodnie z tym standardem odbywa się na zasadzie tak częstego powtarzania prób transmisji pakietu, aż ta powiedzie się. Czas potrzebny na dotarcie informacji od nadawcy do odbiorcy jest trudny do określenia, ponieważ zależy od opóźnienia dostępu do łącza, a może ono wystąpić w każdym urządzeniu pośredniczącym w transmisji pakietu. Urządzenia pracujące w sieci rywalizują o dostęp do niej, a ich prawa dostępu do łącza są równorzędne w warstwie fizycznej. Standard Ethernet powstał w latach siedemdziesiątych i był projektowany do zastosowań typowo cywilnych. Bazuje na idei węzłów Podstawowe wymagania stawiane sieciom przemysłowym Niezawodność podnoszona głównie z wykorzystaniem mechanizmu redundancji. Możliwość pracy w trudnych warunkach przemysłowych, w obecności zaburzeń. Determinizm czasowy umożliwiający przewidywanie i powtarzalność czasu od wysłania do odbioru informacji. dołączonych do wspólnego medium, wysyłających i odbierających specjalne komunikaty zwane ramkami. Wszystkie węzły mają niepowtarzalny adres MAC. W oryginalnej wersji Ethernet nie uwzględnia potrzeb przemysłowych i próba jego użycia do zarządzania procesami przemysłowymi może prowadzić do niepowodzenia. Mówiąc inaczej, typowy Ethernet stosowany przez użytkowników komputerów pozwala na szybką transmisję dużych ilości danych, ale czas potrzebny na przesłanie pojedynczego, niewielkiego pakietu informacji jest zbyt długi i trudny do określenia, co uniemożliwia zastosowanie tego standardu w przemyśle. Pomimo wspomnianych wad Ethernetu w zastosowaniach przemysłowych, wielu niezależnych producentów urządzeń dla automatyki wprowadziło różne modyfikacje standardu i obowiązujących w nim protokołów komunikacyjnych, aby umożliwić niezawodną komunikację spełniającą potrzeby urządzeń przemysłowych i umożliwić wymianę danych pomiędzy nimi, a komputerami biurowymi i serwerami plików. Poszczególne rozwiązania różnią się pomiędzy sobą, ale wszystkie zostały zaprojektowane w taki sposób, aby bez większych trudności można było połączyć ze sobą w ramach tej 58 ELEKTRONIKA PRAKTYCZNA 12/2017
2 Sieci Ethernet w przemyśle. Modyfikacje dla potrzeb aplikacji przemysłowych Rywalizowanie o dostęp do łącza w Ethernecie W sieciach Ethernet urządzenia rywalizują o dostęp do łącza fizycznego. Odbywa się to z użyciem mechanizmu CSMA/CD będącego jednym z ważniejszych aspektów komunikacji w sieciach Ethernet i który w zasadzie nie zmienił się od wynalezienia Ethernetu. W sieciach używających CSMA/CD nie istnieje centrum kontroli przydzielające czasy dostępu poszczególnym urządzeniom sieciowym, co powoduje niedeterministyczny czas dostępu do łącza. CSMA (Carrier Sense with Multiple Access) polega na wykrywaniu wykrywanie nośnej obecnej we wspólnym medium transmisyjnym. W sieciach Ethernet, gdy urządzenie chce rozpocząć nadawanie sprawdza czy żadne inne urządzenie nie przesyła danych i jeśli medium transmisyjne jest wolne, to rozpoczyna nadawanie. Jeśli zajęte, czeka na jego zwolnienie. CD (Collision Detect) polega na wykrywaniu kolizji, która może wystąpić, jeśli więcej niż jedno urządzenie rozpocznie nadawanie. Ze względu na różnice w przesyłanych pakietach danych zachodzi nakładanie się sygnałów elektrycznych zwane kolizją. Po wystąpieniu kolizji urządzenia wstrzymują nadawanie przez losowy czas, a następnie ponawiają próbę transmisji. Jeśli ponownie wystąpi kolizja, czas jest podwajany i z nowego zakresu jest losowany nowy czas opóźnienia przed kolejną transmisją samej sieci serwery plików, komputery biurowe oraz maszyny wymagające transmisji danych w rygorystycznych ramach określanych przez wymagania procesów przemysłowych. Nowoczesny Ethernet przemysłowy pozwala na bezpośrednie dołączanie do sieci takich urządzeń, jak pojedyncze czujniki i moduły wykonawcze. Pomimo tego bardzo często używa się w tym obszarze podsieci związanych w wyrobami konkretnego producenta, a samego Ethernetu używa się przede wszystkim do wymiany danych pomiędzy panelami operatorskimi, serwerami, robotami, sterownikami PLC i komputerami w przedsiębiorstwie. Profinet Jednym z rozwiązań Ethernetu przemysłowego, które zyskały największą popularność jest Profinet. Jest to sieć opracowana przez konsorcjum Profibus International, które dawniej zajmowało się rozwojem sieci Profibus łączącej automatykę procesową z automatyką typowo przemysłową. Obecnie ta firma zmieniła nazwę na Profibus i Profinet International, co podkreśla znaczenie nowej sieci w pracach tej organizacji. Profinet łączy cechy sieci Profibus DP z uniwersalnością Ethernetu, utrzymując duży stopień kompatybilności z typowymi urządzeniami ethernetowymi oraz stosowanymi dawniej urządzeniami automatyki przemysłowej. Wprowadzono w nim również mechanizmy zwiększające niezawodność komunikacji i możliwość wykonywania niektórych operacji w czasie rzeczywistym. Czas transmisji podzielono na cyklicznie i występujące po sobie naprzemiennie okresy, przeznaczone dla komunikacji zgodnej z zasadami typowego Ethernetu, tj. z użyciem protokołów TCP/IP oraz na okresy przeznaczone dla komunikatów czasu rzeczywistego. Komunikacja z użyciem protokołu TCP/IP świetnie sprawdza się do transmisji danych pomiędzy serwerami, panelami operatorskimi i sterownikami oraz aplikacjami uruchamianymi na komputerach PC dołączonymi do infrastruktury przedsiębiorstwa. Pozwala na dostęp do serwerów z użyciem popularnych protokołów, takich jak: HTTP, FTP, SSH i SMTP. Opóźnienia występujące w tym trybie transmisji wynoszą około 100 ms, a kolejność docierania pakietów do odbiorcy nie zawsze musi być identyczna z kolejnością ich nadawania. Pakiety czasu rzeczywistego są przesyłane w specjalnie wyznaczonych oknach czasowych, co zależnie od trybu gwarantuje zmniejszenie opóźnień do 10 ms lub 1 ms. 10-milisekundowe opóźnienia mają pakiety synchronicznego czasu rzeczywistego (RT lub SRT), przesyłane bez zastosowania enkapsulacji warstw IP i wyższych. Ponadto, wg standardu IEEE802.1Q są oznaczone priorytetem 6, dzięki czemu szybciej docierają do odbiorcy i potrzeba mniej czasu na ich przygotowanie oraz odczytanie. Opóźnienia nieprzekraczające 1 ms uzyskiwane są dzięki transmisji izochronicznego trybu rzeczywistego (IRT), która prowadzona jest bezpośrednio w warstwie sprzętowej, z pominięciem wyższych protokołów. Wszystkie urządzenia z niej korzystające muszą być zsynchronizowane ze sobą z dokładnością do 1 ms, dzięki czemu są w stanie rozpoznać moment, w którym rozpoczyna się okno transmisji trybu IRT. Z protokołu Profinet korzystają m.in. takie firmy, jak: Siemens, Beckhoff, Danfoss, Bosch Rexroth, Phoenix Contact itd. 1) Ethernet/IP W opracowanym przez Rockwell Automation standardzie Ethernet/ IP (Ethernet Industrial Protocol) zastosowano protokół CIP (Common Industrial Protocol) znany z sieci DeviceNet, CompoNet i ControlNet oraz dwa tryby transmisji danych. Zwykłe pakiety i dane konfiguracyjne przesyłane są za pomocą protokołu TCP w trybie nazwanym Explicit Messages. Dane krytyczne czasowo (Implicit Messages) transmitowane są z użyciem protokołu UDP, a ich szybką transmisję zapewnia obsługa priorytetyzacji ruchu sieciowego. Ważna jest również synchronizacja, którą w sieciach Ethernet/IP realizuje się za pomocą rozbudowanego protokołu PTP pod postacią standardu CIPSync. Protokół Ethernet/IP jest promowany przez m.in. takie firmy jak: Rockwell Automation, Sick, Phoenix Contact, Parker Hannifin, Omron i Bosch. 