Proponowane tematy prac magisterskich dla studentów kierunku Energetyka i chemia jądrowa w roku akademickim 2017/18 (Wydział Fizyki UW)
|
|
- Sebastian Szulc
- 6 lat temu
- Przeglądów:
Transkrypt
1 Proponowane tematy prac magisterskich dla studentów kierunku Energetyka i chemia jądrowa w roku akademickim 2017/18 (Wydział Fizyki UW) 1. Detektor do pomiaru stężenia radonu w powietrzu Opiekun: prof. dr hab. Zenon Janas ( Zenon.Janas@fuw.edu.pl ) Radon-222 jest gazem szlachetnym produkowanym w naturalnym szeregu promieniotwórczym 238U. Rozpada się na drodze przemiany alfa, a jego promieniowanie stanowi 40 50% dawki, jaką otrzymuje mieszkaniec Polski od źródeł naturalnych. Celem pracy będzie zaprojektowanie, zbudowanie i uruchomienie detektora umożliwiającego pomiar stężenia radonu poprzez rejestrację promieniowanie alfa emitowanego w rozpadzie 222Rn i jego pochodnych. Do detekcji cząstek alfa wykorzystana zostanie dioda PIN. Realizacja pracy wymaga znajomości podstaw elektroniki przynajmniej na poziomie Pracowni Elektronicznej. 2. Badanie oddziaływania neutronów z germanowym detektorem promieniowania gamma. Opiekun: prof. dr hab. Zenon Janas ( Zenon.Janas@fuw.edu.pl ) Pomiarom promieniowania gamma często towarzyszy tło związane z obecnością neutronów. Cząstki te oddziałują z materiałem detektora i prowadzą do emisji promieniowania, które zaburza właściwy pomiar. Celem pracy będzie identyfikacja procesów oddziaływania neutronów z materiałem detektora germanowego oraz określenie widma energii promieniowania wywołanego tym oddziaływaniem Obliczenia neutronowo-fizyczne dla reaktorów energetycznych Opiekunowie: dr Krzysztof Andrzejewski (NCBJ), mgr Łukasz Koszuk (NCBJ), dr Agnieszka Korgul Uwaga: Istnieje możliwość wykonywania tej pracy przez więcej niż jedną osobę. Praca będzie polegała na analizie parametrów neutronowo-fizycznych różnych typów paliw stosowanych w reaktorach energetycznych. Obliczenia wykonywane będą za pomocą pakietu kodów SCALE. Analiza prowadzona będzie pod kątem ekonomicznym lub bezpieczeństwa reaktywnościowego.
2 5. Badanie wpływu wahań dobowych temperatury otoczenia na zapas reaktywności reaktora Maria. (temat zarezerwowany) Opiekunowie: dr Zuzanna Marcinkowska (NCBJ) oraz dr Agnieszka Korgul 6. Korelacja konfiguracji prętów kontrolnych w reaktorze jądrowym Maria (temat zarezerwowany) Opiekunowie: dr Rafał Prokopowicz (NCBJ) oraz dr Agnieszka Korgul 7. Pomiary radiologiczne powietrza Opiekunowie: dr Agnieszka Burakowska (NCBJ) oraz dr Agnieszka Korgul Celem pracy będzie analiza pomiarów radiologicznych powietrza, a w szczególności badanie stężenia zawartość Be-7 na podstawie pomiarów spektrometrycznych filtrów petrianowa. Cotygodniowe dane zbierane są od 2016 roku i pochodzą ze stacji w Otwocku-Świdrze oraz ze Stacji Polarnej w Hronsundzie. 8. Spektroskopia gamma i beta egzotycznych fragmentów rozszczepienia Opiekun: dr hab. Jan Kurpeta ( Jan.Kurpeta@fuw.edu.pl ) Poszerzanie wiedzy o właściwościach i powstawaniu jąder atomowych tworzących otaczającą nas materię wymaga badania izotopów, które nie występują w naturze w warunkach ziemskich. Wytwarzamy je w laboratorium na przykład na drodze reakcji rozszczepienia ciężkich jąder indukowanej protonami lub deuteronami. Fragmenty rozszczepienia podlegają precyzyjnej separacji masowej między innymi z użyciem pułapek jonowych. W ten sposób wyodrębnia się najbardziej interesujące tzw. nuklidy egzotyczne, które leżą na granicy zbadanych do tej pory jąder atomowych. Proponowana praca polega na wykonaniu przeglądu danych o koincydencjach promieniowania gamma i beta emitowanego przez egzotyczne izotopy o bardzo dużym nadmiarze neutronów. Ostateczny zakres, warunki i sposób wykonania pracy ustalane są z opiekunem, proszę o kontakt na adres jkurpeta@fuw.edu.pl.
