Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str.1/2 ĆWICZENIE 10
|
|
- Stanisław Sowa
- 9 lat temu
- Przeglądów:
Transkrypt
1 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str.1/ ĆWICZENIE 10 UKŁADY ELEKTRYCZNEGO STEROWANIA NA PRZYKŁADZIE STEROWANIA SEKWENCYJNO-CZASOWEGO NAPĘDU PRASY 1. CEL ĆWICZENIA: zapoznanie się z podstawowymi układami elektrycznego sterowania silnikiem trójfazowym asynchronicznym służącym do napędu większości obrabiarek i urządzeń Budowa i zasada działania silników asynchronicznych trójfazowych Silniki asynchroniczne są najbardziej rozpowszechnionymi maszynami elektrycznymi, zarówno z uwagi na ich taniość, jak i prostotę budowy i obsługi oraz łatwość konserwacji. Silnik asynchroniczny składa się z dwóch podstawowych części: nieruchomego stojana i obracającego się wirnika. Zarówno stojan, jak i wirnik mają obwody magnetyczne stalowe, wykonane z cienkich odizolowanych blach elektrotechnicznych; ma to na celu zmniejszenie strat od prądów wirowych. Na wewnętrznej powierzchni stojana wycięte są żłobki, w których umieszczone jest uzwojenie trójfazowe. Uzwojenie stojana w zależności od napięcia sieci zasilającej oraz znamionowego napięcia silnika może być łączone w gwiazdę lub trójkąt (rys.9.1). Rys. 1-1 Sposoby łączenia uzwojenia stojana: a) w gwiazdę; b) w trójkąt U, V, W - początki uzwojeń; x, y, z - końce uzwojeń
2 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str./ W przypadku, gdy napięcie fazowe stojana jest równe napięciu międzyprzewodowemu sieci zasilającej, wówczas silnik powinien być połączony w trójkąt, natomiast silnik łączymy w gwiazdę, gdy napięcie międzyprzewodowe sieci jest 3 razy większe niż napięcie fazowe silnika. W zależności od rodzaju uzwojenia wirnika rozróżnia się silniki asynchroniczne zwarte (klatkowe) i pierścieniowe. Silniki asynchroniczne do sieci mają przyłączone uzwojenie stojana. Uzwojenie wirnika nie ma połączenia elektrycznego z siecią; energia przenoszona jest do tego uzwojenia na drodze indukcji elektromagnetycznej. Po włączeniu uzwojenia stojana do sieci trójfazowej popłynie w nim prąd, który wytworzy w szczelinie maszyny wirujące pole magnetyczne. Pole to przecinając pręty uzwojenia wirnika indukuje w nich siłę elektromotoryczną. Jeżeli obwód uzwojenia wirnika jest zamknięty, to popłynie w nim prąd, który współdziałając z polem magnetycznym stojana wytworzy siłę działającą na wirnik w kierunku zgodnym z kierunkiem ruchu pola wirującego. Aby więc powstał moment napędowy musi zachodzić przecinanie prętów uzwojenia wirnika przez linie sił pola magnetycznego wirującego, czyli prędkość wirowania wirnika (n) musi być mniejsza od prędkości pola wirującego (czyli od prędkości synchronicznej n 1 ). Względną różnicę tych prędkości nazywamy poślizgiem (s). n n s% = 1 100% n 1 Poślizg silnika przy obciążeniu znamionowym wynosi kilka procentów (1,0%...10%) i jest tym mniejszy, im większa jest moc znamionowa. Przy przeciążeniu poślizg wynosi kilkanaście procentów, a podczas biegu jałowego silnika, ułamek procenta. W pierwszej chwili rozruchu, gdy wirnik jest jeszcze nieruchomy, poślizg jest równy 100% (s=1). Gdy wirnik wiruje z pewną prędkością n, wówczas pole wirujące wiruje względem niego z prędkością n 0 =n 1 -n; częstotliwość prądu w wirniku jest zatem równa: np 0 snp 1 f = = = sf gdzie: p - liczba par biegunów uzwojenia stojana, f 1 - częstotliwość prądu w stojanie. W przybliżeniu stała wartość obrotów wynikająca z częstotliwości sieci zasilającej i ilości par biegunów wyraża się wzorem: 60 f n = ( 1 s) p gdzie: n - ilość obrotów na minutę, f - częstotliwość sieci zasilającej, p - ilość par biegunów, s - wartość poślizgu magnetycznego (zależnie od obciążenia silnika), Siła elektromotoryczna indukowana w uzwojeniu nieruchomego wirnika wyraża się następująco: E = 4, 44kz f1φ m gdzie: Φ m - strumień magnetyczny, 1
3 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str.3/3 k - współczynnik uzwojenia wirnika, z - liczba zwojów uzwojenia wirnika. Siła elektromotoryczna indukowana w uzwojeniu wirnika pracującego z poślizgiem s określona jest następująco: E s = se Prąd płynący w uzwojeniu wirnika pracującego z poślizgiem s określa zależność: gdzie: R - rezystancja uzwojenia wirnika, X - reaktancja uzwojenia wirnika. I = R s E + X Moc, jaką otrzymuje wirnik silnika asynchronicznego, przekazywana jest ze stojana za pośrednictwem pola wirującego. Moc pola wirującego P w jest mniejsza od mocy pobieranej przez silnik z sieci P 1 o straty w uzwojeniu stojana P u1 oraz o straty w rdzeniu stojana P r1 : P = P P P w 1 u1 r1 Moc pola wirującego zamienia się głównie na moc mechaniczną P m, jednak część tej mocy tracona jest w uzwojeniach wirnika P u oraz w rdzeniu wirnika P r. Możemy więc napisać: P = P P P m w u r W czasie normalnej pracy silnika straty w rdzeniu wirnika są bardzo małe ze względu na małą częstotliwość prądu w wirniku. Można przyjąć: Pm = Pw Pu Moc mechaniczna oddawana na wale silnika P jest mniejsza od mocy mechanicznej P m rozwijanej przez wirnik o straty mechaniczne P m, na które składają się straty tarcia w łożyskach oraz straty wentylacyjne: P = Pm P Sprawność silnika asynchronicznego określa wyrażenie: m η= P P 1 100% Sprawność silników asynchronicznych przy obciążeniu znamionowym najczęściej wynosi ( )%. Zarówno sprawność, jak i współczynnik mocy silników obciążonych znamionowo są tym większe, im większa jest ich moc.