1) Zapewnianie jakości i niezawodności W sieci przemysłowej transmitującej wiele krytycznych informacji konieczne jest zapewnienie odpowiedniej klasy CoS (Class of Service), między innymi poprzez nadawanie priorytetów. Zapewnienie danym krytycznym pierwszeństwa wewnątrz przełącznika nie jest problemem, staje się nim natomiast po wyjściu na port i jest uzależnione od obsługi etykiet priorytetów przez urządzenia końcowe. Istnieje kilka mechanizmów kolejkowania danych priorytetowych. Część z nich polega na obsłudze ruchu na poszczególnych poziomach priorytetów w pewnym powtarzalnym cyklu. Zwykle najlepszym rozwiązaniem jest jednak mechanizm kolejkowania nadawanie priorytetów bezpośrednio danym przy zachowaniu zasady, że wyższy priorytet ma bezwzględnie pierwszeństwo. Jet to realizowane w warstwie 2 i 3 modelu OSI. Mechanizmy odpowiedzialne za gwarantowanie odpowiedniego poziomu CoS (Class of Service) odpowiadają za niezawodność transmisji danych krytycznych przez nadawanie ramkom priorytetów. Przy kolejlowaniu powinien on zapewnić zarządzanie danymi o różnych priorytetach na drodze od źródła do odbiorcy. Mechanizmy mające gwarantować odpowiednią jakość usługi QoS (Quality of Service) odpowiadają, między innymi, za integralność danych oraz ELEKTRONIKA PRAKTYCZNA 12/
3 wymuszanie odpowiednich preferencyjnych warunków dla transmisji danych krytycznych. Zapewnia takie usługi, jak stała przepustowość dla danej serii pakietów (CBR Constant Bit Rate), przewidywalność opóźnień i rezerwację pasma. Dostępne na rynku przełączniki zalecane do rozwiązań w sieciach przemysłowych zapewniają obsługę więcej niż jednej wyjściowej kolejki priorytetów na port. Kolejki o wysokim priorytecie rezerwowane są dla danych krytycznych czasu rzeczywistego, oferując odpowiedni poziom QoS. Dodatkowo, przełączniki powinny mieć zaimplementowany mechanizm HoL blocking prevention, pozwalający na poprawną pracę przełącznika w przypadku częściowego przeciążenia. Praca w trybie rozgłoszeniowym Wiele aplikacji jest opartych na komunikacji w trybie grupowym multicast lub rozgłoszeniowym broadcast. Dane są tu wysyłane tylko raz, mimo że są przeznaczone dla więcej niż jednego odbiorcy. Pakiety grupowe multicast będą jednak traktowane jak ruch rozgłoszeniowy, tj. wysyłane na każdy port w sieci, jeśli przełączniki nie będą w stanie filtrować ruchu grupowego. Jednym z najbardziej popularnych protokołów filtrowania ruchu grupowego jest protokół IGMP. Przełączniki obsługujące ten protokół przechowują zgłoszenia join lub leave wysyłane przez klientów. Filtry grupowe są tworzone w przełącznikach na bazie informacji o porcie, z którego takie zgłoszenia nadeszły. Żądania IGMP join/leave są przekazywane do jednego lub więcej serwerów/routerów IGMP, które odpowiadają za dalsze zarządzanie filtrami. Wiele przełączników ma zaimplementowany mechanizm IGMP snooping, który podgląda filtry warstwy trzeciej oraz jest częściowo niezależny od obecności serwera IGMP w sieci. Jest to bardzo ważna cecha z punktu widzenia niezawodności, ponieważ oznacza, że filtrowanie grupowe będzie aktywne nawet wtedy, gdy połączenie do serwera IGMP zostanie utracone. Dodatkowo, połączenie do takiego serwera nie zostanie przeciążone ani nie powstanie na nim zator. W przypadku specjalnych implementacji IGMP przełącznik może pełnić rolę serwera IGMP IGMP Querier. Protokół IGMP filtruje ruch oparty o IP i inny ruch traktowany jako rozgłoszeniowy. Pakiety konfiguracyjne protokołu IGMP odpowiadające za tworzenie filtrów grupowych w sieci są domyślnie przesyłane na wszystkie porty typu trunk przełącznika. Adresowanie grupowe w skrócie można uznać za formę adresowania pośredniego. 60 ELEKTRONIKA PRAKTYCZNA 12/2017 Jak szacować opóźnienie przełącznika? Całkowity czas przesyłania komunikatu liczy się od chwili umieszczenia wiadomości przez nadawcę na górze stosu transmisji (egress) do chwili, gdy odbiorca otrzymuje dane ze stosu transmisji (ingress). Na ten okres składają się czasy potrzebne na przetworzenie i buforowanie wiadomości przez procesory komunikacyjne nadawcy i odbiorcy oraz czas transmisji przez sieć komunikacyjną. Czas transmisji przez sieć komunikacyjną jest zmienny w zależności od kierunku i stopnia wykorzystania zasobów sieci. W związku z tym często używa się pojęcia RTT (Round Trip Time), które określa przybliżony czas opóźnienia w obydwu kierunkach (pakiety przesyłane w protokole TCP muszą być zwrotnie potwierdzone, najkrótsza ramka to 64 B, więc nawet dla wysłania minimalnej porcji informacji transmitujemy przez sieć 128 B). W przełącznikach, dla ramek o tym samym priorytecie, jest wykorzystywana kolejka FIFO (First In First Out). Oznacza to, że pakiet odebrany jako pierwszy znajdzie się na pierwszym miejscu w kolejce wyjściowej. Do szacowania opóźnienia wykorzystuje się kilka zależności: 1) Wartość opóźnienia transmisji (opóźnienia buforowanego): L długość pakietu w bitach T szybkość łącza w bitach na sekundę 2) Wartość opóźnienia propagacji: Q Q t = p = L T d P d odległość P propagacja (typowo < P < m/s) 3) Wartość opóźnienia kolejkowania: Natężenie ruchu w sieci (N) wyliczyć można następująco: N b k Lp T T T szybkość transmisji (b/s) b k średnia częstotliwość pojawiania się bitów w kolejce (b/s) L długość pakietu w bitach p k częstotliwość pojawiania się pakietów w kolejce (1/s) Warunek konieczny dla poprawnego działania sieci to N<1. Jeśli pakiety odbierane są cyklicznie co czas Qt, opóźnienie kolejkowania nie występuje. Jeżeli odbierane są one okresowo, ale impulsowo (jednocześnie n pakietów co L t T N L ( n 1) sekund, opóźnienie średnie wynosi T. 4) Biorąc pod uwagę powyższe wartości, opóźnienie międzywęzłowe z pominięciem opóźnienia kolejkowania wynosi: Q w =N (Q przetw +Q t +Q p ). Q przetw opóźnienie przetwarzania zależne od metody przełączania. Przykładowe obliczenia Przyjmijmy następujące parametry transmisji: przepustowość 100 Mb/s FDX, metoda przełączania store and forward (przełącznik z minimalnym wewnętrznym opóźnieniem 10 ms), metoda ustalania priorytetów proste kolejkowanie, maksymalna długość pakietu krytycznych danych: 200 bajtów (przy założeniu, że pakiety niezaliczające się do danych krytycznych są pakietami o niższym priorytecie), zakładamy, że 5 innych węzłów jest zdolnych wygenerować pakiety o długości 200 B i tym samym priorytecie, które mogą znaleźć się w tej samej kolejce, wszystkie dane krytyczne są generowane cyklicznie przez węzły sieci. Najgorszy przypadek opóźnienia dla powyższych danych jest niezależny od ruchu sieciowego o niższym priorytecie i wynosi (źródło: Sieci komputerowe, James F. Kurose, Keith W. Ross): Czas opóźnienia k Element wprowadzający opóźnienie 16 ms Operacje odbioru i nadawania. 10 ms Wewnętrzne opóźnienie przełącznika. 122 ms Przesyłanie reszty pakietu o maksymalnej długości. 80 ms Przesyłanie pięciu pakietów o tym samym priorytecie. 228 ms Razem Nadawanie priorytetów zgodnie z IEEE 802.1p wydłuża pakiet o 4 bajty. Maksymalna długość znaczonego pakietu wynosi wobec tego 1522 bajty. Należy jednak pamiętać, że nie wszystkie przełączniki sieciowe są transparentne dla takich wydłużonych pakietów.
