Regulamin II Turniej Wiedzy "Matematycznie kreatywni"
|
|
- Kacper Kowal
- 6 lat temu
- Przeglądów:
Transkrypt
1 Regulamin II Turniej Wiedzy "Matematycznie kreatywni" Organizator Organizatorem turnieju jest Liceum Ogólnokształcące im. Komisji Edukacji Narodowej w Dynowie. Cele konkursu: popularyzacja wiedzy i umiejętności z matematyki, wśród uczniów klas gimnazjalnych i podstawowych; motywowanie uzdolnionych w kierunku przedmiotów ścisłych uczniów do nauki i nauczycieli do pracy z młodymi pasjonatami; kształcenie i rozwijanie zainteresowań matematycznych wśród uczniów; stworzenie uczniom możliwości rywalizacji i wyróżnienia się na forum szkół; badanie i monitoring uzdolnień uczniów w obszarze matematyki; współpraca z placówkami szkolnymi. Adresaci konkursu: Konkurs adresowany jest do uczniów klas 3 gimnazjum oraz klasy 7 i 8 szkoły podstawowej. Typy zadań: Turniej oparty jest na teleturnieju telewizyjnym 1 z 10. Uczniowie otrzymują krótkie pytania z zakresu matematyki, na które muszą udzielić poprawnej odpowiedzi w wyznaczonym czasie. Zagadnienia, na podstawie których przygotowane będą zadania: zapisywanie i odczytywanie liczb wielocyfrowych w dziesiątkowym i dwójkowym systemie pozycyjnym oraz w systemie rzymskim, liczby pierwsze i złożone, podzielność liczb, rozkład na czynniki pierwsze, NWW, NWD, średnia arytmetyczna, dzielenie z resztą, obliczanie ułamka danej liczby, zamiana ułamków zwykłych na dziesiętne i odwrotnie, rozwinięcia dziesiętne nieskończone, porównywanie ułamków zwykłych i dziesiętnych, zaokrąglanie, rodzaje i własności kątów, własności figur płaskich, zamiana jednostek, obliczanie liczby z danego jej ułamka, obliczanie jakim ułamkiem jednej liczby jest druga liczba, wyznaczanie 1
2 stosunku danych wielkości, obliczenia pieniężne, zegarowe, kalendarzowe, obliczanie rzeczywistej długości odcinka i długości odcinka w skali, działania na liczbach wymiernych i niewymiernych, obliczenia procentowe, potęgi o wykładnikach całkowitych, własności pierwiastków, wyrażenia algebraiczne, wzory skróconego mnożenia, równania i nierówności liniowe z jedną niewiadomą, układy równań liniowych z dwiema niewiadomymi, wielkości wprost proporcjonalne i odwrotnie proporcjonalne, własności wielokątów, pola i obwody wielokątów, pola i obwody kół, symetria osiowa i środkowa, twierdzenie Pitagorasa, kąt środkowy i kąt wpisany, wartość bezwzględna i jej własności, własności funkcji liniowej, okrąg wpisany w wielokąt i opisany na wielokącie, twierdzenie Talesa, podobieństwo i przystawanie figur, wykorzystanie pojęć matematycznych do rozwiązywania zadań osadzonych w kontekście praktycznym, rozwiązywania zadań logicznych, zagadek i łamigłówek matematycznych,. Przebieg konkursu: Szkoła może zgłosić do konkursu maksymalnie 3 uczniów, których wyłoni zgodnie z własnymi kryteriami. Zgłoszenia uczestnictwa uczniów do etapu powiatowego prosimy kierować do dnia r. (wtorek) na adres Liceum Ogólnokształcącego im. Komisji Edukacji Narodowej w Dynowie: lodyn9@poczta.onet.pl lub faxem (16) Wzór zgłoszenia na końcu regulaminu. Turniej odbywa się w LO w Dynowie, zadania do tego etapu są przygotowane przez organizatora konkursu. Komisja konkursowa będzie składała się z jednego przedstawiciela każdej szkoły biorącej udział w konkursie. Termin turnieju to: 12 marca 2019r., godzina 9.00, Ogłoszenie wyników konkursu odbędzie się w tym samym dniu. Turniej składa się z dwóch części: I część: Test zadania krótkiej odpowiedzi (z wykorzystaniem platformy quizizz.com); czas trwania maks. 15 min. Celem tego etapu jest wyłonienie 10 półfinalistów. Ta część odbywa się jeśli ilość uczestników jest większa niż 10. 2