4 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str.4/4 Moment elektromagnetyczny silnika asynchronicznego powstaje - jak wiemy - w wyniku dynamicznego oddziaływania wytwarzanego przez stojan pola wirującego na prądy indukowane w uzwojeniach wirnika. Zależność momentu od poślizgu przedstawiono na rysunku poniżej: Rys. 1- Wykres zależności M=f(s) Moment maksymalny, zwany jest także momentem utyku i występuje przy poślizgu utyku. Poślizg utyku wynosi (10...5)%, a niekiedy nawet do 30%. Jeżeli moment oporowy na wale silnika przekroczy wartość momentu maksymalnego, to silnik przechodzi do obszaru pracy niestatecznej i zatrzymuje się (utyka). Momentem rozruchowym M R nazywamy moment jaki działa na wirnik w chwili gdy n=0 (s=1). 1.. Rozruch silników asynchronicznych zwartych Rozruch silnika obejmuje okres przejściowy od postoju do stanu pracy ustalonej. Rozruch jest możliwy tylko wtedy, gdy moment elektromagnetyczny silnika przewyższa moment hamujący na wale czyli występuje tzw. moment dynamiczny. Przy określonym momencie bezwładności układu silnik-maszyna robocza, wartość momentu dynamicznego decyduje o czasie trwania rozruchu. Praca silnika asynchronicznego przy nieruchomym wirniku ze zwartym jego uzwojeniem odpowiada stanowi zwarcia silnika. Pobierany jest wówczas duży prąd rozruchowy, który jest szkodliwy, zarówno ze względu na sam silnik (grzanie uzwojeń), jak i na sieć zasilającą (duże spadki napięć). Dąży się do zmniejszenia prądu rozruchowego, przy czym pożądane jest równocześnie powiększenie momentu rozruchowego silnika.
5 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str.5/5 Zgodnie z wymaganiami normy urządzenia rozruchowe powinny być tak dobrane, aby prąd rozruchu silników o mocy do 5kW nie przekraczał wartości,5 I zn, a dla silników o mocy ( )kW - wartości,i zn lub prąd rozruchu nie przekraczał wartości 60A przy napięciu 380V Rozruch bezpośredni Bezpośrednie przyłączenie do sieci silnika asynchronicznego zwartego związane jest z przepływem znacznego prądu rozruchowego o wartości I R =(4...8)I zn. Z tego względu stosowanie rozruchu bezpośredniego w sieci miejskiej niskiego napięcia, przepisy ograniczają do silników o mocy do kilku kilowatów (najczęściej 5kW) Rozruch za pomocą przełącznika gwiazda-trójkąt Przełącznik gwiazda-trójkąt stosowany jest w celu zmniejszenia prądu pobieranego z sieci w chwili rozruchu, przez zmniejszenie napięcia na zaciskach uzwojenia stojana. W pierwszej chwili uruchamiania, uzwojenie stojana połączone jest w gwiazdę, następnie przełączamy je w trójkąt. Rys. 1-3 Układ połączeń silnika z przełącznikiem gwiazda-trójkąt. Jeżeli silnik zasilany jest napięciem, międzyprzewodowym U, to przy połączeniu w gwiazdę, U napięcie fazowe wynosi U f =, a przy połączeniu w trójkąt U f = U, zatem U f = 3U f. Prąd 3 rozruchu przy połączeniu w gwiazdę wynosi U f I R = If = = ZfR 3ZfR gdzie: Z fr - impedancja jednej fazy stojana w chwili rozruchu. Przyjmując, że wartość impedancji Z fr jest stała, prąd rozruchu przy połączeniu w trójkąt wyniesie: U U f I R = 3If = 3 = ZfR 3 U Z fr
6 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str.6/6 Dzieląc stronami otrzymujemy: I I U Z R fr = = R 3ZfR 3U Z powyższego wynika, że zastosowanie przełącznika gwiazda-trójkąt powoduje 3-krotne zmniejszenie prądu rozruchu. Zależność nie jest zupełnie ścisła, gdyż impedancja Z fr nie zachowuje IR stałej wartości i przy połączeniu w gwiazdę jest ona nieco większa. Tak więc stosunek prądów I wypada na ogół mniejszy od 1 3. Ponieważ moment rozruchowy jest proporcjonalny do kwadratu napięcia (patrz wzór (9.0)), stosunek momentu rozruchowego przy połączeniu w gwiazdę do momentu rozruchowego przy połączeniu w trójkąt wynosi U M U R f 3 1 = = M R U = f U 3 czyli moment rozruchowy również maleje 3-krotnie, co nie jest korzystne. Ten sposób rozruchu stosowany jest wówczas, gdy rozruch odbywa się bez obciążenia lub przy niewielkim obciążeniu. Przełączników gwiazda-trójkąt używa się przy uruchamianiu silników średniej mocy (najczęściej do 15kW) i tylko do silników, których uzwojenie stojana w czasie normalnej pracy powinno być połączone w trójkąt (np. silnik 380/660V w sieci 3x380/0V) Hamowanie silników asynchronicznych zwartych Najczęściej stosowanymi sposobami hamowania silników asynchronicznych zwartych są: hamowanie przeciwprądowe i hamowanie prądem stałym. Niekiedy jest stosowane również hamowanie prądnicowe (nadsynchroniczne) Hamowanie przeciwprądowe Hamowanie to polega na zmianie kierunku obrotów pola wirującego silnika. Zmianę tę dokonujemy przez przełączenie dwóch dowolnych faz uzwojenia stojana. Na rys. 1-4 przedstawiono układ połączeń silnika z hamowaniem przeciwprądem. Zmiana położenia przełącznika P z pozycji 1 na powoduje wyhamowanie silnika. Czas hamowania nie może być zbyt długi, gdyż w przeciwnym razie silnik po wyhamowaniu zacznie obracać się w odwrotnym kierunku. 1 3 R
