WYTRZYMAŁOŚĆ DIELEKTRYKÓW STAŁYCH
|
|
- Włodzimierz Biernacki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Lech SUBOCZ 1 Grzegorz WALTER 2 WYTRZYMAŁOŚĆ DIELEKTRYKÓW STAŁYCH Wytrzymałość dielektryczna jest niezbędna dla oceny własności i doboru materiałów z punktu widzenia konstrukcyjnego i eksploatacyjnego. Badania wytrzymałości długotrwałej dielektryków stałych wykonuje się w ściśle określonych warunkach odnośnie rodzaju i sposobu przyłożonego napięcia, wykonania próbek, kształtu i układu elektrod oraz warunków otoczenia. 1 WPROWADZENIE Wytrzymałością dielektryczną materiałów elektroizolacyjnych nazywamy graniczne natężenie pola, przy którym dielektryk traci swoje właściwości izolacyjne. W przypadku materiałów izolacyjnych stałych, w odróżnieniu od gazów i cieczy, przebiciu dielektrycznemu, a więc utracie własności izolacyjnych, towarzyszy zawsze zniszczenie dielektryka [1]. Czas do przebicia dielektryka stałego, a właściwie układu izolacyjnego, w skład którego wchodzą materiały elektroizolacyjne stałe, zależy od wartości przyłożonego napięcia. Ogólnie w miarę wzrostu przyłożonego napięcia (naprężenia dla układu zwymiarowanego) czas do przebicia jest coraz krótszy. Rys. 1 przedstawia typową zależność napięcia (naprężenia) przyłożonego do układu izolacyjnego od czasu do przebicia. O takim przebiegu zależności decyduje szereg czynników, ale dla dielektryka stałego o określonej budowie chemicznej i określonych parametrach dielektrycznych decydujące znaczenie (wspólne dla całego przebiegu) ma rozkład naprężenia elektrycznego w każdym z szeregu punktów (objętości) układu z dielektrykiem stałym. Stwierdzenie to natychmiast prowadzi do podstawowego wniosku, że wytrzymałość dielektryczna układu z dielektrykiem stałym zależy w istotny sposób od konstrukcji i technologii wykonania układu. Do pojęcia konstrukcji możemy zaliczyć wewnętrzny rozkład pola (układ elektrod) i rodzaj materiałów współpracujących z dielektrykiem stałym, natomiast pod pojęciem technologii musimy rozumieć nie tylko jakość i technologie wykonania całego układu izolacyjnego (liczba, rozkład i rodzaj defektów wtrącin, szczelin ), ale również w wielu wypadkach, jak np. w przypadku polietylenu, technologię wyprodukowania samego materiału (budowa molekularna, ). 1 Politechnika Szczecińska, Instytut Elektrotechniki, Szczecin, (091) , lecz.subocz@ps.pl 2 Politechnika Szczecińska, al. Piastów 17, Szczecin, (091) , galileo25@o2.pl
2 Podstawowa zależność wytrzymałości dielektrycznej materiałów stałych od technologii wykonania układu powoduje, że określenie tej wytrzymałości oraz zmian w zależności od wpływu innych czynników nie jest łatwe i jednoznaczne. Już przed przystąpieniem do badań i określenia wytrzymałości dielektrycznej musimy sobie zdawać sprawę z dwóch aspektów: istnienia i rodzaju wad. Po pierwsze, samo istnienie wad (defektów) powoduje, że wytrzymałość dielektryczna materiału stałego zależy od wymiarów geometrycznych obiektu (układu), a więc od objętości (czy też powierzchni elektrod lub grubości) dielektryku i po drugie, rodzaj wad może w różnym stopniu na wytrzymałość dielektryczną w zależności od wartości lub czasu przyłożonego napięcia do układu. Dlatego też badania porównawcze prowadzi się dla ustalonego geometrycznie lub statycznie układu dielektryka stałego i to przeważnie nie dla całej charakterystyki (rys.1) napięcia przebicia od czasu do przebicia, ale dla kilku obszarów czasowych charakterystyki oznaczonych umownie na rys. 1 jako obszary: I, II i III. Rys. 1. Zależność napięcia (naprężenia) przyłożonego do układu izolacyjnego z dielektrykiem stałym od czasu do przebicia; I, II, III oznaczają obszary czasowe charakterystyki [2]