3 II część: Zasady ogólne 1. Do gry przystępuje dziesiątka uczestników. 2. Czas do namysłu i rozpoczęcia odpowiedzi wynosi 3 sekundy. Rozpoczęcie poprawnej odpowiedzi w trakcie sygnału oznaczającego upłynięcie trzech sekund zalicza odpowiedź. 3. W przypadku złej odpowiedzi prowadzący podaje poprawną. 4. Decyzja prowadzącego jest jednoznaczna, ostateczna i wiążąca dla uczestników. 5. Na każdym stanowisku jest informacja o ilości szans jakie ma zawodnik. Zła odpowiedź lub brak odpowiedzi po upływie ustalonego czasu to utrata szansy. 6. Utrata ostatniej szansy na stanowisku odpowiadającego uczestnika informuje go o wyeliminowaniu z turnieju. 7. Ewentualne wątpliwości uczestnika dotyczące regulaminu należy wyjaśnić przed rozpoczęciem turnieju. Etapy teleturnieju I etap rozpoczęcie gry Gracze mają po trzy szanse. Każdemu graczowi prowadzący zadaje dwa pytania. Za jedną złą odpowiedź lub jej brak zawodnik traci jedną szansę. Dwa błędy eliminują uczestnika z gry. Ci, którzy odpowiedzieli na co najmniej jedno pytanie, przechodzą dalej. II etap W tym etapie każdy z grających ma tyle szans, ile wyniósł z I etapu. Gracze, po udzieleniu poprawnej odpowiedzi, wskazują zawodnika do następnego pytania. Prowadzący rozpoczyna zadawanie pytań od pierwszego w kolejności zawodnika. Jeśli nie udzielił on dobrej odpowiedzi, traci jedną szansę, a prowadzący zadaje kolejno następne pytania kolejnym graczom tak długo, aż padnie poprawna odpowiedź. Jeżeli wskazany gracz nie odpowie poprawnie - traci jedną szansę, a wskazuje nadal gracz, który ostatni udzielił prawidłowej odpowiedzi. II etap trwa do chwili, kiedy pozostaje trzech graczy. III etap finał Do III etapu przechodzą trzej zawodnicy, którzy: dostają po trzy nowe szanse, dostają po tyle punktów, ile szans zachowali po dwóch etapach (czyli maksymalnie mogą dostać trzy punkty). Trzy niedobre odpowiedzi lub ich brak powodują odpadnięcie z gry (utrata trzech szans). W tym etapie w puli jest czterdzieści pytań. 3
4 Etap III dzieli się na dwie części: I część Losowana jest kolejność, w której będą odpowiadać finaliści w I części. Prowadzący zadaje pytania wszystkim graczom, w wylosowanej kolejności. Za poprawną odpowiedź uczestnik otrzymuje dziesięć punktów. Zła odpowiedź lub jej brak to strata szansy. Grający, który pierwszy odpowie dobrze na trzy pytania, rozpoczyna drugą część tego etapu. II część Gracz, który udzielił dobrej odpowiedzi może wskazać innego gracza lub sam odpowiadać na kolejne pytanie. Za dobrą odpowiedź gracz otrzymuje dziesięć punktów, a przy wskazaniu na siebie dwadzieścia punktów. Za odpowiedź błędną lub jej brak w ustalonym czasie - następuje strata jednej szansy i kolejnego pytanego wskazuje zawodnik, który uprzednio udzielił dobrej odpowiedzi. W przypadku gdy gracz wskazał na siebie i nie odpowiedział, odbywa się losowanie, w którym zostanie wyłoniona osoba odpowiadająca. Jeżeli odpowiedź jest poprawna, gracz, który jej udzielił, ma znów możliwość wyboru albo odpowiada sam, albo wskazuje innego zawodnika. Zakończenie Zakończenie gry następuje w takich przypadkach: 1. Zostaje jeden gracz (pozostali dwaj odpadli na skutek utraty trzech szans) i ten wygrywa, bez względu na liczbę punktów. Zawodnik odpowiada dalej, aż do wyczerpania pytań lub utraty pozostałych szans, uzyskując w ten sposób możliwość powiększenia swego dorobku punktowego. Za każdą zachowaną szansę po wyczerpaniu puli pytań dolicza się po dziesięć punktów. 2. Kończy się pula 40 pytań. Zawodnikom dolicza się po dziesięć punktów za każdą zachowaną szansę. W tym momencie ustalony jest ostateczny wynik. Wygrywa ten grający, który zgromadził najwięcej punktów. Jeżeli dwóch lub trzech zawodników ma tę samą liczbę punktów, organizator zastrzega sobie prawo wyłonienia jednego zwycięzcy lub podziału nagrody. Zwycięzca i pozostałych dwóch uczestników rozgrywki finałowej otrzymują ustalone przez organizatorów teleturnieju nagrody, zależne od uzyskanych wyników punktowych. Wszyscy uczestnicy otrzymują dyplomy uczestnictwa. Organizatorzy 4