7 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str.7/7 Rys. 1-4 Układ hamowania silnika przeciwprądem. Po zmianie kierunku pola wirującego poślizg będzie wynosił: n n s = 1 n 1 = n1 + n > 1 n 1 Ponieważ prędkość obrotowa wirnika n jest w przybliżeniu równa n 1, a przy hamowaniu maleje, więc w czasie hamowania poślizg będzie zawarty w granicach: > s > 1. Prąd płynący w okresie hamowania przeciwprądem osiągnie znaczne wartości, większe nawet od prądu rozruchu bezpośredniego. Związane to jest z tym, że w okresie hamowania do silnika posiadającego energię kinetyczną nagromadzoną w wirniku i innych połączonych z nim masach wirujących dostarczona jest również energia pola wirującego. Cała ta energia zamienia się w wirniku na energię cieplną. Czas hamowania silnika jest bardzo krótki i silnik po zatrzymaniu się, może zmienić kierunek wirowania. W praktyce, wykorzystując tego rodzaju hamowanie stosuje się wyłączniki automatyczne (np. odśrodkowe), odłączające silnik od sieci po jego zatrzymaniu. Hamowanie to jest najbardziej skuteczne ze znanych metod hamowania silnika asynchronicznego i bywa stosowane szczególnie tam, gdzie zachodzi niebezpieczeństwo utraty życia lub zdrowia obsługi Hamowanie prądem stałym Hamowanie prądem stałym polega na tym, że po odłączeniu uzwojenia stojana od sieci trójfazowej zostaje ono podłączone do źródła prądu stałego, przy czym fazy stojana mogą być podłączone według jednego z podanych na rys. 5 układów.
8 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str.8/8 Rys.1-5. Sposoby łączenia faz stojana przy hamowaniu prądem stałym Prąd stały dołączony jest do zacisków A i B w stojanie. Powstaje wówczas nieruchome pole magnetyczne, które w obracającym się wirniku indukuje siłę elektromotoryczną proporcjonalną do prędkości obrotowej silnika. W zamkniętym obwodzie wirnika (zwartym lub z rezystancją dodatkową) popłynie prąd, który wytwarza moment hamujący zmniejszający prędkość obrotową do zera. Hamowanie prądem stałym jest mniej skuteczne w porównaniu z hamowaniem przeciwprądem, ale jest ono łagodne i po osiągnięciu prędkości obrotowej równej zeru nie zachodzi zmiana kierunku wirowania. W czasie hamowania, z sieci pobierana jest tylko energia potrzebna do wzbudzenia, zatem znacznie mniejsza jest ilość ciepła wydzielanego w uzwojeniach silnika Styczniki Ich zasada działania wykorzystuje siły przyciągania zwory przez elektromagnes załączony do sieci 0V lub 380V 50Hz spełniają rolę włączników prądów równocześnie w trzech fazach np. do odbiorników takich jak silniki elektryczne. Podstawowymi cechami styczników są: równoczesność załączania przepływu prądu w trzech fazach sieci 3x380 V 50Hz, sterowanie małą mocą dużych mocy zasilania odbiorników (np. moc sygnału sterującego stycznik MSM 3 wynosi około 10W, podczas gdy moc załączona wynosi 0kW), wykorzystanie styków pomocniczych do blokady elektrycznej i sterowania (np. podtrzymania krótkotrwałych sygnałów 'start') możliwość stosowania przekaźników termicznych w celu zabezpieczenia silnika przed przeciążeniem Wyłączniki krańcowe Stosowane są w układach sterowania w celu tworzenia sygnałów elektrycznych (wyłączania, załączania, przełączania) dzięki odpowiednim układom styków połączonych dźwigniami ze współpracującymi częściami obrabiarek. Oprócz wyłączników krańcowych stosuje się do sterowania przyciski ręczne załączające 'start' i wyłączające 'stop' Przekaźniki czasowe Służą do załączania lub wyłączania sygnałów elektrycznych po określonym upływie czasu od otrzymania sygnału wejściowego. Zasada działania opiera się najczęściej na odmierzaniu czasu
9 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str.9/9 ilością obrotów silniczka elektrycznego napędzającego styki elektryczne poprzez przekładnię mechaniczną lub na wykorzystaniu układów elektronicznych odmierzających czas ładowania do odpowiedniego napięcia kondensatora przez rezystor o nastawianej wartości rezystancji. Ponadto do sygnalizacji załączania poszczególnych układów stosuje się różnego koloru lampki, których żarówki przyłączone są do odpowiednich obwodów elektrycznych.. LITERATURA 1. J.Kostro: Elementy, urządzenia i układy automatyki, WSZP, Warszawa Antoni M. Plamitzer: Maszyny elektryczne, WNT, Warszawa 1986.