4 Synchronizacja czasowa Jednym z kluczowych zagadnień związanych z sieciami komunikacyjnymi, szczególnie w przemyśle, jest zapewnienie odpowiedniej synchronizacji i zagwarantowanie nieprzekraczalnych czasów przesyłania informacji. Przykładem może być sytuacja, gdy dane czasowo krytyczne zbierane są z kilku niezależnych punktów i muszą być porównywane ze sobą w innym miejscu. Różne opóźnienia tras spowodują, że bezpośrednie ich porównanie nie da pożądanych rezultatów. Rozwiązaniem jest oznakowanie poszczególnych danych znacznikami czasowymi, które następnie będą mogły być przeanalizowane i uszeregowane w celu poprawnego porównania w punkcie centralnym. Synchronizacja czasowa w sieci jest niezwykle skomplikowanym zagadnieniem, między innymi ze względu na trudność przewidywania opóźnień poszczególnych tras. Te ostatnie zależne są od komponentów sieci, jej obciążenia, przepustowości łączy, architektury przełączników sieciowych, metody przełączania, ilości danych krytycznych i kolejek priorytetów oraz innych czynników. Rekomendowane są rozwiązania oparte na protokołach SNTP/NTP (RFC2030/ RFC1305) i P1588 (IEEE 1588) ze względu na ich niezawodność oraz fakt, że są to ogólnoświatowe otwarte standardy. Nadawanie priorytetów pakietom W celu minimalizacji negatywnego wpływu kolizji na transmisję stosuje się kilka rozwiązań: Metodę dostępu do medium CSMA/CD wykorzystywaną w wypadku pracy w trybie półdupleks; takie podejście znacznie utrudnia predykcję opóźnień; metoda ta wykorzystywana jest w koncentratorach (ang. hub), ale implementowana powinna być (jako część standardu IEEE 803.3) nadal we wszystkich urządzeniach sieciowych. Kontrolę przepływu 802.3x wraz z pracą w trybie FDX (Full Duplex Mode). Nadawanie priorytetów pakietom, które może odbywać się wg wielu schematów, np.: round-robin weighting (wysyłanie N pakietów o wyższym priorytecie, następnie 1 o niższym, itd.) lub strict priority (pakiet o wyższym priorytecie ma zawsze pierwszeństwo). W celu szacowania możliwych opóźnień przełączników sieciowych jednym z często stosowanych sposobów jest metoda worst case switch latency. Przy liczeniu opóźnienia dla najgorszego przypadku, pomimo wprowadzenia priorytetyzacji oraz zastosowania trybu pracy FDX, należy uwzględnić fakt, że pakiet o niższym priorytecie może być akurat transmitowany przez przełącznik. Nadejście pakietu o wyższym priorytecienie spowoduje przerwania tej transmisji, co oznacza, że pakiet o wyższym priorytecie będzie opóźniony o czas transmisji reszty poprzedniego pakietu. Zakładając najgorszą ewentualność początek transmisji pakietu o maksymalnej długości (1518 bajtów, w niektórych wypadkach nawet 1522 bajty), otrzymujemy odpowiednio: 1,22 ms dla 1 Gb/s, 122 ms dla 100 Mb/s oraz 1,22 ms dla 10 Mb/s. Oczywiście pakiet o wysokim priorytecie może być również opóźniony przez inne pakiety o tym samym priorytecie, jeżeli takie znajdują się w kolejce. Znając jednak przydział priorytetów dla poszczególnych danych i przepustowość łączy, obliczenie takich opóźnień najgorszego przypadku nie stanowi większego problemu. Typowo dla 100 Mb/s wynosi on kilkaset mikrosekund. Wyliczenia dla przykładowego podano w ramce. Ethernet gigabitowy W okresie przed pojawieniem się sieci gigabitowych szybkość transmisji danych w sieciach Ethernet wzrastała od 10 do 100 Mbit/sek. (Mbps). Sieci te nazywano Fast Ethernet. Rodzina sieci Ethernetu gigabitowego opracowana została w celu przekroczenia bariery 1000 Mbit/ sek. Pierwsze standardy takich sieci pojawiły się w roku 1998 (IEEE 802.3z) dla połączeń światłowodowych i w roku 1999 (IEEE 802.3ab) dla miedzianych połączeń UTP. Oba te standardy są dziś bardziej znane jako 1000BASE-X. Standard Fast Ethernet okazał się bardzo wydajną technologią, ogólnie zaakceptowaną przez użytkowników. Mogą z niego korzystać niemal wszystkie urządzenia automatyki i teleinformatyki. Choć przyjęto go jako podstawę do tworzenia sieci gigabitowych, można zauważyć kilka istotnych różnic. Na przykład w standardowych kablach sieciowych kategorii piątej znajduje się 8 przewodów (4 pary). W sieciach Ethernet 10baseT (10 Mbps10 Mb/s) i Fast Ethernet 100BaseT (100 Mbps) wykorzystuje się tylko cztery przewody (2 pary), jedną do transmisji danych, a drugą do ich odbioru. W standardzie Ethernet 10 Mbps pojedynczy bit danych jest kodowany do postaci jednego symbolu, przy użyciu dwóch poziomów napięć. W standardzie Fast Ethernet zastosowano już schemat kodowania 4B/5B MLT-3 z trzema poziomami napięć. Natomiast w sieci gigabitowej 1000Base-T dwa bity danych kodowane są w pojedynczy symbol PAM5, zaś w linii kablowej wykorzystane są wszystkie cztery pary przewodów. I chociaż sieć Ethernetu gigabitowego ma tę samą szybkość transmisji symboli kodowanych tzw. bodów (125 Mbodów), co sieci standardu Fast Ethernet, uzyskuje wyższą szybkość transmisji danych na poziomie 1000 Mbps. Stało się to możliwe dzięki jednoczesnej transmisji 8 bitów danych i przy wykorzystaniu 5 poziomów napięć oraz wszystkich dostępnych przewodów w kablu transmisyjnym. To oczywiste, że wzrost szybkości transmisji danych i stosowanie zaawansowanych, wielopoziomowych schematów ich kodowania zwiększy wymagania dotyczące jakości sieciowych kabli transmisyjnych. Ma to miejsce przede wszystkim ze względu na większe częstotliwości sygnałów i powstające zaburzenia oraz szumy. Tradycyjne