5 Załącznik nr 1 do Regulaminu Turnieju Wiedzy "Matematycznie kreatywni" dla uczniów szkół gimnazjalnych KARTA ZGŁOSZENIA II Turniej Wiedzy "Matematycznie kreatywni" IMIĘ I NAZWISKO UCZESTNIKA..... ADRES UCZESTNIKA..... TELEFON UCZESTNIKA KLASA..... IMIĘ I NAZWISKO UCZESTNIKA..... ADRES UCZESTNIKA..... TELEFON UCZESTNIKA KLASA..... IMIĘ I NAZWISKO UCZESTNIKA..... ADRES UCZESTNIKA..... TELEFON UCZESTNIKA KLASA..... SZKOŁA... IMIĘ I NAZWISKO OPIEKUNA..... Podpis osoby delegującej na konkurs Pieczęć szkoły 5
6 Załącznik nr 2 do Regulaminu Turnieju Wiedzy "Matematycznie kreatywni" dla uczniów szkół gimnazjalnych Zgoda rodzica (opiekuna prawnego) na udział dziecka w II Turnieju Wiedzy "Matematycznie kreatywni" 1. Wyrażam zgodę na udział mojego dziecka... (imię i nazwisko) w Turnieju Wiedzy "Matematycznie kreatywni" dla uczniów szkół gimnazjalnych. 2. Wyrażam zgodę na przetwarzanie przez Organizatorów konkursu oraz Administratora danych osobowych mojego dziecka (imienia, nazwiska, klasy i nazwy szkoły) jedynie w celach wynikających z organizacji konkursu, zgodnie z ustawą z dnia 29 sierpnia 1997 r. o ochronie danych osobowych (Dz. U. Nr 133, poz. 833 z późn. zm.). 3. Wyrażam zgodę na wykorzystanie wizerunku mojego dziecka (w przypadku uzyskania statusu laureata konkursu) przez Organizatorów konkursu oraz Administratora danych osobowych do promowania działań wynikających z organizacji konkursu i wręczenia nagród poprzez upowszechnianie zdjęć oraz materiałów filmowych (ustawa z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz. U. z 2006 r. Nr 90, poz.631, z późn. zm.).... (podpis rodzica/ opiekuna prawnego) 6
MIEJSKI KONKURS. Historia startów polskich sportowców na Igrzyskach Olimpijskich
ZESPÓŁ SZKÓŁ NR 24 IM. MARIANA REJEWSKIEGO W BYDGOSZCZY MIEJSKI KONKURS Historia startów polskich sportowców na Igrzyskach Olimpijskich Patronat Honorowy: Polski Komitet Olimpijski Polski Komitet Olimpijski
MIEJSKI KONKURS. 670 lat Bydgoszczy i 120 lat nowożytnego olimpizmu, czyli historia startów bydgoskich sportowców na Igrzyskach Olimpijskich
ZESPÓŁ SZKÓŁ NR 24 IM. MARIANA REJEWSKIEGO W BYDGOSZCZY MIEJSKI KONKURS 670 lat Bydgoszczy i 120 lat nowożytnego olimpizmu, czyli historia startów bydgoskich sportowców na Igrzyskach Olimpijskich Patronat
Regulamin konkursu Jeden z dwunastu 1 z 12
Regulamin konkursu Jeden z dwunastu 1 z 12 1 1. Organizatorem konkursu Jeden z dwunastu dla placówek oświatowych beneficjentów projektu Nowoczesny uczeń - w nowoczesnej szkole. Program aktywizacji edukacyjno-obywatelskiej
REGULAMIN KONKURSU WIEDZY O RYNKU PRACY DLA MŁODZIEŻY SZKÓŁ PONADGIMNAZJALNYCH POWIATU NOWOMIEJSKIEGO (2018)
REGULAMIN KONKURSU WIEDZY O RYNKU PRACY DLA MŁODZIEŻY SZKÓŁ PONADGIMNAZJALNYCH POWIATU NOWOMIEJSKIEGO (2018) I. Organizatorzy Powiatowy Urząd Pracy w Nowym Mieście Lub. II. III. Patronat honorowy Starosta
Regulamin Konkursu Matematycznego ZAGIMAK. rok szkolny 2012/13
Regulamin Konkursu Matematycznego ZAGIMAK rok szkolny 2012/13 Organizatorem konkursu jest Lubelskie Samorządowe Centrum Doskonalenia Nauczycieli Oddział w Zamościu i Państwowa Wyższa Szkoła Zawodowa im.