3 9. Badanie rozpadu beta 57 Zn Opiekunowie: dr hab. Chiara Mazzocchi ), prof. dr hab. Marek Pfützner ) Jądra egzotyczne w pobliżu linii odpadania protonu charakteryzują się dużą wartością energii rozpadu. Umożliwia to obsadzanie stanów niezwiązanych w jądrze-córce o dużej energii wzbudzenia, z których może nastąpić emisja protonów opóźnionych po rozpadzie beta. jawisko to zaobserwowano po raz pierwszy 0 lat temu, a w 1 83 roku odkryto emisję dwóch protonów opóźnionych. Badania nad tak rzadkimi kanałami rozpadu dostarczają ważnych informacji o strukturze neutrono-deficytowych jąder położonych daleko od ścieżki stabilności. W roku 201 przeprowadzono eksperyment, w którym badano przemianę beta 5 n pod kątem emisji protonów opóźnionych z pomocą detektora komora projekcji czasu z odczytem optycznym (OTPC). Celem pracy magisterskiej jest analiza danych zebranych w eksperymencie i wyznaczenie stosunku rozgałęzień dla różnych kanałów rozpadu. (Requirements: programming in Python and preferably basics of LabView, good English) 10. Badanie reakcji 12C(p,d)11C i 12C(p,pn)11C w zakresie energii protonów MeV Opiekun: prof. dr hab. Tomasz Matulewicz (Tomasz.Matulewicz@fuw.edu.pl ), Jądro 11 C ulega rozpadowi beta+ i ma czas połowicznego zaniku wynoszący 20,3 minuty. Przy niskich energiach protonów (kilka MeV) jądro to może być wytwarzane w reakcji 11B(p,n)11C. Dla protonów o wyższych energiach możliwe są reakcje 12C(p,d)11C i 12C(p,pn)11C. Procedura badawcza polegać bedzie na naświetleniu tarczy weglowej wiązką protonów i późniejszym badaniu rozpadu tak wytworzonych jąder 11C (nie będzie możliwości rozróżnienia wkładu obu wymienionych reakcji efekt sumaryczny). Układ detekcyjny będzie rejestrować anihilację pozytonu. Uwzględniając wydajność detektora oraz profil naświetelnia można będzie wyznaczyć wartość łącznego przekroju czynnego tych reakcji. Weryfikacja wartości przekroju czynnego na produkcję 11C ma znaczenie dla kontroli procesu naświetlania w hadronoterapii Badanie rozkładów emisji mezonów π + i π ze zderzeń ciężkich jonów przy energii 1,65 i 1,9 GeV/nukleon Opiekun: dr hab. Krzysztof Piasecki ( krzysztof.piasecki@fuw.edu.pl) Wymagane: podstawy programowania w języku C++. Uwaga: Możliwość wykonania dwóch prac magisterskich.