5 kable kategorii piątej były tworzone dla standardów Fast Ethernetu. Dlatego też przy tworzeniu sieci gigabitowych użytkownicy korzystać będą najpewniej z nowszych kabli kategorii 5e lub 6e. Tak, aby uniknąć problemów z interferencją sygnałów. Kable kategorii 5e są wystarczające do budowania sieci gigabitowych, podobnie zresztą jak kable kategorii 6e, które wykorzystać będzie można również w tworzonych standardach sieci 10-gigabitowych. Jednak podstawową kwestią do rozważenia jest zawsze odpowiedź na pytanie: czy stosować kable ekranowane (STP), czy nieekranowane (UTP). Podstawową zaletą kabli ekranowanych STP jest odporność na interferencję sygnałów pomiędzy parami w kablu oraz całego kabla na zaburzenia z zewnątrz. Jednak są one droższe i mniej popularne niż kable UTP. Kable UTP są także łatwiejsze w instalacji, jednak w przypadku najnowszych sieci gigabitowych osiągają kres swoich możliwości fizycznych (kategoria 6e i standard sygnału 500 MHz). W przypadku sieci gigabitowych interferencja sygnałów nabiera większego znaczenia, niż to miało miejsce w przypadku sieci Fast Ethernet. Dlatego czynnik ten należy każdorazowo wziąć pod uwagę opracowując architekturę sieci, szczególnie w środowiskach zaszumionych, gdzie występują zewnętrzne sygnały elektryczne itp. Jeżeli tylko to możliwe, warto zastosować jedną z najbezpieczniejszych opcji w takich aplikacjach, czyli światłowodów. Dobrze sprawdzają się zarówno w sieciach Fast, jak też gigabitowego Ethernetu. Dla sieci gigabitowych dostępne są cztery standardy realizacji warstwy fizycznej ze światłowodami oraz trzema opcjami kabli miedzianych. Nie należy jednak ulegać przekonaniu, że zastosowanie światłowodów to doskonałe rozwiązanie na każdą sytuację, ponieważ użycie niektórych rozwiązań światłowodowych działających w sieciach Fast Ethernet nie jest możliwe w przypadku sieci gigabitowych. Dzieje się tak ze względu na efekt rozproszenia wewnętrznego. Niezależnie od tego, czy sieć będzie realizowana na światłowodach, czy też za pomocą kabli miedzianych, należy zwrócić również uwagę na poprawność wykonania samych czynności instalacyjnych, które mają wpływ na osiągi sieci. Niestaranne wykonanie prostego połączenia kabla kategorii 5e może znacznie zredukować parametry sieci i ograniczyć jej niezawodność. Jeżeli jednak połączenie będzie prawidłowe, kabel tego typu można spokojnie wykorzystać do aplikowania sieci Ethernetu gigabitowego. Powinna ona pracować bez zakłóceń i oczywiście szybciej niż poprzedni standard. Trzeba również sprawdzić, czy proponowane do użycia switche oraz inne elementy infrastruktury sieciowej są przystosowane do obsługi sieci o wyższych szybkościach transmisji danych. Każdy port switcha powinien obsłużyć szybkości 10, 100 i 1000 Mbps. Są jednak dostępne switche, które zawsze mają zostawiony przynajmniej jeden port z obsługą standardów 10 i 100 Mbps. Na rynku pojawiły się również switche obsługujące jedynie standard Mbps. Przed podjęciem decyzji o ich zastosowaniu trzeba mieć jednak świadomość, że niemożliwe będzie ewentualne podpięcie do sieci starszych urządzeń, działających w sieciach Fast Ethernet. Dobrą praktyką jest zastosowanie w sieciach gigabitowych switchy z taką liczbą portów, aby możliwe było zwiększenie przepustowości sieci w dwóch kierunkach transmisji do sumarycznego poziomu 2000 Mbps (1000 Mbps w każdym kierunku). Kolejna kwestia to dobre złącza kablowe. Na przykład w aplikacjach przemysłowych, w środowiskach zapylonych, nie można zastosować klasycznych złączek RJ45. Konieczne jest ich dodatkowe zabezpieczenie mechaniczne. W tego typu aplikacjach dobrze jest użyć np. złączek M-12. Standardowo są one oferowane tylko z czterema doprowadzeniami. Dla sieci gigabitowych konieczne jest więc zastosowanie nowych łączy M-12 z ośmioma doprowadzeniami. Standard Ethernetu gigabitowego jest w pełni kompatybilny z większością współczesnych komputerów klasy PC. W znacznym stopniu może przyczynić się do poprawy osiągów i parametrów komunikacji danych w przemysłowych sieciach sterowania. Na przykład w aplikacji składającej się z 20 urządzeń sieć gigabitowa może w znaczący sposób przyczynić się do eliminacji ewentualnych zatorów magistrali poprzez 10-krotną redukcję czasu potrzebnego na przejście pakietów danych przez switche i magistrale. Fakt ten ma szczególne znaczenie w tzw. aplikacjach krytycznych, zwłaszcza tzw. czasu rzeczywistego. 3) Jacek Bogusz, EP Literatura: 1) AutomatykaOnline.pl Ethernet Przemysłowy: Profinet i Ethernet/IP, 2) Zuzanna Wieczorek, Marcin Karbowniczek Internet Protocol w komunikacji przemysłowej, Elektronika Praktyczna+ nr 3/2010 3) Ralf Captur Ethernet gigabitowy w zastosowaniach przemysłowych, Control Engineering Polska, 4) Jarosław Tarnawski Przemysłowe Sieci Informatyczne. Ethernet przemysłowy 62 ELEKTRONIKA PRAKTYCZNA 12/2017
Ethernet. Ethernet odnosi się nie do jednej, lecz do wielu technologii sieci lokalnych LAN, z których wyróżnić należy cztery podstawowe kategorie:
Wykład 5 Ethernet IEEE 802.3 Ethernet Ethernet Wprowadzony na rynek pod koniec lat 70-tych Dzięki swojej prostocie i wydajności dominuje obecnie w sieciach lokalnych LAN Coraz silniejszy udział w sieciach
Sieci komputerowe. Zadania warstwy łącza danych. Ramka Ethernet. Adresacja Ethernet
Sieci komputerowe Zadania warstwy łącza danych Wykład 3 Warstwa łącza, osprzęt i topologie sieci Ethernet Organizacja bitów danych w tzw. ramki Adresacja fizyczna urządzeń Wykrywanie błędów Multipleksacja
Sieci komputerowe. Zajęcia 2 Warstwa łącza, sprzęt i topologie sieci Ethernet
Sieci komputerowe Zajęcia 2 Warstwa łącza, sprzęt i topologie sieci Ethernet Zadania warstwy łącza danych Organizacja bitów danych w tzw. ramki Adresacja fizyczna urządzeń Wykrywanie błędów Multipleksacja
MODEL WARSTWOWY PROTOKOŁY TCP/IP
MODEL WARSTWOWY PROTOKOŁY TCP/IP TCP/IP (ang. Transmission Control Protocol/Internet Protocol) protokół kontroli transmisji. Pakiet najbardziej rozpowszechnionych protokołów komunikacyjnych współczesnych
Kompendium przemysłowej komunikacji IP
Kompendium przemysłowej komunikacji IP Część 1 W automatyce i różnych zastosowaniach w przemyśle szybko rośnie użycie technik sieciowych, w szczególności rozwiązań bazujących na komunikacji IP (Internet
Protokoły sieciowe - TCP/IP
Protokoły sieciowe Protokoły sieciowe - TCP/IP TCP/IP TCP/IP (Transmission Control Protocol / Internet Protocol) działa na sprzęcie rożnych producentów może współpracować z rożnymi protokołami warstwy