10 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str.10/10 3 PRZEBIEG ĆWICZENIA Student wykonuje wybrane punkty ćwiczenia zgodnie z zaleceniami prowadzącego. 3.l. Układ z możliwością zmiany kierunku obrotów silnika Połączyć układ elektryczny służący do ręcznego sterowania silnika asynchronicznego wykorzystując do tego styczniki elektryczne 'S1' i 'S' oraz przyciski 'start' i 'stop'. Pełen układ elektryczny pokazano na rys l. Grubymi liniami oznaczono główne doprowadzenia prądu do silnika z zacisków UVW, a cienkimi liniami - połączenie obwodów sterujących. Stosując dwa styczniki do zmiany kolejności doprowadzania faz do silnika, można zapewnić wirowanie pola magnetycznego w dwóch kierunkach, a tym samym spowodować załączenie obrotów silnika w dwóch kierunkach. Na rys. przedstawiono uproszczony schemat układu sterowania silnika za pomocą dwóch styczników przy wykorzystaniu styków pomocniczych 'SpS1z' i 'SpSz' dla samoczynnego podtrzymania sygnału załączania. Po wykonaniu połączeń układu przeprowadzić próbę działania oraz ustalić dlaczego w układzie tym może nastąpić zwarcie międzyfazowe. 3.. Układ z możliwością zmiany kierunku obrotów silnika z blokadą zabezpieczającą Dodatkową blokadę elektryczną uniemożliwiającą załączenie dwóch styczników jednocześnie realizuje się łącząc w szereg z cewką stycznika Cs1 styki pomocnicze 'SpSr' stycznika, a w drugim obwodzie w szereg z cewką 'Cs' styki 'SpS1r', co przedstawiono na rys. 3. Po wykonaniu połączeń sprawdzić działanie blokady Układ z możliwością zatrzymania w zadanym położeniu W celu dalszej automatyzacji układu napędu prasy należy zastosować wyłącznik krańcowy 'Wkr1' powodujący wyłączenie dopływu prądu zasilającego silnik w chwili osiągnięcia przez półkę prasy zadanego górnego położenia. Połączenie wykonać wg układu zamieszczonego na rys. 4. Porównać dokładność wyłączenia ręcznego i automatycznego.
11 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 10 str.11/ Układ z ręcznym hamowaniem przeciwprądem Po ustaleniu przyczyn powodujących dalszy ruch półki prasy pomimo wyłączenia dopływu prądu zasilającego silnik, przeprowadzić próby hamowania przeciwprądem przez krótkotrwałe ręczne załączanie wirowania pola w silniku w przeciwnym kierunku Układ z automatycznym hamowaniem przeciwprądem Podłączyć do układu sterowania silnika przekaźnik czasowy 'Pcz1' (rys. 5) w celu automatyzacji procesu hamowania. Eksperymentalnie ustalić czas hamowania zapewniający optymalne warunki. Przy zbyt krótkim czasie nie nastąpi całkowite wyhamowanie, a przy zbyt długim czasie silnik zacznie obracać się w przeciwnym kierunku Układ z zadanym czasem prasowania Przeprowadzając dalszą automatyzację procesu prasowania zastosować drugi przekaźnik czasowy Pcz dla ustalenia czasu prasowania (rys. 6) (czasu położenia półki prasy w górnej pozycji) oraz wyłącznik krańcowy 'Wkr' dla wyłączenia półki w dolnej pozycji Układ pełnej automatyzacji prasy Rozwijając układ w celu pełnej automatyzacji, zastosować przekaźnik czasowy 'Pcz3' dla odmierzenia czasu położenia półki w dolnej pozycji. Po upływie określonego czasu nastąpi automatyczne załączenie napędu podnoszenia półki prasy (rys. 7).
12
13
14
15
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 5. Analiza pracy oraz zasada działania silników asynchronicznych
ĆWCZENE 5 Analiza pracy oraz zasada działania silników asynchronicznych 1. CEL ĆWCZENA Celem ćwiczenia jest zapoznanie się z podstawowymi układami elektrycznego sterowania silnikiem trójfazowym asynchronicznym
Wykład 2 Silniki indukcyjne asynchroniczne
Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa
SILNIK INDUKCYJNY KLATKOWY
SILNIK INDUKCYJNY KLATKOWY 1. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana
Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.
Silniki indukcyjne Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki pierścieniowe to takie silniki indukcyjne, w których
PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
PRĄDNICE I SILNIKI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prądnice i silniki (tzw. maszyny wirujące) W każdej maszynie można wyróżnić: - magneśnicę
Maszyna indukcyjna jest prądnicą, jeżeli prędkość wirnika jest większa od prędkości synchronicznej, czyli n > n 1 (s < 0).
Temat: Wielkości charakteryzujące pracę silnika indukcyjnego. 1. Praca silnikowa. Maszyna indukcyjna jest silnikiem przy prędkościach 0 < n < n 1, co odpowiada zakresowi poślizgów 1 > s > 0. Moc pobierana
SILNIK INDUKCYJNY KLATKOWY
SILNIK INDUKCYJNY KLATKOWY. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana
Opracował: mgr inż. Marcin Wieczorek
Opracował: mgr inż. Marcin Wieczorek Jeżeli moment napędowy M (elektromagnetyczny) silnika będzie większy od momentu obciążenia M obc o moment strat jałowych M 0 czyli: wirnik będzie wirował z prędkością
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Pracownia Maszyn Elektrycznych Instrukcja Laboratoryjna: Układy rozruchowe silników 3-fazowych. Opracował: mgr inż.