3 Obszar I charakteryzuje się największymi wartościami wytrzymałości dielektrycznej (od 100 do 1500 kv/mm) i związany jest z tzw. Wytrzymałością dielektryczną istotną. Wytrzymałością osiąganą w ściśle kontrolowanych badaniach laboratoryjnych, gdzie dąży się głównie do określenia wytrzymałości materiału (istotnej) w zależności od składu chemicznego i właściwości dielektrycznych. Badań dokonuje się na próbkach bardzo cienkich, gdzie np. grubość jest porównywalna z wymiarami kryształów, a wpływ technologii wykonania układu jest eliminowany a drodze statycznej, głównie z wykorzystaniem rozkładu Weibulla. Rozkłady prawdopodobieństwa przebicia w siatce Weibulla są charakteryzowane dwiema wielkościami: współczynnikiem kształtu i współczynnikiem skali. W przypadku badań wytrzymałości dielektrycznej próbek przyjmują one odpowiednio oznaczenia: b dla współczynnika kształtu i E 0 dla współczynnika skali. Wyniki badań z obszaru I mają znaczenie wysoce teoretyczne i leżą w zakresie zainteresowań fizyków. Z punktu widzenia elektryków mogą one stanowić jedynie poziom odniesienia (porównania) dla wartości wykorzystywanych w izolacyjnych układach elektroenergetycznych. Obszar II obejmuje zakres wykorzystywany praktycznie w krótkotrwałych badaniach materiałów i układów elektroizolacyjnych, badaniach umożliwiających wstępną ocenę jakości materiału czy układu izolacyjnego oraz wykazania wpływu głównych czynników ograniczających i zmieniających wytrzymałość dielektryczną. Badania krótkotrwałe odzwierciedlają również narażenia (przepięcie) występujące podczas eksploatacji układów elektroenergetycznych. Układy i materiału elektroizolacyjne badane w tym zakresie, a wiec z w zakresie czasów do przebicia od rzędu mikrosekund do rządu godzin, charakteryzują się wytrzymałością dielektryczną w zakresie od kv/mm. Trzeba zaznaczyć, że próby krótkotrwałe w obszarze II są to próby przeprowadzane najczęściej. Dotyczy to szczególnie prób przy napięciu przemiennym 50 Hz. Z obszarem tym związane są, więc pojęcia wytrzymałości dielektrycznej (elektrycznej) doraźnej, wytrzymałości jedno lub kilkuminutowej i wytrzymałości długotrwałej kilkugodzinnej. Wartości wytrzymałości dielektrycznej uzyskane z badań w obszarze II są najczęściej przytaczane w literaturze ogólnej, encyklopedycznej dotyczącej materiałów dielektrycznych. Obszar III jest natomiast obszarem obejmującym tzw. wytrzymałość długotrwałą (roboczą, eksploatacyjną) dielektryków stałych. Badane, a raczej eksploatowane w tym zakresie czasów (lat) układy dielektryków charakteryzują się wytrzymałością od 1 do kv/mm. Są to wartości znacznie niższe od przytoczonych dla obszarów I i II [2]. Natężenia pola elektrycznego występujące w materiałach izolacyjnych w normalnej pracy urządzeń elektrycznych powinny być znacznie niższe od ich wytrzymałości elektrycznej. Konieczny margines bezpieczeństwa powinien chronić przed przebiciem izolacji i unieruchomieniu urządzeń elektrycznych przy występujących nieraz w urządzeniach elektrycznych przypadkowych, krótkotrwałych wzrostach napięcia ponad wartości znamionowe ( przepięcia ). W urządzeniach niskiego napięcia zapewnienie odpowiedniej wytrzymałości elektrycznej izolacji nie stwarza żadnych problemów, gdyż spełnieni wymagał mechanicznych urządzeń zapewnia z reguły wystarczającą grubość izolacji. Natomiast
4 w urządzeniach wysokiego napięcia problemom wytrzymałości elektrycznej poświęca się bardzo dużo uwagi. Izolacja wysokonapięciowa jest kosztowna i jej użycie powinno być ograniczone do minimum gwarantującego bezawaryjną prace urządzeń. Zasadniczy wpływ na wytrzymałość elektryczną dielektryków stałych ma czas działania napięcia [3]. 2 PRZEDMIOT BADANY Do badań wykorzystano folie polietylenową PE o następujących parametrach: grubość 52,4 µm ± 10%, tg δ = 0,00211, wymiary próbki: 15 cm x 15 cm, napięcie przebicia: 7,36kV 3 METODA BADANIA Przeprowadzone badania wytrzymałości folii izolacyjnej wykonane zostały w kąpieli olejowej z użyciem elektrod o niejednakowych średnicach w układzie prostopadłym. Ułożenie, kształty i wymiary elektrod są ściśle określone przez międzynarodowe normy [4]. 4 WYNIKI BADAŃ W wyniku przeprowadzonych badań, gdzie rozrzut wyników pomiarów nie przekroczył 10%, uzyskano charakterystykę wytrzymałości dielektrycznej folii polietylenowej oraz wyznaczono równanie (1) opisujące wyznaczoną krzywą: t n = CE (1) gdzie: t- czas E - naprężenie C = 8,55753 n = 0,05646
5 8 U [kv] t [s] Rys. 2. Krzywa życia folii U = f (t) 8 U [kv] t [s] Rys.3 Krzywa życia folii (wykres logarytmiczny)