Uniwersalny Konwerter Protokołów
Uniwersalny Konwerter Protokołów Autor Robert Szolc Promotor dr inż. Tomasz Szczygieł Uniwersalny Konwerter Protokołów Szybki rozwój technologii jaki obserwujemy w ostatnich latach, spowodował że systemy
Pytanie 1 Z jakich protokołów korzysta usługa WWW? (Wybierz prawidłowe odpowiedzi)
Pytanie 1 Z jakich protokołów korzysta usługa WWW? (Wybierz prawidłowe odpowiedzi) Pytanie 2 a) HTTPs, b) HTTP, c) POP3, d) SMTP. Co oznacza skrót WWW? a) Wielka Wyszukiwarka Wiadomości, b) WAN Word Works,
W standardzie zarządzania energią ACPI, dopływ energii do poszczególnych urządzeń jest kontrolowany przez:
Zadanie 61 W standardzie zarządzania energią ACPI, dopływ energii do poszczególnych urządzeń jest kontrolowany przez: A. chipset. B. BIOS. C. kontroler dysków. D. system operacyjny. Zadanie 62 Przesyłanie
Przesyłania danych przez protokół TCP/IP
Przesyłania danych przez protokół TCP/IP PAKIETY Protokół TCP/IP transmituje dane przez sieć, dzieląc je na mniejsze porcje, zwane pakietami. Pakiety są często określane różnymi terminami, w zależności
Urządzenia sieciowe. Część 1: Repeater, Hub, Switch. mgr inż. Krzysztof Szałajko
Urządzenia sieciowe Część 1: Repeater, Hub, Switch mgr inż. Krzysztof Szałajko Repeater Regenerator, wzmacniak, wtórnik Definicja Repeater jest to urządzenie sieciowe regenerujące sygnał do jego pierwotnej
Sieci Komputerowe Modele warstwowe sieci
Sieci Komputerowe Modele warstwowe sieci mgr inż. Rafał Watza Katedra Telekomunikacji AGH Al. Mickiewicza 30, 30-059 Kraków, Polska tel. +48 12 6174034, fax +48 12 6342372 e-mail: watza@kt.agh.edu.pl Wprowadzenie
Warstwy i funkcje modelu ISO/OSI
Warstwy i funkcje modelu ISO/OSI Organizacja ISO opracowała Model Referencyjny Połączonych Systemów Otwartych (model OSI RM - Open System Interconection Reference Model) w celu ułatwienia realizacji otwartych
Kompendium przemysłowej komunikacji IP Część 2
Kompendium przemysłowej komunikacji IP Część 2 Wymogi związane z koniecznością zapewniania niezawodnej i wydajnej transmisji danych w aplikacjach przemysłowych powodują szybką popularyzację użycia w nich
Sieci komputerowe. Dr inż. Robert Banasiak. Sieci Komputerowe 2010/2011 Studia niestacjonarne
Sieci komputerowe Dr inż. Robert Banasiak Sieci Komputerowe 2010/2011 Studia niestacjonarne 1 Sieci LAN (Local Area Network) Podstawowe urządzenia sieci LAN. Ewolucja urządzeń sieciowych. Podstawy przepływu
Referencyjny model OSI. 3 listopada 2014 Mirosław Juszczak 37
Referencyjny model OSI 3 listopada 2014 Mirosław Juszczak 37 Referencyjny model OSI Międzynarodowa Organizacja Normalizacyjna ISO (International Organization for Standarization) opracowała model referencyjny
Wykład II. Administrowanie szkolną siecią komputerową. dr Artur Bartoszewski www.bartoszewski.pr.radom.pl
Administrowanie szkolną siecią komputerową dr Artur Bartoszewski www.bartoszewski.pr.radom.pl Wykład II 1 Tematyka wykładu: Media transmisyjne Jak zbudować siec Ethernet Urządzenia aktywne i pasywne w
Przemysłowe Sieci Informatyczne
Przemysłowe Sieci Informatyczne Wykład #2 - Charakterystyka sieci przemysłowych dr inż. Jarosław Tarnawski Co to jest przemysłowa sieć informatyczna? To sieć teleinformatyczna umożliwiająca komunikację
Sieci komputerowe - warstwa fizyczna
Sieci komputerowe - warstwa fizyczna mgr inż. Rafał Watza Katedra Telekomunikacji AGH Al. Mickiewicza 30, 30-059 Kraków, Polska tel. +48 12 6174034, fax +48 12 6342372 e-mail: watza@kt.agh.edu.pl Wprowadzenie
Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 13 Topologie sieci i urządzenia
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 13 Topologie sieci i urządzenia Topologie sieci magistrali pierścienia gwiazdy siatki Zalety: małe użycie kabla Magistrala brak dodatkowych urządzeń
Zarządzanie infrastrukturą sieciową Modele funkcjonowania sieci
W miarę rozwoju sieci komputerowych pojawiały się różne rozwiązania organizujące elementy w sieć komputerową. W celu zapewnienia kompatybilności rozwiązań różnych producentów oraz opartych na różnych platformach
Sieci w przemyśle TEMAT NUMERU SIECI BEZPRZEWODOWE W AUTOMATYCE AUTOMATYKA I MECHATRONIKA. Sieci w przemyśle
AUTOMATYKA I MECHATRONIKA TEMAT NUMERU Nowoczesny przemysł nie jest w stanie istnieć bez komunikacji sieciowej. Dominuje ta przewodowa, ale również interfejsy bezprzewodowe bywają niekiedy niezastąpione.
Sieci komputerowe test
Uwaga: test wielokrotnego wyboru. Sieci komputerowe test Oprac.: dr inż. Marek Matusiak 1. Sieć komputerowa służy do: a. Korzystania ze wspólnego oprogramowania b. Korzystania ze wspólnych skryptów PHP
Mosty przełączniki. zasady pracy pętle mostowe STP. Domeny kolizyjne, a rozgłoszeniowe
Mosty przełączniki zasady pracy pętle mostowe STP Domeny kolizyjne, a rozgłoszeniowe 1 Uczenie się mostu most uczy się na podstawie adresu SRC gdzie są stacje buduje na tej podstawie tablicę adresów MAC
- system budowy sieci opracowany przez firmę Xerox, podniesiony do poziomu standardu w wyniku współpracy firm: Xerox, DEC i Intel.
- system budowy sieci opracowany przez firmę Xerox, podniesiony do poziomu standardu w wyniku współpracy firm: Xerox, DEC i Intel. Standard IEEE 802.3 określa podobny typ sieci, ale różniący się formatem
Warstwa łącza danych. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa. Sieciowa.
Warstwa łącza danych Model OSI Model TCP/IP Aplikacji Prezentacji Aplikacji Sesji - nadzór nad jakością i niezawodnością fizycznego przesyłania informacji; - podział danych na ramki Transportowa Sieciowa
Zestaw ten opiera się na pakietach co oznacza, że dane podczas wysyłania są dzielone na niewielkie porcje. Wojciech Śleziak
Protokół TCP/IP Protokół TCP/IP (Transmission Control Protokol/Internet Protokol) to zestaw trzech protokołów: IP (Internet Protokol), TCP (Transmission Control Protokol), UDP (Universal Datagram Protokol).