4 W zderzeniach jąder atomowych przy energiach wiązki ok. 1 2 GeV na nukleon strefa zderzenia staje się źródłem m.in. emisji mezonów π. Według obecnego stanu wiedzy, mezony te są produkowane albo w elementarnych zderzeniach nukleon-nukleon, albo w wyniku rozpadów barionów Δ. Magistrant rozpocznie analizę od symulacji, z pomocą promotora, rozkładów emisji cząstek ze źródła termicznego o zadanych parametrach, następnie detekcji w ograniczonym zakresie kątów i rekonstrukcji pierwotnych parametrów rozkładu. Na tym etapie magistrant pozna również podstawy szeroko wykorzystywanego środowiska analizy danych ROOT, opartego na C++. Następnie magistrant, współpracując z promotorem, przeprowadzi identyfikację mezonów π + i π wyemitowanych z jednego z dwóch układów zderzających się jąder: Ru+Ru przy energii wiązki 1,65 GeV na nukleon lub Al+Al przy energii 1, GeV na nukleon. Dane zostały zebrane na układzie FOPI w instytucie GSI, Darmstadt. Dysponując zidentyfikowanymi mezonami π + i π, magistrant wyznaczy rozkłady populacji tych cząstek w przestrzeni pędowej: na płaszczyźnie pęd poprzeczny pospieszność i/lub na płaszczyźnie energia kinetyczna kąt emisji. Celem analizy będzie rozstrzygnięcie, czy rozkład doświadczalny opisywany jest przez funkcję odpowiadającą jednemu źródłu cząstek, czy przez sumę dwóch lub więcej wkładów. Następnie, poprzez dopasowanie do danych doświadczalnych, wyznaczone zostaną parametry tego rozkładu. Analiza dążyć będzie w kierunku wyznaczenia całkowitych krotności emisji π + i π na zderzenie. 13. Poszukiwanie i badanie własności stanów wzbudzonych jąder 93,95 Zr populowanych w reakcjach (n, ) Opiekun: prof. dr hab. Teresa Rząca-Urban (rzaca@fuw.edu.pl ) Reakcje radiacyjnego wychwytu zimnych neutronów przez jądra tarczy o liczbie neutronów N mogą być cennym źródłem informacji o strukturze stanów wzbudzonych izotopów o liczbie neutronów N+1. Kluczowe znaczenie ma zastosowanie w pomiarach emitowanego promieniowania spektrometrów o wysokiej zdolności rozdzielczej i dużej wydajności. Proponowana praca polega na analizie koincydencyjnych widm zarejestrowanych w trakcie eksperymentu przeprowadzonego w Instytucie Laue Langevin w Grenoble (Francja). W eksperymencie wykorzystano wielodetektorowy spektrometr EXILL. Duża liczba zgromadzonych zdarzeń koincydencyjnych z pewnością pozwoli na identyfikację wielu nowych stanów wzbudzonych w badanych izotopach Zr.
5 14. Spektroskopia gamma Opiekun: prof. dr hab. Waldemar Urban ( urban@fuw.edu.pl ) Proponowana praca polega na analizie danych związanych ze spektroskopią gamma. Ostateczny zakres, warunki i sposób wykonania pracy ustalane są z opiekunem, proszę o kontakt na adres urabn@fuw.edu.pl 15. Ogniwa fotowoltaiczne na bazie materiałów dwuwymiarowych takich jak dichalkozydy metali przejsciowych (ang. transition metal dichalcogenides), a w szczegolnosci dwusiarczku molibdenu Opiekun: dr hab. Robert Szoszkiewicz, prof. UW (rszoszkiewicz@chem.uw.edu.pl ). Materiały dwuwymiarowe (2D) takie jak grafen zostały w ostatnich latach okrzyknięte jako mogące być przyczyną rewolucji w elektronice, a w szczególności nanoelektronice na giętkich powierzchniach (ang. flexible nanoelectronics). Obecnie pojawiło się już całkiem sporo miniaturowych urządzeń jak karty pamięci, fotodetektory, czy reaktory fotokatalityczne które wykorzystują materiały 2D. W szczególności, pojedyncze warstwy dichalkozydów metali przejściowych posiadają bezpośrednią przerwę energetyczną co pozwala na ich zastosowanie w aplikacjach optoelektrycznych. Badane ostatnio przez niektóre grupy badawcze heterostruktury WS2/MoS2 i MoS2/grafen zostały uznane za doskonałych kandydatów na super-cienkie komórki solarne mogące w przyszłości dostarczyć duże gęstości mocy. Celem tej pracy będzie próba badania mechanizmów odpowiedzialnych za zwiększenie wydajności komórek solarnych na bazie heterostruktur MoS2. Istnieje możliwość kontynuacji badań w ramach studiów doktoranckich na Wydziale Chemii UW. 16. Badania kryształów scyntylacyjnych wysokich temperaturach z odczytem światła poprzez fotopowielacz. Opiekunowie: dr Joanna Iwanowska-Hanke (NCBJ) oraz dr Agnieszka Korgul W pracy zostaną przedstawione własności scyntylatora typu pyrosilicate z domieszkami ziem rzadkich La-GPS(Ce), jako potencjalnego detektora w badaniu odwiertów naftowych. Dokonane zostaną pomiary ilości światła oraz energetycznej zdolności rozdzielczej scyntylatora La-GPS(Ce) w szerokim zakresie temperatur, ze szczególnym uwzględnieniem zakresu st C. Praca zostanie powiększona o szczegółowe badania tego kryształu w temperaturze pokojowej z uwagi na jego dobrą zdolność rozdzielczą oraz dużą ilość światła. Efektywna liczna atomowa tego scyntylatora jest prawie dwukrotnie