6 5.LITERATURA 1. Flisowski Z. Technika wysokich napięć, WNT, Warszawa, Boryń H., Rynkowski A., Wiśniewski A., Wojtas S., Laboratorium techniki wysokich napięć, Politechnika Gdańska, Gdańsk. 3. Celiński Z., Materiałoznawstwo elektrotechniczne, Oficyna wydawnicza Politechniki Warszawskiej, Warszawa, PN-IEC Metody badania wytrzymałości elektrycznej materiałów elektroizolacyjnych stałych. Badania przy częstotliwości sieciowych, PKN, wrzesień DURABILITY DIELECTRIC SOLID Dielectric durability is indispensable for opinion of property and selection of materials with of view constructional point and exploational. The investigations of durability were executed in closely the definite conditions the kind and way the applied voltage, realization of samples, shape and arrangement of electrodes as well as ambient conditions regarding. The durability depends from intensity and duration the electric majority of materials the discharges superficial previous the breakdown. To cause decrease dielectric durability they can also long-lasting working mechanical stresses, long-lasting vibrations as well as stress and shift due with of expansion different coefficients temperature materials, growth of their fragility, shake and then sogginess. This shows both on necessity of taking into account of these factors in the investigations of dielectric durability the insulates the matter which to possibly the dielectric durability the coefficient of insulating worsening to propriety of material or arrangement.
Paweł Rózga, Marcin Stanek Politechnika Łódzka Instytut Elektroenergetyki
WŁAŚCIWOŚCI DIELEKTRYCZNE SYNTETYCZNYCH I NATURALNYCH ESTRÓW BIODEGRADOWALNYCH DO ZASTOSOWAŃ ELEKTRYCZNYCH ZE SZCZEGÓLNYM UWZGLĘDNIENIEM ICH WYTRZYMAŁOŚCI UDAROWEJ Paweł Rózga, Marcin Stanek Politechnika
Badanie oleju izolacyjnego
POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 7 Badanie oleju izolacyjnego Grupa dziekańska... Data wykonania
Paweł Rózga Politechnika Łódzka, Instytut Elektroenergetyki
Wytrzymałość udarowa izolacji gazowej, ciekłej i stałej - doświadczenia z laboratoryjnych prac eksperymentalnych Paweł Rózga Politechnika Łódzka, Instytut Elektroenergetyki 16.05.2019, Toruń 2 Plan prezentacji
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH
POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ PRACOWNIA MATERIAŁOZNAWSTWA
BADANIE IZOLACJI ODŁĄCZNIKA ŚREDNIEGO NAPIĘCIA
LABORATORIUM APARATÓW I URZĄDZEŃ WYSOKONAPIĘCIOWYCH POLITECHNIKA WARSZAWSKA INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ
Technika wysokich napięć High Voltage Technology
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Wytrzymałość układów uwarstwionych powietrze - dielektryk stały
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 8 Wytrzymałość
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH
POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ PRACOWNIA MATERIAŁOZNAWSTWA
Badanie wytrzymałości powietrza napięciem przemiennym 50 Hz przy różnych układach elektrod
POLITECHNIKA LBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA RZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr Badanie wytrzymałości powietrza napięciem przemiennym 0 Hz przy
Elektroenergetyczne i sygnalizacyjne linie kablowe. Politechnika Gdańska
Adam Rynkowski Politechnika Gdańska Podstawy prowadzenia badań napięciowych odbiorczych linii kablowych 1. Zagadnienia statystyczne oceny Cały proces rozwojowy kabli wysokiego napięcia jest prowadzony
Badanie wytrzymałości powietrza napięciem przemiennym 50 Hz przy różnych układach elektrod
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 0- Lublin, ul. Nadbystrzycka A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja do ćwiczenia
Wybrane kryteria oceny i doboru izolacji elektroenergetycznych kabli górniczych
mgr inż. WINICJUSZ BORON mgr inż. MAREK BOGACZ Instytut Technik Innowacyjnych EMAG Wybrane kryteria oceny i doboru izolacji elektroenergetycznych kabli górniczych W artykule przedstawiono rodzaje izolacji
Technika wysokich napięć : podstawy teoretyczne i laboratorium / Barbara Florkowska, Jakub Furgał. Kraków, Spis treści.