Zadania z sieci Rozwiązanie
Zadania z sieci Rozwiązanie Zadanie 1. Komputery połączone są w sieci, z wykorzystaniem routera zgodnie ze schematem przedstawionym poniżej a) Jak się nazywa ten typ połączenia komputerów? (topologia sieciowa)
DigiPoint Karta katalogowa DS 5.00
1/5 f ggggg sterownik programowalny z wyświetlaczem LCD 2/5 OGÓLNA CHARAKTERYSTYKA Sterowniki są zaawansowanymi technologicznie swobodnie programowalnymi kontrolerami przeznaczonymi do sterowani oświetleniem,
DigiPoint mini Karta katalogowa DS 6.00
1/5 sterownik programowalny z wyświetlaczem LCD 2/5 OGÓLNA CHARAKTERYSTYKA Sterowniki są zaawansowanymi technologicznie swobodnie programowalnym, kontrolerami przeznaczonymi do systemów sterowania oświetleniem,
Protokoły dostępu do łącza fizycznego. 24 października 2014 Mirosław Juszczak,
Protokoły dostępu do łącza fizycznego 172 Protokoły dostępu do łącza fizycznego Przy dostępie do medium istnieje możliwość kolizji. Aby zapewnić efektywny dostęp i wykorzystanie łącza należy ustalić reguły
Rodzina 10/11-portowych przemysłowych przełączników Gigabit Ethernet
HYPERION-300 Rodzina 10/11-portowych przemysłowych przełączników Gigabit Ethernet HYPERION-300 Przemysłowy przełącznik posiadający 2x 10/100/1000 Mbit/s RJ45,8x 100/1000Mbit/s SFP lub 8x 10/100/1000 Mbit/s
Skąd dostać adres? Metody uzyskiwania adresów IP. Statycznie RARP. Część sieciowa. Część hosta
Sieci komputerowe 1 Sieci komputerowe 2 Skąd dostać adres? Metody uzyskiwania adresów IP Część sieciowa Jeśli nie jesteśmy dołączeni do Internetu wyssany z palca. W przeciwnym przypadku numer sieci dostajemy
Akademickie Centrum Informatyki PS. Wydział Informatyki PS
Akademickie Centrum Informatyki PS Wydział Informatyki PS Akademickie Centrum Informatyki Instytut Informatyki P.S. Topologie sieciowe: Sieci pierścieniowe Sieci o topologii szyny Krzysztof Bogusławski
Model OSI. mgr inż. Krzysztof Szałajko
Model OSI mgr inż. Krzysztof Szałajko Protokół 2 / 26 Protokół Def.: Zestaw reguł umożliwiający porozumienie 3 / 26 Komunikacja w sieci 101010010101101010101 4 / 26 Model OSI Open Systems Interconnection
OKABLOWANIE W WYBRANYCH SYSTEMACH KOMUNIKACJI
OKABLOWANIE W WYBRANYCH SYSTEMACH KOMUNIKACJI KLASYFIKACJA SIECI wielkość -odległość między najdalej położonymi węzłami sieć lokalna (LAN - Local Area Network) o zasięgu do kilku kilometrów sieć miejska
Enkapsulacja RARP DANE TYP PREAMBUŁA SFD ADRES DOCELOWY ADRES ŹRÓDŁOWY TYP SUMA KONTROLNA 2 B 2 B 1 B 1 B 2 B N B N B N B N B Typ: 0x0835 Ramka RARP T
Skąd dostać adres? Metody uzyskiwania adresów IP Część sieciowa Jeśli nie jesteśmy dołączeni do Internetu wyssany z palca. W przeciwnym przypadku numer sieci dostajemy od NIC organizacji międzynarodowej
Uniwersytet Mikołaja Kopernika w Toruniu. Profilowanie ruchu sieciowego w systemie GNU/Linux
Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki Wydział Fizyki, Astronomii i Informatyki Stosowanej Michał Ferliński Nr albumu: 187386 Praca magisterska na kierunku Informatyka
Sieci komputerowe - Urządzenia w sieciach
Sieci komputerowe - Urządzenia w sieciach mgr inż. Rafał Watza Katedra Telekomunikacji AGH Al. Mickiewicza 30, 30-059 Kraków, Polska tel. +48 12 6174034, fax +48 12 6342372 e-mail: watza@kt.agh.edu.pl
Dr Michał Tanaś(http://www.amu.edu.pl/~mtanas)
Dr Michał Tanaś(http://www.amu.edu.pl/~mtanas) Jest to zbiór komputerów połączonych między sobą łączami telekomunikacyjnymi, w taki sposób że Możliwa jest wymiana informacji (danych) pomiędzy komputerami
pasja-informatyki.pl
pasja-informatyki.pl Sieci komputerowe Warstwa łącza danych ARP, Ethernet Damian Stelmach Zadania warstwy łącza danych 2018 Spis treści Zadania warstwy łącza danych... 3 Ramka warstwy łącza danych i komunikacja...
Marek Parfieniuk, Tomasz Łukaszuk, Tomasz Grześ. Symulator zawodnej sieci IP do badania aplikacji multimedialnych i peer-to-peer
Marek Parfieniuk, Tomasz Łukaszuk, Tomasz Grześ Symulator zawodnej sieci IP do badania aplikacji multimedialnych i peer-to-peer Plan prezentacji 1. Cel projektu 2. Cechy systemu 3. Budowa systemu: Agent
Kurs Ethernet przemysłowy konfiguracja i diagnostyka. Spis treści. Dzień 1
I Wprowadzenie (wersja 1307) Kurs Ethernet przemysłowy konfiguracja i diagnostyka Spis treści Dzień 1 I-3 Dlaczego Ethernet w systemach sterowania? I-4 Wymagania I-5 Standardy komunikacyjne I-6 Nowe zadania
Sieci Komputerowe. Wykład 1: TCP/IP i adresowanie w sieci Internet
Sieci Komputerowe Wykład 1: TCP/IP i adresowanie w sieci Internet prof. nzw dr hab. inż. Adam Kisiel kisiel@if.pw.edu.pl Pokój 114 lub 117d 1 Kilka ważnych dat 1966: Projekt ARPANET finansowany przez DOD
Sieci komputerowe Wykład 3
aplikacji transportowa Internetu dostępu do sieci Stos TCP/IP Warstwa dostępu do sieci Sieci komputerowe Wykład 3 Powtórka z rachunków 1 System dziesiętny, binarny, szesnastkowy Jednostki informacji (b,
1. Sieć komputerowa to medium umożliwiające połączenie dwóch lub więcej komputerów w celu wzajemnego komunikowania się.
i sieci komputerowe Szymon Wilk Sieć komputerowa 1 1. Sieć komputerowa to medium umożliwiające połączenie dwóch lub więcej komputerów w celu wzajemnego komunikowania się. i sieci komputerowe Szymon Wilk
WRSTWA FIZYCZNA W ETHERNECIE. Warstwa fizyczna opisywana jest według schematu, jaki przedstawia poniższy rysunek
WRSTWA FIZYCZNA W ETHERNECIE Warstwa fizyczna opisywana jest według schematu, jaki przedstawia poniższy rysunek ETHERNET 10 Mbit/s 10Base2 specyfikacja Ethernet o paśmie podstawowym 10Mbps korzystająca
Spis treści. Dzień 1 / Dzień 2. I PROFINET modułowe rozwiązanie (wersja 1108) II Ethernet podstawowe informacje (wersja 1108)
Spis treści Dzień 1 / Dzień 2 I PROFINET modułowe rozwiązanie (wersja 1108) I-3 Dlaczego Ethernet w systemach sterowania? I-4 Przemysłowe systemy komunikacyjne bazujące na Ethernet I-5 Czym jest PROFINET?