6 wyższa, niż znanego powszechnie NaI(Tl), w związku z czym jest to obiecujący scyntylator do spektrometrii gamma w szerokim zakresie zastosowań. 17. Pomiar zaniku scyntylacji w kryształach CsI:Tl w szerokim zakresie temperatur. Opiekunowie: dr hab.łukasz Świderski (NCBJ) oraz dr Agnieszka Korgul Badana będzie odpowiedź scyntylatora CsI:Tl na promieniowanie gamma w zakresie energii od kilkunastu 16 kev do 1.5 MeV. Odczyt światła będzie realizowany przez fotodetektor typu Multi Pixel Photon Counter (MPPC) aka fotopowielacz krzemowy (SiPM). Pomiary będą przeprowadzane w dedykowanym kriostacie chłodzonym ciekłym azotem. Układ grzania będzie pozwalał na regulację temperatury pomiędzy -185C a +90C. Otrzymane wyniki zostaną spisane w formie publikacji przesłanej do NIMA lub JINST, której osoba zainteresowana będzie współautorem. Istnieje możliwość kontynuacji badań w ramach studiów doktoranckich w NCBJ. 18. Badania charakterystyki nieproporcjonalności materiałów scyntylacyjnych z zastosowaniem źródeł alfa. Opiekunowie: dr Paweł Sibczyński (NCBJ) oraz dr Agnieszka Korgul Od wielu lata badania prowadzone są badania krzywych nieproporcjonalności różnych materiałów scyntylacyjnych w zakresie 0.1 kev do kilku MeV. Niestety, badania przy użyciu promieniowania X o bardzo niskich energiach obarczone są dużym błędem. Problem ten można rozwiązać stosując niskoenergetycznie cząstki naładowane, jak protony lub cząstki alfa. Przeliczając energię cząstki naładowanej na prędkość i dopasowanie do tej prędkości energii elektronu pozwala na wyznaczenie krzywej nieproporcjonalności scyntylatora znacznie dokładniej niż stosując promieniowanie rentgenowskie. W ramach badań przeprowadzona zostanie optymalizacja pracy detektora półprzewodnikowego, a także wyznaczenie charakterystyk dla kryształów GAGG:Ce, CsI:Tl lub scyntylatora organicznego.
Proponowane tematy prac licencjackich dla studentów kierunku Energetyka i chemia jądrowa w roku akademickim 2017/18
Proponowane tematy prac licencjackich dla studentów kierunku Energetyka i chemia jądrowa w roku akademickim 2017/18 1. Badanie oddziaływania neutronów z germanowym detektorem promieniowania gamma Opiekun:
Proponowane tematy prac licencjackich dla studentów kierunku Energetyka i chemia jądrowa w roku akademickim 2016/17
Proponowane tematy prac licencjackich dla studentów kierunku Energetyka i chemia jądrowa w roku akademickim 2016/17 1. Badanie rozkładów emisji mezonów π+ i π ze zderzeń ciężkich jonów przy energii 1,65
Proponowane tematy prac licencjackich dla studentów kierunku Energetyka i chemia jądrowa w roku akademickim 2018/19
Proponowane tematy prac licencjackich dla studentów kierunku Energetyka i chemia jądrowa w roku akademickim 2018/19 1. Obliczenia widm energii neutronów produkowanych w reakcji 9 Be(, n) na grubej tarczy
Temat 1 Badanie fluorescencji rentgenowskiej fragmentu meteorytu pułtuskiego opiekun: dr Chiara Mazzocchi,
Warszawa, 15.11.2013 Propozycje tematów prac licencjackich dla kierunku Energetyka i Chemia Jądrowa Zakład Spektroskopii Jądrowej, Wydział Fizyki UW Rok akademicki 2013/2014 Temat 1 Badanie fluorescencji
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Proponowane tematy prac licencjackich dla studentów kierunku Energetyka i chemia jądrowa w roku akademickim 2015/16
Proponowane tematy prac licencjackich dla studentów kierunku Energetyka i chemia jądrowa w roku akademickim 2015/16 1. Badanie defektu wysokości impulsu w detektorach krzemowych zainstalowanych w układzie
Podstawowe własności jąder atomowych
Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii
Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ
Zakład Fizyki Jądrowej
INSTYTUT FIZYKI DOŚWIADCZALNEJ Tematy prac licencjackich dla studentów studiów I stopnia w roku akademickim 2014/15 Zakład Fizyki Jądrowej Proponowane tematy dotyczą wszystkich kierunków, chyba że zaznaczono
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa
2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.
Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie
Badanie schematu rozpadu jodu 128 J
J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona
Oddziaływanie promieniowania jonizującego z materią
Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony
Badanie schematu rozpadu jodu 128 I
J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona
J8 - Badanie schematu rozpadu jodu 128 I
J8 - Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wytworzenie izotopu 128 I poprzez aktywację w źródle neutronów próbki zawierającej 127 I, a następnie badanie schematu rozpadu tego nuklidu
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża
3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona
3. Zależność energii kwantów γ od kąta rozproszenia w zjawisku Comptona I. Przedmiotem zadania zjawisko Comptona. II. Celem zadania jest doświadczalne sprawdzenie zależności energii kwantów γ od kąta rozproszenia
Fragmentacja pocisków
Wybrane zagadnienia spektroskopii jądrowej 2004 Fragmentacja pocisków Marek Pfützner 823 18 96 pfutzner@mimuw.edu.pl http://zsj.fuw.edu.pl/pfutzner Plan wykładu 1. Wiązki radioaktywne i główne metody ich
doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)
1 doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e) Ilość protonów w jądrze określa liczba atomowa Z Ilość
NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA
ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.
Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura
14. Fizyka jądrowa zadania z arkusza I 14.10 14.1 14.2 14.11 14.3 14.12 14.4 14.5 14.6 14.13 14.7 14.8 14.14 14.9 14. Fizyka jądrowa - 1 - 14.15 14.23 14.16 14.17 14.24 14.18 14.25 14.19 14.26 14.27 14.20
Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α
Zadanie: 1 (2 pkt) Określ liczbę atomową pierwiastka powstającego w wyniku rozpadów promieniotwórczych izotopu radu 223 88Ra, w czasie których emitowane są 4 cząstki α i 2 cząstki β. Podaj symbol tego
Zespół Zakładów Fizyki Jądrowej
gluons Zespół Zakładów Fizyki Jądrowej Zakład Fizyki Hadronów Zakład Doświadczalnej Fizyki Cząstek i jej Zastosowań Zakład Teorii Układów Jądrowych QCD Zakład Fizyki Hadronów Badanie struktury hadronów,
przyziemnych warstwach atmosfery.
Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych
Elementy Fizyki Jądrowej. Wykład 8 Rozszczepienie jąder i fizyka neutronów
Elementy Fizyki Jądrowej Wykład 8 Rozszczepienie jąder i fizyka neutronów Rozszczepienie lata 30 XX w. poszukiwanie nowych nuklidów n + 238 92U 239 92U + reakcja przez jądro złożone 239 92 U 239 93Np +
Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.
Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą
CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra
CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba
Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.
Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą
Wszechświat czastek elementarnych
Wykład 2: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2: Detekcja Czastek 27 lutego 2008 p.1/36 Wprowadzenie Istota obserwacji w świecie czastek
Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka
Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym Praca zbiorowa pod redakcją Jana Skowronka GŁÓWNY INSTYTUT GÓRNICTWA Katowice 2007 SPIS TREŚCI WPROWADZENIE (J. SKOWRONEK)...
CEL 4. Natalia Golnik
Etap 15 Etap 16 Etap 17 Etap 18 CEL 4 OPRACOWANIE NOWYCH LUB UDOSKONALENIE PRZYRZĄDÓW DO POMIARÓW RADIOMETRYCZNYCH Natalia Golnik Narodowe Centrum Badań Jądrowych UWARUNKOWANIA WYBORU Rynek przyrządów
Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów
Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów UW Marcin Palacz Warsztaty ŚLCJ, 21 kwietnia 2009 slide 1 / 30 Rodzaje
Autorzy: Zbigniew Kąkol, Piotr Morawski
Rodzaje rozpadów jądrowych Autorzy: Zbigniew Kąkol, Piotr Morawski Rozpady jądrowe zachodzą zawsze (prędzej czy później) jeśli jądro o pewnej liczbie nukleonów znajdzie się w stanie energetycznym, nie
A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów
Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów.