Technika wysokich napięć : podstawy teoretyczne i laboratorium / Barbara Florkowska, Jakub Furgał. Kraków, 2017 Spis treści Wstęp 13 ROZDZIAŁ 1 Laboratorium Wysokich Napięć. Organizacja i zasady bezpiecznej
KIERUNEK STUDIÓW: ELEKTROTECHNIKA NAZWA PRZEDMIOTU: TECHNIKA WYSOKICH NAPIĘĆ. (dzienne: 30h wykład, 30h laboratorium) Semestr: W Ć L P S V 2E 2
KIERUNEK STUDIÓW: ELEKTROTECHNIKA NAZWA PRZEDMIOTU: TECHNIKA WYSOKICH NAPIĘĆ (dzienne: 30h wykład, 30h laboratorium) Semestr: W Ć L P S V 2E 2 Cel zajęć: Celem zajęć jest podanie celowości i specyfiki
Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)
Przedmiot: Technika wysokich napięć Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Kod przedmiotu: E7_D Typ przedmiotu/modułu: obowiązkowy X obieralny Rok: trzeci Semestr: piąty
Badanie wytrzymałości powietrza przy napięciu stałym
POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr Badanie wytrzymałości powietrza przy napięciu stałym Grupa
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU
Laboratorium metrologii
Wydział Inżynierii Mechanicznej i Mechatroniki Instytut Technologii Mechanicznej Laboratorium metrologii Instrukcja do ćwiczeń laboratoryjnych Temat ćwiczenia: Pomiary wymiarów zewnętrznych Opracował:
Badanie wytrzymałości powietrza przy napięciu stałym
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-1 Lublin, ul. Nadbystrzycka A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja do
Badanie wytrzymałości powietrza przy napięciu przemiennym 50 Hz
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja
Materiałoznawstwo elektryczne Electric Materials Science
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 067
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 067 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 15 Data wydania: 04 listopada 2016 r. Nazwa i adres AB 067 INSTYTUT
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
Badanie wyładowań ślizgowych
POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr Badanie wyładowań ślizgowych Grupa dziekańska... Data wykonania
Badanie ograniczników przepięć
POLITECHNIKA LUBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 1 Badanie ograniczników przepięć Grupa dziekańska... Data wykonania
Pomiar wysokich napięć udarowych
POLITECHNIKA LBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA RZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 5 Pomiar wysokich napięć udarowych Grupa dziekańska... Data wykonania
Wytrzymałość udarowa powietrza
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja
Wpływ przegrody izolacyjnej na wytrzymałość dielektryczną powietrza
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN -68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Teoria do ćwiczenia
Pomiar wysokich napięć
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja
STATYCZNA PRÓBA ROZCIĄGANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej
STATYCZNA PRÓBA ROZCIĄGANIA
STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.
Wpływ promieniowania na wybrane właściwości folii biodegradowalnych
WANDA NOWAK, HALINA PODSIADŁO Politechnika Warszawska Wpływ promieniowania na wybrane właściwości folii biodegradowalnych Słowa kluczowe: biodegradacja, kompostowanie, folie celulozowe, właściwości wytrzymałościowe,
Badanie wytrzymałości powietrza przy napięciu przemiennym 50 Hz
POLITECHNIKA LBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA RZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 2 Badanie wytrzymałości powietrza przy napięciu Grupa dziekańska...
NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 85 Electrical Engineering 016 Krzysztof KRÓL* NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU W artykule zaprezentowano
BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI
BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI Opracował: Paweł Urbańczyk Zawiercie, marzec 2012 1 Charakterystyka stali stosowanych w energetyce
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 067
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 067 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 14 Data wydania: 22 września 2015 r. AB 067 Nazwa i adres INSTYTUT
Wpływ grubości preszpanu na tempo penetracji estru syntetycznego w układzie izolacyjnym preszpan-olej mineralny po wymianie cieczy
Przemysław FATYGA, Hubert MORAŃDA Politechnika Poznańska, Instytut Elektroenergetyki doi:10.15199/48.2018.10.25 Wpływ grubości preszpanu na tempo penetracji estru syntetycznego w układzie izolacyjnym preszpan-olej
Wpływ przegrody izolacyjnej na wytrzymałość dielektryczną powietrza
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Protokół
Karta danych materiałowych. DIN EN ISO 527-3/5/100* minimalna wartość DIN obciążenie 10 N, powierzchnia dolna Współczynik tarcia (stal)
Materiał: Zamknięty komórkowy poliuretan Kolor: Fioletowy Sylodyn typoszereg Standardowe wymiary dostawy Grubość:, mm, oznaczenie: Sylodyn NF mm, oznaczenie: Sylodyn NF Rolka:, m szer. m długość Pasy:
Karta danych materiałowych. DIN EN ISO 527-3/5/100* minimalna wartość DIN obciążenie 10 N, powierzchnia dolna Współczynik tarcia (stal)
Materiał: Zamknięty komórkowy poliuretan Kolor: Nieieski Sylodyn typoszereg Standardowe wymiary dostawy Grubość:, mm, oznaczenie: Sylodyn NE mm, oznaczenie: Sylodyn NE Rolka:, m. szer. m długość Pasy:
Metody badań materiałów konstrukcyjnych
Wyznaczanie stałych materiałowych Nr ćwiczenia: 1 Wyznaczyć stałe materiałowe dla zadanych materiałów. Maszyna wytrzymałościowa INSTRON 3367. Stanowisko do badania wytrzymałości na skręcanie. Skalibrować
Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych
Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze
UKŁADY KONDENSATOROWE
UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 94 Electrical Engineering DOI /j
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 94 Electrical Engineering 2018 DOI 10.21008/j.1897-0737.2018.94.0013 Przemysław FATYGA * ODPOWIEDŹ DIELEKTRYCZNA W DZIEDZINIE CZĘSTOTLIWOŚCI UKŁADU
Wytrzymałość układów uwarstwionych powietrze - dielektryk stały
Politechnika Lbelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0- Lblin, l. Nadbystrzycka A www.keitwn.pollb.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrkcja do ćwiczenia
Wyboczenie ściskanego pręta
Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia
Specyfikacja techniczna miejskich stacji dwutransformatorowych 15/0,4 kv (bez transformatorów).
SOM/ST/2005/06 Specyfikacja techniczna miejskich stacji dwutransformatorowych 15/0,4 kv (bez transformatorów). 1. Wymagania ogólne Zamawiane urządzenia elektroenergetyczne muszą podlegać Rozporządzeniu
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Temat ćwiczenia:
Wytrzymałość dielektryczna dielektryków ciekłych
Wytrzymałość dielektryczna dielektryków ciekłych Wiadomości podstawowe W urządzeniach elektrycznych jako dielektryki stosuje się ciecze izolacyjne. Najpospolitszą grupę takich cieczy stanowią oleje mineralne,
INSTRUKCJA DO CWICZENIA NR 5
INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić
Mechanika Doświadczalna Experimental Mechanics. Budowa Maszyn II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr../2 z dnia.... 202r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 20/204 Mechanika
Wytrzymałość udarowa powietrza
POLITECHNIKA LBELSKA WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA RZĄDZEŃ ELEKTRYCZNYCH I TWN LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Ćw. nr 5 Wytrzymałość udarowa powietrza Grupa dziekańska... Data wykonania
Badanie ograniczników przepięć
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-18 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja
Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:
Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego
Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Cel ćwiczenia STATYCZNA PRÓBA ŚCISKANIA autor: dr inż. Marta Kozuń, dr inż. Ludomir Jankowski 1. Zapoznanie się ze sposobem przeprowadzania
Analiza porównawcza dwóch metod wyznaczania wskaźnika wytrzymałości na przebicie kulką dla dzianin
Analiza porównawcza dwóch metod wyznaczania wskaźnika wytrzymałości na przebicie kulką dla dzianin B. Wilbik-Hałgas, E. Ledwoń Instytut Technologii Bezpieczeństwa MORATEX Wprowadzenie Wytrzymałość na działanie
Specyfikacja techniczna miejskich stacji transformatorowych 15/0,4 kv (bez transformatora).