MASKI SIECIOWE W IPv4
MASKI SIECIOWE W IPv4 Maska podsieci wykorzystuje ten sam format i sposób reprezentacji jak adresy IP. Różnica polega na tym, że maska podsieci posiada bity ustawione na 1 dla części określającej adres
Topologie sieciowe. mgr inż. Krzysztof Szałajko
Topologie sieciowe mgr inż. Krzysztof Szałajko Graficzna prezentacja struktury sieci komp. Sieć komputerowa może być zobrazowana graficznie za pomocą grafu. Węzły grafu to urządzenia sieciowe i końcowe
Podstawowe pojęcia dotyczące sieci komputerowych
Podstawowe pojęcia dotyczące sieci komputerowych Podział ze względu na obszar Sieci osobiste PAN (Personal Area Network) sieci o zasięgu kilku metrów wykorzystywane np. do bezprzewodowego połączenia telefonu
Kurs Ethernet przemysłowy konfiguracja i diagnostyka. Spis treści. Dzień 1/2
I Wprowadzenie (wersja 1307) Spis treści Dzień 1/2 I-3 Dlaczego Ethernet w systemach sterowania? I-4 Wymagania I-5 Standardy komunikacyjne I-6 Nowe zadania I-7 Model odniesienia ISO / OSI I-8 Standaryzacja
Adresowanie grupowe. Bartłomiej Świercz. Katedra Mikroelektroniki i Technik Informatycznych. Łódź, 25 kwietnia 2006
Adresowanie grupowe Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź, 25 kwietnia 2006 Wstęp Na potrzeby sieci komputerowych zdefiniowano rożne rodzaje adresowania: adresowanie
Sieci komputerowe Wykład
Sieci komputerowe Wykład Sieci komputerowe przegląd wykładu Wprowadzenie pojęcie sieci, komponenty, podstawowe usługi Modele funkcjonowania sieci przedstawienie modelu ISO OSI oraz modelu TCP/IP Omówienie
PBS. Wykład Zabezpieczenie przełączników i dostępu do sieci LAN
PBS Wykład 7 1. Zabezpieczenie przełączników i dostępu do sieci LAN mgr inż. Roman Krzeszewski roman@kis.p.lodz.pl mgr inż. Artur Sierszeń asiersz@kis.p.lodz.pl mgr inż. Łukasz Sturgulewski luk@kis.p.lodz.pl
Urządzenia sieciowe. Tutorial 1 Topologie sieci. Definicja sieci i rodzaje topologii
Tutorial 1 Topologie sieci Definicja sieci i rodzaje topologii Definicja 1 Sieć komputerowa jest zbiorem mechanizmów umożliwiających komunikowanie się komputerów bądź urządzeń komputerowych znajdujących
Dwa lub więcej komputerów połączonych ze sobą z określonymi zasadami komunikacji (protokołem komunikacyjnym).
Sieci komputerowe Dwa lub więcej komputerów połączonych ze sobą z określonymi zasadami komunikacji (protokołem komunikacyjnym). Zadania sieci - wspólne korzystanie z plików i programów - współdzielenie
Sieci komputerowe. Wykład 2: Sieci LAN w technologii Ethernet. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 2: Sieci LAN w technologii Ethernet Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 2 1 / 27 Sieci LAN LAN: Local Area Network sieć
ZiMSK. VLAN, trunk, intervlan-routing 1
ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl VLAN, trunk, intervlan-routing
SEGMENT TCP CZ. II. Suma kontrolna (ang. Checksum) liczona dla danych jak i nagłówka, weryfikowana po stronie odbiorczej
SEGMENT TCP CZ. I Numer portu źródłowego (ang. Source port), przeznaczenia (ang. Destination port) identyfikują aplikacje wysyłającą odbierającą dane, te dwie wielkości wraz adresami IP źródła i przeznaczenia
5. Model komunikujących się procesów, komunikaty
Jędrzej Ułasiewicz str. 1 5. Model komunikujących się procesów, komunikaty Obecnie stosuje się następujące modele przetwarzania: Model procesów i komunikatów Model procesów komunikujących się poprzez pamięć
5R]G]LDï %LEOLRJUDğD Skorowidz
...5 7 7 9 9 14 17 17 20 23 23 25 26 34 36 40 51 51 53 54 54 55 56 57 57 59 62 67 78 83 121 154 172 183 188 195 202 214... Skorowidz.... 4 Podręcznik Kwalifikacja E.13. Projektowanie lokalnych sieci komputerowych
Sieci komputerowe w sterowaniu informacje ogólne, model TCP/IP, protokoły warstwy internetowej i sieciowej
ieci komputerowe w sterowaniu informacje ogólne, model TCP/IP, protokoły warstwy internetowej i sieciowej 1969 ARPANET sieć eksperymentalna oparta na wymianie pakietów danych: - stabilna, - niezawodna,
ORGANIZACJA ZAJĘĆ WSTĘP DO SIECI
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ ORGANIZACJA ZAJĘĆ WSTĘP DO SIECI WSTĘP DO SIECI INTERNET Kraków, dn. 3 października 2016r. PLAN WYKŁADU Organizacja zajęć Modele komunikacji sieciowej Okablowanie
HYPERION-302-3 HYPERION-302-3
HYPERION-302-3 10-portowy przemysłowy przełącznik Gigabit Ethernet 8x 100/1000Mbit/s SFP + 2x 10/100/1000Mbit/s RJ45 + RS232/485 + współpraca z modemem GPRS + interfejs 1-wire + cyfrowe wejście + wyjścia
ARP Address Resolution Protocol (RFC 826)
1 ARP Address Resolution Protocol (RFC 826) aby wysyłać dane tak po sieci lokalnej, jak i pomiędzy różnymi sieciami lokalnymi konieczny jest komplet czterech adresów: adres IP nadawcy i odbiorcy oraz adres
WLAN 2: tryb infrastruktury
WLAN 2: tryb infrastruktury Plan 1. Terminologia 2. Kolizje pakietów w sieciach WLAN - CSMA/CA 3. Bezpieczeństwo - WEP/WPA/WPA2 Terminologia Tryb infrastruktury / tryb ad-hoc Tryb infrastruktury - (lub
Sieci komputerowe. Wykład 2: Sieci LAN w technologii Ethernet. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 2: Sieci LAN w technologii Ethernet Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 2 1 / 21 Sieci LAN LAN: Local Area Network sieć
Spis treści. Dzień 1/2. I PROFINET modułowe rozwiązanie dla systemów automatyki (wersja 1209) II Sieć Ethernet podstawowe informacje (wersja 1209)
Spis treści Dzień 1/2 I PROFINET modułowe rozwiązanie dla systemów automatyki (wersja 1209) I-3 Dlaczego Ethernet w systemach sterowania? I-4 Przemysłowe systemy komunikacyjne bazujące na Ethernet I-5
Architektura komputerów. Układy wejścia-wyjścia komputera
Architektura komputerów Układy wejścia-wyjścia komputera Wspópraca komputera z urządzeniami zewnętrznymi Integracja urządzeń w systemach: sprzętowa - interfejs programowa - protokół sterujący Interfejs
Wykład 2 Transmisja danych i sieci komputerowe. Rodzaje nośników. Piotr Kolanek
Wykład 2 Transmisja danych i sieci komputerowe Rodzaje nośników Piotr Kolanek Najważniejsze technologie Specyfikacja IEEE 802.3 przedstawia m.in.: 10 Base-2 kabel koncentryczny cienki (10Mb/s) 100 Base
Rodzaje, budowa i funkcje urządzeń sieciowych
Rodzaje, budowa i funkcje urządzeń sieciowych Urządzenia sieciowe modemy, karty sieciowe, urządzenia wzmacniające, koncentratory, mosty, przełączniki, punkty dostępowe, routery, bramy sieciowe, bramki
TCP/IP. Warstwa łącza danych. mgr inż. Krzysztof Szałajko
TCP/IP Warstwa łącza danych mgr inż. Krzysztof Szałajko Modele odniesienia 7 Aplikacji 6 Prezentacji 5 Sesji 4 Transportowa 3 Sieciowa 2 Łącza danych 1 Fizyczna Aplikacji Transportowa Internetowa Dostępu
Którą normę stosuje się dla okablowania strukturalnego w sieciach komputerowych?