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. prof. dr hab. Marta Kicińska-Habior Wydział Fizyki UW Zakład Fizyki Jądra Atomowego e-mail: Marta.Kicinska-Habior@fuw.edu.pl
Rok akademicki: 2030/2031 Kod: STC OS-s Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Radioaktywność w środowisku Rok akademicki: 2030/2031 Kod: STC-2-212-OS-s Punkty ECTS: 2 Wydział: Energetyki i Paliw Kierunek: Technologia Chemiczna Specjalność: Ochrona środowiska w energetyce
γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego
γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne
Reakcje jądrowe dr inż. Romuald Kędzierski
Reakcje jądrowe dr inż. Romuald Kędzierski Wybuch bomby Ivy Mike (fot. National Nuclear Security Administration/Nevada Site Office, domena publiczna) Przemiany jądrowe 1. Spontaniczne (niewymuszone) związane
PRACOWNIA JĄDROWA ĆWICZENIE 4. Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 4 Badanie rozkładu gęstości strumienia kwantów γ oraz mocy dawki w funkcji odległości od źródła punktowego Łódź 017 I.
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 329, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 2 sprawdziany (10 pkt każdy) lub egzamin (2 części po 10 punktów) 10.1 12 3.0 12.1 14 3.5 14.1 16 4.0 16.1 18 4.5 18.1 20 5.0
O egzotycznych nuklidach i ich promieniotwórczości
O egzotycznych nuklidach i ich promieniotwórczości Marek Pfützner Instytut Fizyki Doświadczalnej Uniwersytet Warszawski Tydzień Kultury w VIII LO im. Władysława IV, 13 XII 2005 Instytut Radowy w Paryżu
Reakcje jądrowe. kanał wyjściowy
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
Rozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa
Rozpad alfa Samorzutny rozpad jądra (Z,A) na cząstkę α i jądro (Z-2,A-4) tj. rozpad 2-ciałowy, stąd Widmo cząstek α jest dyskretne bo przejścia zachodzą między określonymi stanami jądra początkowego i
Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2
Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie
OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość
OCHRONA RADIOLOGICZNA PACJENTA Promieniotwórczość PROMIENIOTWÓRCZOŚĆ (radioaktywność) zjawisko samorzutnego rozpadu jąder atomowych niektórych izotopów, któremu towarzyszy wysyłanie promieniowania α, β,
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego
SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW Szacowanie pochłoniętej energii promieniowania jonizującego W celu analizy narażenia na promieniowanie osoby, której podano radiofarmaceutyk, posłużymy się
Jądra o wysokich energiach wzbudzenia
Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym
Fizyka promieniowania jonizującego. Zygmunt Szefliński
Fizyka promieniowania jonizującego Zygmunt Szefliński 1 Wykład 3 Ogólne własności jąder atomowych (masy ładunki, izotopy, izobary, izotony izomery). 2 Liczba atomowa i masowa Liczba nukleonów (protonów
Marek Kowalski
Jak zbudować eksperyment ALICE? (A Large Ion Collider Experiment) Jeszcze raz diagram fazowy Interesuje nas ten obszar Trzeba rozpędzić dwa ciężkie jądra (Pb) i zderzyć je ze sobą Zderzenie powinno być
Energetyka konwencjonalna odnawialna i jądrowa
Energetyka konwencjonalna odnawialna i jądrowa Wykład 9-4.XII.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad gamma 152 Dy * 152 Dy+gamma
mgr inż. Stefana Korolczuka
Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych Warszawa, 23 maja 2017 r. D z i e k a n a t Uprzejmie informuję, że na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej
J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej
J7 - Badanie zawartości manganu w stali metodą analizy aktywacyjnej Celem doświadczenie jest wyznaczenie zawartości manganu w stalowym przedmiocie. Przedmiot ten, razem z próbką zawierającą czysty mangan,
Jądra dalekie od stabilności
Jądra dalekie od stabilności 1. Model kroplowy jądra atomowego. Ścieżka stabilności b 3. Granice Świata nuklidów 4. Rozpady z emisją ciężkich cząstek naładowanych a) rozpad a b) rozpad protonowy c) rozpad
Promieniowanie jądrowe w środowisku człowieka
Promieniowanie jądrowe w środowisku człowieka Prof. dr hab. ndrzej Płochocki (z wykorzystaniem elementów wykładu dr Piotra Jaracza) Cz. 1. Podstawowe własności jąder atomowych, jądra nietrwałe, elementy
Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu
Spis treści 1 Trwałość jądra atomowego 2 Okres połowicznego rozpadu 3 Typy przemian jądrowych 4 Reguła przesunięć Fajansa-Soddy ego 5 Szeregi promieniotwórcze 6 Typy reakcji jądrowych 7 Przykłady prostych
Eksperymenty z wykorzystaniem wiązek radioaktywnych
Eksperymenty z wykorzystaniem wiązek radioaktywnych 1. Co to są wiązki radioaktywne 2. Metody wytwarzania wiązek radioaktywnych 3. Ośrodki wytwarzające wiązki radioaktywne 4. Nowe zagadnienia możliwe do
r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1
r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów
Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET
18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia
Podstawy fizyki subatomowej. 3 kwietnia 2019 r.
Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.
Jądra o wysokich energiach wzbudzenia
Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym
Fizyka cząstek elementarnych warsztaty popularnonaukowe
Fizyka cząstek elementarnych warsztaty popularnonaukowe Spotkanie 3 Porównanie modeli rozpraszania do pomiarów na Wielkim Zderzaczu Hadronów LHC i przyszłość fizyki cząstek Rafał Staszewski Maciej Trzebiński
J6 - Pomiar absorpcji promieniowania γ
J6 - Pomiar absorpcji promieniowania γ Celem ćwiczenia jest pomiar współczynnika osłabienia promieniowania γ w różnych absorbentach przy użyciu detektora scyntylacyjnego. Materiał, który należy opanować
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 11 Zastosowania fizyki jądrowej w medycynie Medycyna nuklearna Medycyna nuklearna - dział medycyny zajmujący się bezpiecznym zastosowaniem izotopów
FIZYKA IV etap edukacyjny zakres podstawowy
FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie
Promieniowanie kosmiczne składa się głównie z protonów, z niewielką. domieszką cięższych jąder. Przechodząc przez atmosferę cząstki
Odkrycie hiperjąder Hiperjądra to struktury jądrowe w skład których, poza protonami I neutronami, wchodzą hiperony. Odkrycie hiperjąder miało miejsce w 1952 roku, 60 lat temu, w Warszawie. Wówczas nie
Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski
Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega
Promieniowanie w naszych domach. I. Skwira-Chalot
Promieniowanie w naszych domach I. Skwira-Chalot Co to jest promieniowanie jonizujące? + jądro elektron Rodzaje promieniowania jonizującego Przenikalność promieniowania L. Dobrzyński, E. Droste, W. Trojanowski,
Reakcje rozpadu jądra atomowego
Reakcje rozpadu jądra atomowego O P R A C O W A N I E : P A W E Ł Z A B O R O W S K I K O N S U L T A C J A M E R Y T O R Y C Z N A : M A Ł G O R Z A T A L E C H Trwałość izotopów Czynnikiem decydującym
AKCELERATORY I DETEKTORY WOKÓŁ NAS
AKCELERATORY I DETEKTORY WOKÓŁ NAS AKCELERATOR W CERN Chociaż akceleratory zostały wynalezione dla fizyki cząstek elementarnych, to tysięcy z nich używa się w innych gałęziach nauki, a także w przemyśle
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania
WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych
WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych WSTĘP I. ROZPAD PROMIENIOTWÓRCZY I RODZAJE PROMIENIOWANIA JĄDROWEGO Rozpadem promieniotwórczym (przemianą promieniotwórczą)
Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu
Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład IV Krzysztof Golec-Biernat Promieniotwórczość naturalna Uniwersytet Rzeszowski, 22 listopada 2017 Wykład IV Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 21 Reakcja
Zgodnie z rozporządzeniem wczesne wykrywanie skażeń promieniotwórczych należy do stacji wczesnego ostrzegania, a pomiary są prowadzone w placówkach.