SM/ST/2006/10 Specyfikacja techniczna miejskich stacji transformatorowych 15/0,4 kv (bez transformatora). 1. Wymagania ogólne Zamawiane urządzenia elektroenergetyczne muszą podlegać Ustawie z dnia 30 sierpnia
nr 9/DTS/2016 dla izolatorów stacyjnych i linowych na potrzeby TAURON Dystrybucja S.A. ormy i dokumenty związane oraz wymagania jakościowe
nr 9/DTS/2016 dla izolatorów stacyjnych i linowych na potrzeby TAURON Dystrybucja S.A. ormy i dokumenty związane oraz wymagania jakościowe 1. Normy: [N1] PN-EN 60383-1:2005 Izolatory do linii napowietrznych
Kondensatory. Konstrukcja i właściwości
Kondensatory Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Podstawowe techniczne parametry
Przewód o izolacji wysokonapięciowej elementem urządzenia piorunochronnego
VI Lubuska Konferencja Naukowo-Techniczna i-mitel 2010 Andrzej SOWA 1, Krzysztof WINENIK 2 Politechnika Białostocka, Wydział Elektryczny (1), DEHN Polska (2) Przewód o izolacji wysokonapięciowej elementem
DYNAMIKA WYMIANY OLEJU MINERALNEGO NA ESTER SYNTETYCZNY W IZOLACJI CELULOZOWEJ TRANSFORMATORA
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 90 Electrical Engineering 2017 DOI 10.21008/j.1897 0737.2017.90.0029 Przemysław FATYGA* DYNAMIKA WYMIANY OLEJU MINERALNEGO NA ESTER SYNTETYCZNY W
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 067
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 067 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 17 Data wydania: 13 lipca 2018 r. Nazwa i adres AB 067 INSTYTUT
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Podstawy techniki i technologii Kod przedmiotu: IS01123; IN01123 Ćwiczenie 5 BADANIE WŁASNOŚCI MECHANICZNYCH
Wyładowania elektryczne w estrach biodegradowalnych w układzie z przegrodą izolacyjną
Wyładowania elektryczne w estrach biodegradowalnych w układzie z przegrodą izolacyjną Paweł Rózga, Bartłomiej Pasternak, Marcin Stanek, Artur Klarecki Politechnika Łódzka, Instytut Elektroenergetyki 16.05.2019,
Wytrzymałość dielektryczne powietrza w zależności od ciśnienia
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra rządzeń Elektrycznych i TWN 0-8 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja do
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Temat ćwiczenia:
Badanie kabli wysokiego napięcia
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 Temat ćwiczenia:
KLASYFIKACJI I BUDOWY STATKÓW MORSKICH
PRZEPISY KLASYFIKACJI I BUDOWY STATKÓW MORSKICH ZMIANY NR 3/2012 do CZĘŚCI IX MATERIAŁY I SPAWANIE 2008 GDAŃSK Zmiany Nr 3/2012 do Części IX Materiały i spawanie 2008, Przepisów klasyfikacji i budowy statków
POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH
POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 323
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 323 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 16 Data wydania: 10 marca 2017 r. Nazwa i adres: INSTYTUT ENERGETYKI