Regulamin Konkursu Wiedzy,,Polskie prawo konstytucyjne
Regulamin Konkursu Wiedzy,,Polskie prawo konstytucyjne I. Organizatorzy i cel konkursu. 1. Organizatorami Konkursu Wiedzy Polskie prawo konstytucyjne są pracownicy Katedry Prawa Konstytucyjnego i Katedra
IV TURNIEJ WIEDZY O JANIE PAWLE II
IV TURNIEJ WIEDZY O JANIE PAWLE II z okazji obchodów XVIII Dnia Papieskiego w Puławach Promieniowanie Ojcostwa 05-21 października 2018 r. Zadanie dofinansowano z budżetów: Województwa Lubelskiego Powiatu
III TURNIEJ WIEDZY O JANIE PAWLE II
III TURNIEJ WIEDZY O JANIE PAWLE II z okazji obchodów XVII Dnia Papieskiego w Puławach Jan Paweł II Idźmy naprzód z nadzieją 06-27 października 2017r. Patronat honorowy: Dziekan Dekanatu Puławskiego ksiądz
REGULAMIN RADOMSKIEGO KONKURSU TWÓRCZEGO MYŚLENIA LOGUS DLA UCZNIÓW KLAS TRZECICH SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018
REGULAMIN RADOMSKIEGO KONKURSU TWÓRCZEGO MYŚLENIA LOGUS DLA UCZNIÓW KLAS TRZECICH SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2017/2018 Copyright 2017 KKN 1 Rozdział I INFORMACJE OGÓLNE Konkurs Twórczego Myślenia
Regulamin VI Powiatowego Konkursu Matematyczno Przyrodniczego pn. Jeden z dziesięciu
Rok szkolny 2017/ 2018 Regulamin VI Powiatowego Konkursu Matematyczno Przyrodniczego pn. Jeden z dziesięciu Organizator: Szkoła Podstawowa im. Władysława Stanisława Reymonta w Trzebnicach Rok szkolny 2017/
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
Roger Bacon. Cele Konkursu:
Liceum Ogólnokształcące im. mjra Henryka Sucharskiego w Sierpcu ogłasza IX edycję Międzygimnazjalnego Konkursu Matematycznego dla uczniów klas drugich i trzecich gimnazjów pod hasłem: Matematyka jest drzwiami
Matematyka Matematyka z pomysłem Klasy 4 6
Szczegółowy rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej w klasach IV VI Klasa IV szczegółowe z DZIAŁ I. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM (19 godz.)