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Instytut Elektrotechniki i Automatyki Okrętowej Część 8 Maszyny asynchroniczne indukcyjne prądu zmiennego Maszyny asynchroniczne
Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Maszyny elektryczne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Podział maszyn elektrycznych Transformatory - energia prądu przemiennego jest zamieniana w
BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5
BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie
Na podstawie uproszczonego schematu zastępczego silnika w stanie zwarcia (s = 1) określamy:
Temat: Urządzenia rozruchowe i regulacyjne. I. Rozruch silników indukcyjnych. Rozruchem nazywamy taki stan pracy od chwili załączenia napięcia do osiągnięcia przez maszynę ustalonej prędkości określonej
Silnik indukcyjny - historia
Silnik indukcyjny - historia Galileo Ferraris (1847-1897) - w roku 1885 przedstawił konstrukcję silnika indukcyjnego. Nicola Tesla (1856-1943) - podobną konstrukcję silnika przedstawił w roku 1886. Oba
9 Rozruch i hamowanie silników asynchronicznych trójfazowych
Rozruch i hamowanie silników asynchronicznych trójfazowych 9 Rozruch i hamowanie silników asynchronicznych trójfazowych Cel ćwiczenia Celem ćwiczenia jest poznanie najczęściej stosowanych metod rozruchu
Ćwiczenie: "Silnik indukcyjny"
Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
Silniki synchroniczne
Silniki synchroniczne Silniki synchroniczne są maszynami synchronicznymi i są wykonywane jako maszyny z biegunami jawnymi, czyli występują w nich tylko moment synchroniczny, a także moment reluktancyjny.
Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.
Maszyny elektryczne Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział maszyn elektrycznych Transformatory - energia prądu przemiennego jest zamieniana w energię
Wykład 1. Serwonapęd - układ, którego zadaniem jest pozycjonowanie osi.
Serwonapędy w automatyce i robotyce Wykład 1 iotr Sauer Katedra Sterowania i Inżynierii Systemów Wprowadzenie Serwonapęd - układ, którego zadaniem jest pozycjonowanie osi. roces pozycjonowania osi - sposób
Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny.
Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny. 1. Silnik komutatorowy jednofazowy szeregowy (silniki uniwersalne). silniki komutatorowe jednofazowe szeregowe maja budowę
Silniki prądu przemiennego
Silniki prądu przemiennego Podział maszyn prądu przemiennego Asynchroniczne indukcyjne komutatorowe jedno- i wielofazowe synchroniczne ze wzbudzeniem reluktancyjne histerezowe Silniki indukcyjne uzwojenie
BADANIE STYCZNIKOWO- PRZEKAŹNIKOWYCH UKŁADÓW STEROWANIA
BADANIE STYCZNIKOWO- PRZEKAŹNIKOWYCH UKŁADÓW STEROWANIA Strona 1/7 BADANIE STYCZNIKOWO- PRZEKAŹNIKOWYCH UKŁADÓW STEROWANIA 1. Wiadomości wstępne Stycznikowo-przekaźnikowe uklady sterowania znajdują zastosowanie
str. 1 Temat: Sterowanie stycznikami za pomocą przycisków.
Temat: Sterowanie stycznikami za pomocą przycisków. Na rys. 7.17 przedstawiono układ sterowania silnika o rozruchu bezpośrednim za pomocą stycznika. Naciśnięcie przycisku Z powoduje podanie napięcia na
w10 Silnik AC y elektrotechniki odstaw P
40 Wirujące pole magnetyczne Moment synchroniczny Moment asynchroniczny Charakterystyka silnika synchronicznego Charakterystyka silnika asynchronicznego Silnik klatkowy Silnik indukcyjny jednofazowy Moment
Charakterystyka rozruchowa silnika repulsyjnego
Silnik repulsyjny Schemat połączeń silnika repulsyjnego Silnik tego typu budowany jest na małe moce i używany niekiedy tam, gdzie zachodzi potrzeba regulacji prędkości. Układ połączeń silnika repulsyjnego
Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO
Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1 Źródła energii elektrycznej prądu przemiennego: 1. prądnice synchroniczne 2. prądnice asynchroniczne Surowce energetyczne: węgiel kamienny i brunatny
Rozwój sterowania prędkością silnika indukcyjnego trójfazowego
Rozwój sterowania prędkością silnika indukcyjnego trójfazowego 50Hz Maszyna robocza Rotor 1. Prawie stała prędkość automatyka Załącz- Wyłącz metod a prymitywna w pierwszym etapie -mechanizacja AC silnik
Badanie trójfazowego silnika indukcyjnego pierścieniowego
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Napędów Elektrycznych Ćwiczenie N4 - instrukcja Badanie trójfazowego silnika indukcyjnego pierścieniowego Warszawa 03r.
Wykład 4. Strumień magnetyczny w maszynie synchroniczne magnes trwały, elektromagnes. Magneśnica wirnik z biegunami magnetycznymi. pn 60.