Rozporządzenie Rady Ministrów z dnia 17 grudnia 2002 r. w sprawie stacji wczesnego wykrywania skażeń promieniotwórczych i placówek prowadzących pomiary skażeń promieniotwórczych Joanna Walas Łódź, 2014
Pomiar stężenia radonu i jego pochodnych w powietrzu atmosferycznym
Wydział Fizyki PW - Laboratorium Fizyki i Techniki Jądrowej Pomiar stężenia radonu i jego pochodnych w powietrzu atmosferycznym Kalina Mamont-Cieśla 1, Magdalena Piekarz 1, Jan Pluta 2 -----------------------------------------------------------------
Theory Polish (Poland)
Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa
Ćwiczenie 3++ Spektrometria promieniowania gamma z licznikiem półprzewodnikowym Ge(Li) kalibracja energetyczna i wydajnościowa Cel ćwiczenia Celem ćwiczenia jest zapoznanie się - z metodyką pomiaru aktywności
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo
Radon w powietrzu. Marcin Polkowski 10 marca Wstęp teoretyczny 1. 2 Przyrządy pomiarowe 2. 3 Prędkość pompowania 2
Radon w powietrzu Marcin Polkowski marcin@polkowski.eu 10 marca 2008 Streszczenie Celem ćwiczenia był pomiar stężenia 222 Rn i produktów jego rozpadu w powietrzu. Pośrednim celem ćwiczenia było również
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6. Wyznaczanie krzywej aktywacji
Katedra Fizyki Jądrowej i Bezpieczeństwa Radiacyjnego PRACOWNIA JĄDROWA ĆWICZENIE 6 Wyznaczanie krzywej aktywacji Łódź 2017 I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie kształtu krzywej zależności
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania
WSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
Badanie próbek środowiskowych
J16 Badanie próbek środowiskowych Celem ćwiczenia jest pomiar promieniowania gamma emitowanego z próbki trynitytu oraz identyfikacja i określenie aktywności izotopów w niej zawartych. Trynityt to szkliwo
Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A)
PRZYKŁADOW SPRAWDZIANY WIADOMOŚCI l UMIJĘTNOŚCI Współczesny model budowy atomu (wersja A) 1. nuklid A. Zbiór atomów o tej samej wartości liczby atomowej. B. Nazwa elektrycznie obojętnej cząstki składowej
Promieniowanie w środowisku człowieka
Promieniowanie w środowisku człowieka Jeżeli przyjrzymy się szczegółom mapy nuklidów zauważymy istniejące w przyrodzie w stosunkowo dużych ilościach nuklidy nietrwałe. Ich czasy zaniku są duże, większe
Wstęp do fizyki jądrowej Tomasz Pawlak, 2013
24-06-2007 Wstęp do fizyki jądrowej Tomasz Pawlak, 2013 część 1 własności jąder (w stanie podstawowym) składniki jąder przekrój czynny masy jąder rozmiary jąder Rutherford (1911) Ernest Rutherford (1871-1937)
Pomiar maksymalnej energii promieniowania β
Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE 7 L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Pomiar maksymalnej
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora
Promieniowanie jonizujące
Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze
Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony
Zadanie 1. (1 pkt) W jednym z naturalnych szeregów promieniotwórczych występują m.in. trzy izotopy polonu, których okresy półtrwania podano w nawiasach: Po-218 (T 1/2 = 3,1minuty), Po-214 (T 1/2 = 0,0016
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro
Optyka falowa. Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła
Optyka falowa Optyka falowa zajmuje się opisem zjawisk wynikających z falowej natury światła Optyka falowa Fizjologiczne, fotochemiczne, fotoelektryczne działanie światła wywołane jest drganiami wektora
Podstawy Fizyki Jądrowej
Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA (zalecana): Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu
PROMIENIOTWÓRCZOŚĆ. A) równa B) mniejsza C) większa D) nie mniejsza (sumie) od sumy mas protonów i neutronów wchodzących w jego skład.
1. Promień atomu jest większy od promienia jądra atomu PROMIENIOTWÓRCZOŚĆ A) 5 razy. B) 100 razy. C) 10 5 razy. D) terminy promień atomu i promień jądra są synonimami. 2. Jeśliby, zachowując skalę, powiększyć
W2. Struktura jądra atomowego
W2. Struktura jądra atomowego Doświadczenie Rutherforda - badanie odchylania wiązki cząstek alfa w cienkiej folii metalicznej Hans Geiger, Ernest Marsden, Ernest Rutherford ( 1911r.) detektor pierwiastek
promieniowania Oddziaływanie Detekcja neutronów - stosowane reakcje (Powtórka)
Wykład na Studiach Podyplomowych "Energetyka jądrowa we współczesnej elektroenergetyce", Kraków, 4 maj DETEKCJA NEUTRONÓW JERZY JANCZYSZYN Oddziaływanie promieniowania (Powtórka) Cząstki naładowane oddziałują