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
klasa I Dział Główne wymagania edukacyjne Forma kontroli
semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania
BIALSKA LIGA MATEMATYCZNA dla szkół podstawowych Edycja VI
BIALSKA LIGA MATEMATYCZNA dla szkół podstawowych Edycja VI Zapraszamy Państwa wraz z uczniami szkół podstawowych z klas 4, 5, 6 do wzięcia udziału w kolejnej edycji Bialskiej Ligi Matematycznej. Mamy nadzieję,
REGULAMINKONKURSU MATEMATYCZNEGO Mistrz wiedzy matematycznej dla uczniów klas gimnazjalnych Warszawy w roku szkolnym 2018/2019
REGULAMINKONKURSU MATEMATYCZNEGO Mistrz wiedzy matematycznej dla uczniów klas gimnazjalnych Warszawy w roku szkolnym 2018/2019 ORGANIZACJA KONKURSU 1. Konkurs jest organizowany przez Szkołę Podstawową
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Ułamki i działania 20 h
Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
REGULAMIN KONKURSU MATEMATYCZNEGO
Matematyka jest alfabetem, za pomocą, którego Bóg opisał wszechświat. Galileusz REGULAMIN KONKURSU MATEMATYCZNEGO MATEMATYCZNY ŚWIAT DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH GMINY PIASECZNO W ROKU SZKOLNYM 2014/2015
Szanowni Państwo Dyrektorzy Szkół Podstawowych Województwa Opolskiego
PAŃSTWOWA INSPEKCJA PRACY OKRĘGOWY INSPEKTORAT PRACY W OPOLU Wojewódzka Komisja ds. Bezpieczeństwa i Higieny Pracy w Rolnictwie przy Okręgowym Inspektoracie Pracy w Opolu Op-00212-05/2016 Opole, dnia 14.09.2016
Regulamin Przedmiotowy I Konkursu Matematycznego dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2016/2017
Regulamin Przedmiotowy I Konkursu Matematycznego dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2016/2017 I. Informacje ogólne 1. Niniejszy Regulamin określa szczegółowe wymagania
Kryteria oceny osiągnięć uczniów w klasie I gimnazjum z matematyki ( Program Matematyka z plusem dla III etapu edukacyjnego) oprac.
Kryteria oceny osiągnięć uczniów w klasie I gimnazjum z matematyki ( Program Matematyka z plusem dla III etapu edukacyjnego) oprac. Marta Wcisło DZIAŁ DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
MIEJSKO - GMINNY KONKURS MATEMATYCZNY DLA UCZNIÓW KL. III EDYCJA 2017
MIEJSKO - GMINNY KONKURS MATEMATYCZNY DLA UCZNIÓW KL. III EDYCJA 2017 Regulamin Miejsko - Gminnego Konkursu Matematycznego dla uczniów klas III Szkół Podstawowych Gminy Nysa I. Cele konkursu Umożliwienie
Wymagania edukacyjne klasa pierwsza.
Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie
PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot
KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela
I KONKURS MATEMATYCZNY MATEMIX dla uczniów klas trzecich gimnazjum
I KONKURS MATEMATYCZNY MATEMIX dla uczniów klas trzecich gimnazjum R E G U L A M I N Organizator. Zespół matematyczno-przyrodniczy Akademickiego Liceum Ogólnokształcącego dla Młodzieży i Akademickiego
Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328
Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
Matematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7
Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane
Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)
Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o
REGULAMIN. XIII WROCŁAWSKIEGO KONKURSU MATEMATYCZNEGO dla uczniów klas II-III GIMNAZJÓW i VII SZKOŁY PODSTAWOWEJ rok szkolny 2017/2018
REGULAMIN XIII WROCŁAWSKIEGO KONKURSU MATEMATYCZNEGO dla uczniów klas II-III GIMNAZJÓW i VII SZKOŁY PODSTAWOWEJ rok szkolny 2017/2018 I Organizatorzy 1. Organizatorem Konkursu jest Szkoła Podstawowa Nr
Egzamin gimnazjalny 2015 część matematyczna
Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w
TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas
Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach
Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum. Część matematyczno-przyrodnicza. LUTY 2016 Analiza wyników
Próbny egzamin z matematyki z WSiP w trzeciej klasie gimnazjum Część matematyczno-przyrodnicza LUTY 2016 Analiza wyników Arkusz egzaminu próbnego składał się z 20 zadań zamkniętych różnego typu i 3 zadań
REGULAMIN XI WROCŁAWSKIEGO KONKURSU MATEMATYCZNEGO dla uczniów klas I-III GIMNAZJÓW rok szkolny 2015/2016
I Organizatorzy REGULAMIN XI WROCŁAWSKIEGO KONKURSU MATEMATYCZNEGO dla uczniów klas I-III GIMNAZJÓW rok szkolny 2015/2016 1. Organizatorem Konkursu jest Gimnazjum Nr 9 im. św. Jadwigi Śląskiej. 2. Honorowy
1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2
TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-
Plan wynikowy z rozkładem materiału
Plan wynikowy z rozkładem materiału Plan wynikowy oraz rozkład materiału nauczania są indywidualnymi dokumentami nauczycielskimi związanymi z realizowanym programem nauczania. Uwzględniają specyfikę danej
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
XVI konkurs o tytuł. Najlepszego Matematyka klas I i II szkół ponadgimnazjalnych. powiatu bocheńskiego. Zaproszenie
Matematyka jest drzwiami i kluczem do nauki Roger Bacon XVI konkurs o tytuł Najlepszego Matematyka klas I i II szkół ponadgimnazjalnych powiatu bocheńskiego Zaproszenie Serdecznie zapraszamy uczniów klas
Regulamin Olimpiady Wiedzy. Psychologicznej i Pedagogicznej. na Wydziale Pedagogiki i Psychologii Uniwersytetu Śląskiego w Katowicach.