Serwonapędy w automatyce i robotyce Wykład 4 Piotr Sauer Katedra Sterowania i Inżynierii Systemów Silnik synchroniczny - wprowadzenie Maszyna synchroniczna maszyna prądu przemiennego, której wirnik w stanie
Badanie prądnicy synchronicznej
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie prądnicy synchronicznej (E 18) Opracował: Dr inż. Włodzimierz OGULEWICZ
Sposób analizy zjawisk i właściwości ruchowych maszyn synchronicznych zależą od dwóch czynników:
Temat: Analiza pracy i właściwości ruchowych maszyn synchronicznych Sposób analizy zjawisk i właściwości ruchowych maszyn synchronicznych zależą od dwóch czynników: budowy wirnika stanu nasycenia rdzenia
SILNIKI PRĄDU STAŁEGO
SILNIKI PRĄDU STAŁEGO SILNIK ELEKTRYCZNY JEST MASZYNĄ, KTÓRA ZAMIENIA ENERGIĘ ELEKTRYCZNĄ NA ENERGIĘ MECHANICZNĄ BUDOWA I DZIAŁANIE SILNIKA PRĄDU STAŁEGO Moment obrotowy silnika powstaje na skutek oddziaływania
Trójfazowe silniki indukcyjne. 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu:
A3 Trójfazowe silniki indukcyjne Program ćwiczenia. I. Silnik pierścieniowy 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu: a - bez oporów dodatkowych w obwodzie wirnika, b - z oporami
LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego
Ćwiczenie 3 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Urządzenia
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie
Laboratorium Elektromechaniczne Systemy Napędowe BADANIE AUTONOMICZNEGO GENERATORA INDUKCYJNEGO
Laboratorium Elektromechaniczne Systemy Napędowe Ćwiczenie BADANIE AUTONOMICZNEGO GENERATORA INDUKCYJNEGO Instrukcja Opracował: Dr hab. inż. Krzysztof Pieńkowski, prof. PWr Wrocław, listopad 2014 r. Ćwiczenie
BADANIE SILNIKA INDUKCYJNEGO
BADANIE SILNIKA INDUKCYJNEGO Cel ćwiczenia: poznanie budowy, zasady działania, metod rozruchu, źródeł strat mocy i podstawowych charakterystyk silnika indukcyjnego trójfazowego. 4.. Budowa i zasada działania
Badanie napędu z silnikiem bezszczotkowym prądu stałego
Badanie napędu z silnikiem bezszczotkowym prądu stałego Instrukcja do ćwiczenia Celem ćwiczenia jest zapoznanie się z budową, zasadą działania oraz sposobem sterowania 3- pasmowego silnika bezszczotkowego
mgr inŝ. TADEUSZ MAŁECKI MASZYNY ELEKTRYCZNE Kurs ELEKTROMECHANIK stopień pierwszy Zespół Szkół Ogólnokształcących i Zawodowych
mgr inŝ. TADEUSZ MAŁECKI MASZYNY ELEKTRYCZNE Kurs ELEKTROMECHANIK stopień pierwszy Zespół Szkół Ogólnokształcących i Zawodowych Mosina 2001 Od autora Niniejszy skrypt został opracowany na podstawie rozkładu
SILNIKI ASYNCHRONICZNE (INDUKCYJNE) KLATKOWE I PIERŚCIENIOWE
SILNIKI ASYNCHRONICZNE (INDUKCYJNE) KLATKOWE I PIERŚCIENIOWE RODZAJE PÓL MAGNETYCZNYCH Rodzaje pola magnetycznego: 1. Stałe pole magnetyczne (wektor indukcji stały w czasie i przestrzeni) 2. Zmienne pole
Badanie silnika indukcyjnego jednofazowego i transformatora
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M3 - protokół Badanie silnika indukcyjnego jednofazowego i transformatora Data
Badanie trójfazowego silnika indukcyjnego klatkowego
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Napędów Elektrycznych Ćwiczenie N - instrukcja Badanie trójfazowego silnika indukcyjnego klatkowego Warszawa 03r. SPIS
Badanie prądnicy prądu stałego
POLTECHNKA ŚLĄSKA WYDZAŁ NŻYNER ŚRODOWSKA ENERGETYK NSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH LABORATORUM ELEKTRYCZNE Badanie prądnicy prądu stałego (E 18) Opracował: Dr inż. Włodzimierz OGULEWCZ 3 1. Cel
bieguny główne z uzwojeniem wzbudzającym (3), bieguny pomocnicze (komutacyjne) (5), tarcze łożyskowe, trzymadła szczotkowe.
Silnik prądu stałego - budowa Stojan - najczęściej jest magneśnicą wytwarza pole magnetyczne jarzmo (2), bieguny główne z uzwojeniem wzbudzającym (3), bieguny pomocnicze (komutacyjne) (5), tarcze łożyskowe,
Zasilanie silnika indukcyjnego poprzez układ antyrównoległy
XL SESJA STUDENCKICH KÓŁ NAUKOWYCH Zasilanie silnika indukcyjnego poprzez układ antyrównoległy Wykonał: Paweł Pernal IV r. Elektrotechnika Opiekun naukowy: prof. Witold Rams 1 Wstęp. Celem pracy było przeanalizowanie
Rdzeń stojana umieszcza się w kadłubie maszyny, natomiast rdzeń wirnika w maszynach małej mocy bezpośrednio na wale, a w dużych na piaście.
Temat: Typowe uzwojenia maszyn indukcyjnych. Budowa maszyn indukcyjnych Zasadę budowy maszyny indukcyjnej przedstawiono na rys. 6.1. Część nieruchoma stojan ma kształt wydrążonego wewnątrz walca. W wewnętrznej
MASZYNY INDUKCYJNE SPECJALNE
MASZYNY INDUKCYJNE SPECJALNE Maszyny indukcyjne pierścieniowe, dzięki wyprowadzeniu na zewnątrz końców uzwojenia wirnika, możemy wykorzystać jako maszyny specjalne. W momencie potrzeby regulacji przesunięcia
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Wiadomości do tej pory Podstawowe pojęcia Elementy bierne Podstawowe prawa obwodów elektrycznych Moc w układach 1-fazowych Pomiary
Układy rozruchowe gwiazda - trójkąt od 7,5kW do 160kW
UKŁADY GWIAZDA - TRÓJKĄT I REWERSYJNE Układy rozruchowe gwiazda - trójkąt od 7,5kW do 160kW Gotowe układy rozruchowe gwiazda - trójkąt do bezpośredniego montażu Znamionowy prąd AC3 / 400V: od 16A do 300A
TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