Zadanie 1. Rysunek przedstawia topologię A. magistrali. B. pierścienia. C. pełnej siatki. D. rozszerzonej gwiazdy. Zadanie 2. W architekturze sieci lokalnych typu klient serwer A. żaden z komputerów nie
SIECI KOMPUTEROWE. Podstawowe wiadomości
SIECI KOMPUTEROWE Podstawowe wiadomości Co to jest sieć komputerowa? Sieć komputerowa jest to zespół urządzeń przetwarzających dane, które mogą wymieniać między sobą informacje za pośrednictwem mediów
Rywalizacja w sieci cd. Protokoły komunikacyjne. Model ISO. Protokoły komunikacyjne (cd.) Struktura komunikatu. Przesyłanie między warstwami
Struktury sieciowe Struktury sieciowe Podstawy Topologia Typy sieci Komunikacja Protokoły komunikacyjne Podstawy Topologia Typy sieci Komunikacja Protokoły komunikacyjne 15.1 15.2 System rozproszony Motywacja
ETHERNET. mgr inż. Krzysztof Szałajko
ETHERNET mgr inż. Krzysztof Szałajko Ethernet - definicja Rodzina technologii wykorzystywanych w sieciach: Specyfikacja mediów transmisyjnych Specyfikacja przesyłanych sygnałów Format ramek Protokoły 2
Podstawy sieci komputerowych
mariusz@math.uwb.edu.pl http://math.uwb.edu.pl/~mariusz Uniwersytet w Białymstoku 2018/2019 Sposoby transmisji danych Simpleks (simplex) Półdupleks (half-duplex) Dupleks, pełny dupleks (full-duplex) Simpleks
Dlaczego Meru Networks architektura jednokanałowa Architektura jednokanałowa:
Dlaczego architektura jednokanałowa Architektura jednokanałowa: Brak konieczności planowania kanałów i poziomów mocy na poszczególnych AP Zarządzanie interferencjami wewnątrzkanałowymi, brak zakłóceń od
IEEE 2 19" " 10/100/ W 140 W
8-Portowy Zarządzalny Przełącznik Gigabit Ethernet PoE+ z 2 Slotami SFP Zgodny z IEEE 802.3at/af Power over Ethernet (PoE+/PoE), 140W, Endspan, Desktop, Rackowy 19" Part No.: 561167 Features: Umożliwia
ZiMSK. Charakterystyka urządzeń sieciowych: Switch, Router, Firewall (v.2012) 1
ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl Charakterystyka urządzeń sieciowych:
Podstawy Transmisji Danych. Wykład IV. Protokół IPV4. Sieci WAN to połączenia pomiędzy sieciami LAN
Podstawy Transmisji Danych Wykład IV Protokół IPV4 Sieci WAN to połączenia pomiędzy sieciami LAN 1 IPv4/IPv6 TCP (Transmission Control Protocol) IP (Internet Protocol) ICMP (Internet Control Message Protocol)
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ PROTOKOŁY TCP I UDP WSTĘP DO SIECI INTERNET Kraków, dn. 12 grudnia 2016 r. PLAN TCP: cechy protokołu schemat nagłówka znane numery portów UDP: cechy protokołu
router wielu sieci pakietów
Dzisiejsze sieci komputerowe wywierają ogromny wpływ na naszą codzienność, zmieniając to, jak żyjemy, pracujemy i spędzamy wolny czas. Sieci mają wiele rozmaitych zastosowań, wśród których można wymienić
Instrukcja Obsługi 10/100 Mbps PCI Fast Ethernet Adapter Spis treści 1 ZAWARTOŚĆ OPAKOWANIA...3 2 WŁASNOŚCI URZĄDZENIA...3 2.1 Właściwości sprzętowe...3 2.2 Port RJ-45...3 2.3 Diody LED...3 2.4 Gniazdo
Adresy w sieciach komputerowych
Adresy w sieciach komputerowych 1. Siedmio warstwowy model ISO-OSI (ang. Open System Interconnection Reference Model) 7. Warstwa aplikacji 6. Warstwa prezentacji 5. Warstwa sesji 4. Warstwa transportowa
Sieci komputerowe Zasada działania i konfigurowanie przełączników
Sieci komputerowe Zasada działania i konfigurowanie przełączników dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Domena kolizyjna, zadania
Akademickie Centrum Informatyki PS. Wydział Informatyki PS
kademickie Centrum Informatyki PS Wydział Informatyki PS Wydział Informatyki Sieci komputerowe i Telekomunikacyjne Transmisja w protokole IP Krzysztof ogusławski tel. 4 333 950 kbogu@man.szczecin.pl 1.
Sieci komputerowe. Wykład 1: Podstawowe pojęcia i modele. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 1: Podstawowe pojęcia i modele Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 1 1 / 14 Komunikacja Komunikacja Komunikacja = proces
Moduł Ethernetowy. instrukcja obsługi. Spis treści
Moduł Ethernetowy instrukcja obsługi Spis treści 1. Podstawowe informacje...2 2. Konfiguracja modułu...4 3. Podłączenie do sieci RS-485 i LAN/WAN...9 4. Przywracanie ustawień fabrycznych...11 www.el-piast.com
SIEĆ ETHERNET INDUSTRIAL
Monika Rybczak Akademia Morska w Gdyni SIEĆ ETHERNET INDUSTRIAL W pierwszej części artykułu przedstawiono krótki opis sieci Ethernet, następnie sieci Ethernet Industrial. W części drugiej zaprezentowano
W routerach Vigor interfejs LAN jest wyeksponowany w postaci czterech równorzędnych portów Ethernet:
W routerach Vigor interfejs LAN jest wyeksponowany w postaci czterech równorzędnych portów Ethernet: Porty te tworzą przełącznik (ang. switch), tzn. posiadają zdolność wzajemnej komunikacji z prędkością
Systemy operacyjne System sieciowy UNIX-a
Systemy operacyjne 29.10.2010 System sieciowy UNIX-a System sieciowy UNIX-a używa potoku umożliwiającego przepływ strumienia bajtów między dwoma procesami i przepływ gniazdek (sockets) dla procesów powiązanych
Wprowadzenie do sieci komputerowych
Sieci komputerowe i bazy danych Wykład 2. Wprowadzenie do sieci komputerowych 1 Idea sieci komputerowej Sieć, czyli zbiór autonomicznych komputerów połączonych wzajemnie podsiecią komunikacyjną; umożliwia
Kurs PROFINET S7. Spis treści. Dzień 1/2. I PROFINET modułowe rozwiązanie dla systemów automatyki (wersja 1506)
Spis treści Dzień 1/2 I PROFINET modułowe rozwiązanie dla systemów automatyki (wersja 1506) I-3 Rozwój systemu PROFINET I-4 PROFINET jako rozwiązanie modułowe I-5 Ethernet podstawa dla systemu PROFINET
Stos protokołów TCP/IP (ang. Transmission Control Protocol/Internet Protocol)
Stos protokołów TCP/IP (ang. Transmission Control Protocol/Internet Protocol) W latach 1973-78 Agencja DARPA i Stanford University opracowały dwa wzajemnie uzupełniające się protokoły: połączeniowy TCP
SIECI KOMPUTEROWE I TECHNOLOGIE INTERNETOWE
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania SIECI KOMPUTEROWE I TECHNOLOGIE INTERNETOWE Temat: Kable przyłączeniowe oraz podstawowe metody testowania
Sieci komputerowe. Zajęcia 1 c.d. Warstwa fizyczna, Ethernet
Sieci komputerowe Zajęcia 1 c.d. Warstwa fizyczna, Ethernet Rola warstwy fizycznej Określa rodzaj medium transmisyjnego (np. światłowód lub skrętka) Określa sposób kodowania bitów (np. zakres napięć odpowiadających
Projektowanie sieci metodą Top-Down
Projektowanie sieci metodą Top-Down http://www.topdownbook.com Wydanie w języku polskim PWN 2007 Copyright 2004 Cisco Press & Priscilla Oppenheimer W tej części Część I: Analiza potrzeb i celów odbiorcy
Wykład 4. Interfejsy USB, FireWire
Wykład 4 Interfejsy USB, FireWire Interfejs USB Interfejs USB Interfejs USB Interfejs USB Interfejs USB Interfejs USB Interfejs USB Interfejs USB Interfejs USB Interfejs USB Interfejs USB Interfejs USB