Regulamin Olimpiady Wiedzy Psychologicznej i Pedagogicznej na Wydziale Pedagogiki i Psychologii Uniwersytetu Śląskiego w Katowicach I. Zasady ogólne: 1 Organizator Organizatorem Olimpiady Wiedzy, zwanej
PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ
PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność
Liczby. Wymagania programowe kl. VII. Dział
Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum
Wymagania z matematyki na poszczególne stopnie szkolne w klasie trzeciej gimnazjum I LICZBY I WYRAŻENIA ALGEBRAICZNE podawanie przykładów liczb naturalnych, całkowitych, wymiernych i niewymiernych; porównywanie
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania
KONKURS MATEMATYCZNY DLA UCZNIÓW KLASY I GIMNAZJUM. I Ty możesz zostać Pitagorasem
KONKURS MATEMATYCZNY DLA UCZNIÓW KLASY I GIMNAZJUM I Ty możesz zostać Pitagorasem Organizatorki: Beata Bąkała, Elżbieta Kaczorowska, Barbara Komsta, Iwona Mierzejewska Puławy, 2016/2017 REGULAMIN KONKURSU
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane
Wymagania dla klasy siódmej. Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY
Wymagania dla klasy siódmej Treści na 2 na 3 na 4 na 5 na 6 Uczeń: Uczeń: Uczeń: Uczeń: Uczeń: DZIAŁ 1. LICZBY Rzymski sposób zapisu liczb Liczby pierwsze i złożone. Dzielenie z resztą Rozwinięcia dziesiętne
Wyniki procentowe poszczególnych uczniów
K la s a IA Próbny egzamin gimnazjalny Wyniki procentowe poszczególnych uczniów 0% 80% 70% 60% 50% 40% 30% Polska (41%) % % 0% nr ucznia 1 2 3 4 5 6 7 8 16 18 1 21 22 24 25 26 27 28 wynik w % 45 65 42
Regulamin IX Krośnieńskiego Konkursu Matematycznego dla gimnazjów
Regulamin IX Krośnieńskiego Konkursu Matematycznego dla gimnazjów I. Organizatorzy Organizatorami konkursu w roku szkolnym 2015/2016 są: Miejski Zespół Szkół Nr 1 w Krośnie, Komitet Organizacyjny IX Krośnieńskiego
Gminne Centrum Nauk Matematyczno Przyrodniczych w Trzebosi
REGULAMIN XII edycji Powiatowego Turnieju Matematyczno Przyrodniczego W świecie liczb pod honorowych patronatem Burmistrza Gminy i Miasta Sokołów Młp. Organizator turnieju: Nauczyciele Zespołu Matematyczno
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132
Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,
Wymagania na poszczególne oceny szkolne Klasa 7
1 Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia
WYMAGANIA EDUKACYJNE Z MATEMATYKI Szkoła Branżowa I Stopnia KLASA I 1. Liczby rzeczywiste i wyrażenia algebraiczne 1) Liczby naturalne, cechy podzielności stosuje cechy podzielności liczby przez 2, 3,
Rozkład wyników ogólnopolskich
Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 - wyniki niskie - wyniki średnie - wyniki wysokie liczba
ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca
Wymagania na poszczególne oceny szkolne z matematyki dla klas siódmych ''Matematyka" Szkoła Podstawowa im. Jana Pawła II w Mętowie Rok szkolny 2017/2018 Klasa 7a, 7b Nauczyciel: Małgorzata Łysakowska Ocena
Regulamin Międzyszkolnego Konkursu Matematycznego Odkrywcy 2015 dla uczniów klas gimnazjalnych
Regulamin Międzyszkolnego Konkursu Matematycznego Odkrywcy 2015 dla uczniów klas gimnazjalnych Słyszałem i zapomniałem. Widziałem i zapamiętałem. Zrobiłem i zrozumiałem. Konfucjusz Konkurs przeznaczony
Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej
Diagnoza wstępna z matematyki Klasa pierwsza szkoły ponadgimnazjalnej 1 Cel: Uzyskanie informacji o poziomie wiedzy i umiejętności uczniów, które pozwolą efektywniej zaplanować pracę z zespołem klasowym.