TRANSFORMATORY Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Maszyny elektryczne Przemiana energii za pośrednictwem pola magnetycznego i prądu elektrycznego
Przetworniki Elektromaszynowe st. n.st. sem. V (zima) 2016/2017
Kolokwium poprawkowe Wariant A Przetworniki Elektromaszynowe st. n.st. sem. V (zima 016/017 Transormatory Transormator trójazowy ma następujące dane znamionowe: 60 kva 50 Hz HV / LV 15 750 ± x,5% / 400
Jeżeli zwój znajdujący się w polu magnetycznym o indukcji B obracamy z prędkością v, to w jego bokach o długości l indukuje się sem o wartości:
Temat: Podział maszyn prądu stałego i ich zastosowanie. 1. Maszyny prądu stałego mogą mieć zastosowanie jako prądnice i jako silniki. Silniki prądu stałego wykazują dobre właściwości regulacyjne. Umożliwiają
Softstart z hamulcem MCI 25B
MCI 25B softstart z hamulcem stałoprądowym przeznaczony jest to kontroli silników indukcyjnych klatkowych nawet do mocy 15kW. Zarówno czas rozbiegu, moment początkowy jak i moment hamujący jest płynnie
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E19 BADANIE PRĄDNICY
Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne
Opracowała: mgr inż. Katarzyna Łabno Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne Dla klasy 2 technik mechatronik Klasa 2 38 tyg. x 4 godz. = 152 godz. Szczegółowy rozkład materiału:
UKŁAD ROZRUCHU TYPU ETR 1200 DO SILNIKA PIERŚCIENIOWEGO O MOCY 1200 KW. Opis techniczny
TYPU DO SILNIKA PIERŚCIENIOWEGO O MOCY 1200 KW Opis techniczny Gdańsk, maj 2016 Strona: 2/9 KARTA ZMIAN Nr Opis zmiany Data Nazwisko Podpis 1 2 3 4 5 6 7 8 9 10 Strona: 3/9 Spis treści 1. Przeznaczenie
Układy rozruchowe silników indukcyjnych klatkowych
Ćwiczenie 7 Układy rozruchowe silników indukcyjnych klatkowych 7.1. Program ćwiczenia 1. Wyznaczenie charakterystyk prądu rozruchowego silnika dla przypadków: a) rozruchu bezpośredniego, b) rozruchów przy
Oddziaływanie wirnika
Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ
Wykład 2. Tabliczka znamionowa zawiera: Moc znamionową P N, Napięcie znamionowe uzwojenia stojana U 1N, oraz układ
Serwonapędy w automatyce i robotyce Wykład 2 Piotr Sauer Katedra Sterowania i Inżynierii Systemów Silnik indukcyjny 3-fazowy tabliczka znam. Tabliczka znamionowa zawiera: Moc znamionową P, apięcie znamionowe
Ćwiczenie 3 Układy sterowania, rozruchu i pracy silników elektrycznych
Ćwiczenie 3 Układy sterowania, rozruchu i pracy silników elektrycznych 1. Przedmiot opracowania Celem ćwiczenia jest zilustrowanie sposobu sterowania, rozruchu i pracy silników indukcyjnych niskiego napięcia.
Silniki prądu stałego. Wiadomości ogólne
Silniki prądu stałego. Wiadomości ogólne Silniki prądu stałego charakteryzują się dobrymi właściwościami ruchowymi przy czym szczególnie korzystne są: duży zakres regulacji prędkości obrotowej i duży moment
Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi
dr inż. ANDRZEJ DZIKOWSKI Instytut Technik Innowacyjnych EMAG Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi zasilanymi z przekształtników
Laboratorium Elektroniki w Budowie Maszyn
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Instytut Technologii Mechanicznej Laboratorium Elektroniki w Budowie Maszyn LWBM-3 Falownikowy układ napędowy Instrukcja do ćwiczenia Opracował:
Ćwiczenie EA1 Silniki wykonawcze prądu stałego
Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA1 Silniki wykonawcze prądu stałego Program ćwiczenia: A Silnik wykonawczy elektromagnetyczny 1. Zapoznanie się
Silniki prądu stałego z komutacją bezstykową (elektroniczną)
Silniki prądu stałego z komutacją bezstykową (elektroniczną) Silnik bezkomutatorowy z fototranzystorami Schemat układu przekształtnikowego zasilającego trójpasmowy silnik bezszczotkowy Pojedynczy cykl
Przykład ułożenia uzwojeń
Maszyny elektryczne Transformator Przykład ułożenia uzwojeń Transformator idealny - transformator, który spełnia następujące warunki:. Nie występują w nim straty mocy, a mianowicie straty w rdzeniu ( P
Maszyny Elektryczne i Transformatory st. n. st. sem. III (zima) 2018/2019
Kolokwium poprawkowe Wariant A Maszyny Elektryczne i Transormatory st. n. st. sem. III (zima) 018/019 Transormator Transormator trójazowy ma następujące dane znamionowe: S 00 kva 50 Hz HV / LV 15,75 ±x,5%
13. STEROWANIE SILNIKÓW INDUKCYJNYCH STYCZNIKAMI
13. STEROWANIE SILNIKÓW INDUKCYJNYCH STYCZNIKAMI 13.1. Cel i zakres ćwiczenia Celem ćwiczenia jest poznanie budowy i działania styczników, prostych układów sterowania pojedynczych silników lub dwóch silników
ROZRUCH I REGULACJA PRĘDKOŚCI OBROTOWEJ SILNIKA INDUKCYJNEGO PIERŚCIENIOWEGO
Rozruch i regulacja obrotów silnika pierścieniowego 1 z 8 PRACOWNIA ENERGOELEKTRONICZNA w ZST Radom 2006/2007 ROZRUCH I REGULACJA PRĘDKOŚCI OBROTOWEJ SILNIKA INDUKCYJNEGO PIERŚCIENIOWEGO Przed wykonaniem
LABORATORIUM PODSTAWY ELEKTROTECHNIKI
LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk
PRACY SILNIKÓW INDUKCYJNYCH
5. Modelowanie wybranych stanów pracy silników indukcyjnych Fragment monografii autorstwa: Maria Dems, Krzysztof Komęza, Modelowanie statycznych i dynamicznych stanów pracy silników indukcyjnych, Wyd.
MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1. Zbigniew Krzemiński, MMB Drives sp. z o.o.