6.1. Ograniczniki przepięć niskiego napięcia napowietrzne ZAWARTOŚĆ KATALOGU
6.1. Ograniczniki przepięć niskiego napięcia napowietrzne ZAWARTOŚĆ KATALOGU 6.1.1. KARTA KATALOGOWA ISKIERNIKOWEGO ZAWOROWEGO OGRANICZNIKA PRZEPIĘĆ TYPU Ozi 0,66/2, 6.1.2. KARTA KATALOGOWA IZOLOWANEGO
WYKORZYSTANIE SYSTEMU PD SMART DO PORÓWNANIA WYŁADOWAŃ NIEZUPEŁNYCH W OLEJU MINERALNYM I ESTRZE SYNTETYCZNYM
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Grzegorz MALINOWSKI* WYKORZYSTANIE SYSTEMU PD SMART DO PORÓWNANIA WYŁADOWAŃ NIEZUPEŁNYCH W OLEJU MINERALNYM I ESTRZE
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów
Badanie wyładowań ślizgowych
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-1 Lublin, ul. Nadbystrzycka A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja do
BŁĘDY W POMIARACH BEZPOŚREDNICH
Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii
WNĘTRZOWY OGRANICZNIK PRZEPIĘĆ TYPU PROXAR IIW AC W OSŁONIE SILIKONOWEJ KARTA KATALOGOWA
WNĘTRZOWY OGRANICZNIK PRZEPIĘĆ TYPU PROXAR IIW AC W OSŁONIE SILIKONOWEJ KARTA KATALOGOWA ZASTOSOWANIE Ograniczniki przepięć typu PROXAR-IIW AC w osłonie silikonowej są przeznaczone do ochrony przepięciowej
Załącznik nr 1. Projekty struktur falowodowych
Załącznik nr 1 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Parametry elektryczne kabli średniego napięcia w izolacji XLPE, 6-30 kv
Parametry elektryczne kabli średniego napięcia w izolacji XLPE, 6-30 kv Rezystancja żyły dla temperatury 20 C Żyła miedziana - Cu Ohm/km maksymalna wartość Żyła aluminiowa - Alu Ohm/km 25 0,727 1,20 35
WARUNKI TECHNICZNE WYKONANIA I ODBIORU
TRANSCOM WARUNKI TECHNICZNE WYKONANIA I ODBIORU WTWO-TL/90 Przewody dołączeniowe do szyn TL Zmiana: 0 Ilość stron: Strona: 6 1 SPIS TREŚCI 1. Wstęp... 2 1.1. Przedmiot warunków technicznych... 2 1.2. Określenia...
ETISURGE OGRANICZNIKI PRZEPIĘĆ ŚREDNIEGO NAPIĘCIA W OSŁONIE POLIMEROWEJ OGRANICZNIKI PRZEPIĘĆ ŚREDNIEGO NAPIĘCIA INZP W OSŁONIE POLIMEROWEJ ETISURGE
OGRANICZNIKI PRZEPIĘĆ ŚREDNIEGO NAPIĘCIA INZP W OSŁONIE POLIMEROWEJ 444 OGRANICZNIKI PRZEPIĘĆ ŚREDNIEGO NAPIĘCIA W OSŁONIE POLIMEROWEJ Energia pod kontrolą Ograniczniki przepięć INZP typu rozdzielczego,
PARAMETRY FIZYKO - MECHANICZNE TWORZYW KONSTRUKCYJNYCH
PARAMETRY FIZYKO - MECHANICZNE TWORZYW KONSTRUKCYJNYCH Właściwości ogólne Kolor standardowy Odporność na wpły UV Jednostki - - - - g/cm 3 % - Stan próbki - - - - suchy - suchy natur (biały) 1,14 3 HB /
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
V.2. Materiały elektroizolacyjne
V.2. Materiały elektroizolacyjne 347 ERFLEX Taśmy elektroizolacyjne standardowe typu TO Napięcie przebicia 6 kv Temperatura pracy -5 +80 ºC Taśmy z PCV z klejem kauczukowym. Taśma ogólnego przeznaczenia
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW
INSTYTUT MASZYN I URZĄZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA O ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW TECH OLOGICZ A PRÓBA ZGI A IA Zasada wykonania próby. Próba polega
OGRANICZNIK PRZEPIĘĆ PRĄDU PRZEMIENNEGO TYPU PROXAR-IVN AC W OSŁONIE SILIKONOWEJ DO OCHRONY INSTALACJI ELEKTROENERGETYCZNYCH KARTA KATALOGOWA
OGRANICZNIK PRZEPIĘĆ PRĄDU PRZEMIENNEGO TYPU PROXAR-IVN AC W OSŁONIE SILIKONOWEJ DO OCHRONY INSTALACJI ELEKTROENERGETYCZNYCH KARTA KATALOGOWA ZASTOSOWANIE Ograniczniki przepięć typu PROXAR-IVN AC w osłonie
ĆWICZENIE 15 WYZNACZANIE (K IC )
POLITECHNIKA WROCŁAWSKA Imię i Nazwisko... WYDZIAŁ MECHANICZNY Wydzia ł... Wydziałowy Zakład Wytrzymałości Materiałów Rok... Grupa... Laboratorium Wytrzymałości Materiałów Data ćwiczenia... ĆWICZENIE 15
BADANIA WŁAŚCIWOŚCI MECHANICZNYCH I BADANIA NIENISZCZĄCE
BADANIA WŁAŚCIWOŚCI MECHANICZNYCH I BADANIA NIENISZCZĄCE Temat ćwiczenia: Wpływ kształtu karbu i temperatury na udarność Miejsce ćwiczeń: sala 15 Czas: 4*45 min Prowadzący: dr inż. Julita Dworecka-Wójcik,
ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
L a b o r a t o r i u m ( h a l a 2 0 Z O S )
: BMiZ Studium: stacjonarne I stopnia : : MiBM Rok akad.:201/17 godzin - 15 L a b o r a t o r i u m ( h a l a 2 0 Z O S ) Prowadzący: dr inż. Marek Rybicki pok. 18 WBMiZ, tel. 52 08 e-mail: marek.rybicki@put.poznan.pl
WPŁYW PODWÓJNEJ WARSTWY DIELEKTRYCZNEJ NA POWIERZCHNIACH ELEKTROD NA WYTRZYMAŁOŚĆ ELEKTRYCZNĄ POWIETRZA I SZEŚCIOFLUORKU SIARKI
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Sebastian ZAKRZEWSKI* Władysław OPYDO** WPŁYW PODWÓJNEJ WARSTWY DIELEKTRYCZNEJ NA POWIERZCHNIACH ELEKTROD NA WYTRZYMAŁOŚĆ
PROJEKT I KONSTRUKCJA TRANSFORMATORA TESLI. Paweł Zydroń, Mateusz Krawczyk, Damian Pala. AGH Akademia Górniczo - Hutnicza w Krakowie
PROJEKT I KONSTRUKCJA TRANSFORMATORA TESLI Paweł Zydroń, Mateusz Krawczyk, Damian Pala AGH Akademia Górniczo - Hutnicza w Krakowie 1. WSTĘP W 1891 roku Nikola Tesla opracował nowy rodzaj transformatora,
5. ZUŻYCIE NARZĘDZI SKRAWAJĄCYCH. 5.1 Cel ćwiczenia. 5.2 Wprowadzenie
5. ZUŻYCIE NARZĘDZI SKRAWAJĄCYCH 5.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z formami zużywania się narzędzi skrawających oraz z wpływem warunków obróbki na przebieg zużycia. 5.2 Wprowadzenie
Specyfikacja techniczna aparatury SN dla miejskich stacji transformatorowych.
SM/ST/2007/1 Specyfikacja techniczna aparatury SN dla miejskich stacji transformatorowych. 1. Wymagania ogólne. Zamawiane urządzenia elektroenergetyczne muszą podlegać Ustawie z dnia 30 sierpnia 2002 r.
(12) OPIS PATENTOWY (19) PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 180869 (13) B1 (21) Numer zgłoszenia: 314540 (51) IntCl7 C01B 13/10 Urząd Patentowy (22) Data zgłoszenia: 3 0.05.1996 Rzeczypospolitej Polskiej (54)
BADANIE ODPORNOŚCI NA PRZENIKANIE SUBSTANCJI CHEMICZNYCH PODCZAS DYNAMICZNYCH ODKSZTAŁCEŃ MATERIAŁÓW
Metoda badania odporności na przenikanie ciekłych substancji chemicznych przez materiały barierowe odkształcane w warunkach wymuszonych zmian dynamicznych BADANIE ODPORNOŚCI NA PRZENIKANIE SUBSTANCJI CHEMICZNYCH