Regulamin Miejskiego Konkursu Matematycznego dla uczniów klas IV VIII szkół podstawowych
Regulamin Miejskiego Konkursu Matematycznego dla uczniów klas IV VIII szkół podstawowych I. Cel Konkursu: - popularyzacja matematyki wśród uczniów, - rozwijanie zdolności i zainteresowań matematycznych,
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
rozszerzające (ocena dobra) podstawowe (ocena dostateczna)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki. w I semestrze drugiej klasy gimnazjum MATEMATYKA
STYCZEŃ 2017 Analiza wyników sprawdzianu na zakończenie nauki w I semestrze drugiej klasy gimnazjum MATEMATYKA Zestaw składał się z 21 zadań zamkniętych różnego typu i 3 zadań otwartych. Zadania sprawdzały
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym
GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
Wymagania edukacyjne z matematyki dla ucznia klasy VII
Wymagania edukacyjne z matematyki dla ucznia klasy VII Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra [1] [1 + 2] [1 + 2 + 3] [1 + 2 + 3 + 4] Odczytuje i zapisuje liczby naturalne
ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem
ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych
Plan realizacji materiału nauczania wraz z określeniem wymagań edukacyjnych Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra
konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) dopełniające (ocena bardzo dobra) rozszerzające (ocena dobra)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
konieczne (ocena dopuszczająca) Temat rozszerzające (ocena dobra)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku
II Liceum Ogólnokształcące im. Hugona Kołłątaja w Wałbrzychu. Pod Patronatem Stowarzyszenia Szkół Innowacyjnych
Pod Patronatem Stowarzyszenia Szkół Innowacyjnych strona 1 z 7 PRZEWODNICZĄCY KAPITUŁY KONKURSU ROBERT WRÓBEL Dyrektor II Liceum Ogólnokształcącego im.hugona Kołłątaja CZŁONKOWIE KAPITUŁY - BYĆ KIMŚ II
konieczne (ocena dopuszczająca) Temat podstawowe (ocena dostateczna) rozszerzające (ocena dobra) dopełniające (ocena bardzo dobra)
Wymagania na poszczególne oceny szkolne Klasa 7 Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W poniższej tabeli umiejętności te przypisane
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VII SZKOŁY PODSTAWOWEJ Ocenę niedostateczną otrzymuje uczeń, jeśli nie opanował wiadomości i umiejętności na ocenę dopuszczającą, nie wykazuje chęci poprawy
MATEMATYKA Z KLUCZEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY SIÓDMEJ
MATEMATYKA Z KLUCZEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY SIÓDMEJ ocena dopuszczająca (wymagania konieczne), : rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie 3000, porównuje
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM
KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać
Wymagania edukacyjne z matematyki w klasie IV
Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania
Lista działów i tematów
Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe - dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe - mnożenie i dzielenie Mnożenie i dzielenie
SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY
SZCZEGÓŁOWE KRYTERIA OCENIANIA UCZNIÓW W ZAKRESIE TREŚCI PROGRAMOWYCH Z MATEMATYKI W KLASACH IV i V ZESPOŁU SZKÓŁ W ŚWILCZY KLASA IV Uczeń otrzymuje ocenę celującą gdy: potrafi samodzielnie wyciągać wnioski,
Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7
Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Temat lekcji Punkty z podstawy programowej Lp. Wymagania podstawowe Wymagania
Matematyka z kluczem. Plan wynikowy z rozkładem materiału Klasa 7
Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Matematyka z kluczem Plan wynikowy z rozkładem materiału Klasa 7 Temat lekcji Punkty z podstawy programowej Lp. Wymagania podstawowe Wymagania
Wymagania szczegółowe z matematyki klasa 7
Wymagania szczegółowe z matematyki klasa 7 Dział Szczegółowe wymagania Liczby całkowite (liczby dodatnie, ujemne i zero) - wyróżnia wśród liczb wymiernych liczby naturalne i całkowite oraz liczby pierwsze,