Zakres modernizacji MODERNIZACJA NAPĘDU ELEKTRYCZNEGO WIRÓWKI DO TWAROGU TYPU DSC/1 Zbigniew Krzemiński, MMB Drives sp. z o.o. Wirówka DSC/1 produkcji NRD zainstalowana w Spółdzielni Mleczarskiej Maćkowy
LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH
-CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Elektroenergetyki Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: STEROWANIE SILNIKÓW INDUKCYJNYCH STYCZNIKAMI Ćwiczenie nr: 6 Laboratorium z przedmiotu:
Data wykonania ćwiczenia... Data oddania sprawozdania
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M - instrukcja Badanie trójfazbwych maszyn indukcyjnych: silnik klatkbwy, silnik
Elektromagnesy prądu stałego cz. 2
Jakub Wierciak Elektromagnesy cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Siła przyciągania elektromagnesu - uproszczenie
Silniki prądu stałego
Silniki prądu stałego Maszyny prądu stałego Silniki zamiana energii elektrycznej na mechaniczną Prądnice zamiana energii mechanicznej na elektryczną Często dane urządzenie może pracować zamiennie. Zenobie
PL B1. PRZEDSIĘBIORSTWO HAK SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Wrocław, PL BUP 20/14. JACEK RADOMSKI, Wrocław, PL
PL 224252 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224252 (13) B1 (21) Numer zgłoszenia: 403166 (51) Int.Cl. B66C 13/08 (2006.01) H02K 7/14 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi
Wydział: EAIiE kierunek: AiR, rok II Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi Grupa laboratoryjna: A Czwartek 13:15 Paweł Górka
5. STANY PRACY NAPĘDU Z MASZYNĄ OBCOWZBUDNĄ PRĄDU STAŁEGO
5. STANY PRACY NAPĘDU Z MASZYNĄ OBCOWZBUDNĄ PRĄDU STAŁEGO 5.1. Program ćwiczenia Badanie charakterystyk mechanicznych maszyny przy zasilaniu stałym napięciem Badanie wpływu rezystancji obwodu twornika
Elektromagnesy prądu stałego cz. 2
Jakub Wierciak Elektromagnesy cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Siła przyciągania elektromagnesu - uproszczenie
1. W zależności od sposobu połączenia uzwojenia wzbudzającego rozróżniamy silniki:
Temat: Silniki prądu stałego i ich właściwości ruchowe. 1. W zależności od sposobu połączenia uzwojenia wzbudzającego rozróżniamy silniki: a) samowzbudne bocznikowe; szeregowe; szeregowo-bocznikowe b)
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński
LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego
Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.
BADANIE SILNIKA SKOKOWEGO
Politechnika Warszawska Instytut Maszyn Elektrycznych Laboratorium Maszyn Elektrycznych Malej Mocy BADANIE SILNIKA SKOKOWEGO Warszawa 00. 1. STANOWISKO I UKŁAD POMIAROWY. W skład stanowiska pomiarowego
Układ kaskadowy silnika indukcyjnego pierścieniowego na stały moment
Ćwiczenie 15 Układ kaskadowy silnika indukcyjnego pierścieniowego na stały moment 15.1. Program ćwiczenia 1. Zapoznanie się z budową i działaniem układu napędowego kaskady zaworowej stałego momentu. 2.
Ćwiczenie 2 Przekaźniki Czasowe
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Automatyzacja Zajęcia laboratoryjne Ćwiczenie 2 Przekaźniki Czasowe Poznań 27 OGÓLNE ZASADY BEZPIECZEŃSTWA PODCZAS WYKONYWANIA ĆWICZEŃ LABORATORYJNYCH
Ćwiczenie: "Silnik prądu stałego"
Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora
E Rys. 2.11. Uproszczony schemat zastępczy turbogeneratora 2.3. Praca samotna Maszyny synchroniczne może pracować jako pojedynczy generator zasilający grupę odbiorników o wypadkowej impedancji Z. Uproszczony
W3 Identyfikacja parametrów maszyny synchronicznej. Program ćwiczenia:
W3 Identyfikacja parametrów maszyny synchronicznej Program ćwiczenia: I. Część pomiarowa 1. Rejestracja przebiegów prądów i napięć generatora synchronicznego przy jego trójfazowym, symetrycznym zwarciu
Hamulce elektromagnetyczne. EMA ELFA Fabryka Aparatury Elektrycznej Sp. z o.o. w Ostrzeszowie
Hamulce elektromagnetyczne EMA ELFA Fabryka Aparatury Elektrycznej Sp. z o.o. w Ostrzeszowie Elektromagnetyczne hamulce i sprzęgła proszkowe Sposób oznaczania zamówienia P Wielkość mechaniczna Odmiana
Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Studenckie Koło Naukowe Maszyn Elektrycznych Magnesik Obliczenia polowe silnika
Ćwiczenie 3 Falownik
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Automatyzacja i Nadzorowanie Maszyn Zajęcia laboratoryjne Ćwiczenie 3 Falownik Poznań 2012 Opracował: mgr inż. Bartosz Minorowicz Zakład Urządzeń
PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL
PL 226485 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 226485 (13) B1 (21) Numer zgłoszenia: 409952 (51) Int.Cl. H02J 3/01 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
- kompensator synchroniczny, to właściwie silnik synchroniczny biegnący jałowo (rys.7.41) i odpowiednio wzbudzony;
Temat: Maszyny synchroniczne specjalne (kompensator synchroniczny, prądnica tachometryczna synchroniczna, silniki reluktancyjne, histerezowe, z magnesami trwałymi. 1. Kompensator synchroniczny. - kompensator
15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH
15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych
W stojanie (zwanym twornikiem) jest umieszczone uzwojenie prądu przemiennego jednofazowego lub znacznie częściej trójfazowe (rys. 7.2).
Temat: Rodzaje maszyn synchronicznych. 1. Co to jest maszyna synchroniczna. Maszyną synchroniczną nazywamy się maszyną prądu przemiennego, której wirnik w stanie ustalonym obraca się z taką samą prędkością,
ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 8 Electrical Engineering 05 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH
transformatora jednofazowego.
Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne