Technologie zarządzania wiedzą

Wielkość: px
Rozpocząć pokaz od strony:

Download "Technologie zarządzania wiedzą"

Transkrypt

1 Technologie zarządzania wiedzą 1

2 Tendencje w biznesie Źródło: Gladstone, B., From Know-How to Knowledge The Essential Guide to Understanding and Implementing Knowledge Management (za: Brdulak, J., Zarządzanie wiedzą co to jest i po co to jest?, materiały dydaktyczne do przedmiotu Zarządzanie Wiedzą, Szkoła Główna Handlowa w Warszawie) Technologie zarządzania wiedzą 2 Żyjemy coraz szybciej. Cykl życia produktu i czas jego obecności na rynku zmniejszają się. Produkty stają się coraz bardziej spersonalizowane. Coraz częściej aby spełnić jakąś potrzebę klienta, trzeba ją najpierw stworzyć. 2

3 Modne hasło: zarządzanie wiedzą Wiedza najcenniejszy zasób w organizacji. Zarządzanie wiedzą: powstawanie wiedzy, przesyłanie wiedzy (dzielenie się wiedzą), wykorzystanie wiedzy. Robotnicy wiedzy (knowledge workers) Technologie zarządzania wiedzą 3 Powoduje to, że coraz więcej organizacji (nawet typowo produkcyjnych) musi opierać się na wiedzy. Dlatego zarządzanie wiedzą stało się w ostatnich latach modnym terminem. Powstał wręcz termin knowledge workers, oznaczający osoby, których podstawowym narzędziem pracy jest umysł, zaś materiałem wiedza (kiedyś w Polsce używało się terminu pracownik umysłowy, ale to chyba jednak nie to samo). Wiedza jest jedynym zasobem, którego ilość gdy się go wykorzystuje nie zmniejsza się, ale wręcz zwiększa. Tej cechy nie mają takie zasoby jak węgiel, stal czy papier do drukarki. 3

4 Wiedza dostępna i ukryta Wiedza dostępna (explicit, focal knowledge): wiedza, którą udało się przedstawić za pomocą słów, liczb, znaków, symboli, przez co stała się usystematyzowana i łatwa do przekazania. Wiedza ukryta (tacit knowledge): wiedza, z której istnienia zdajemy sobie sprawę, i którą wykorzystujemy w codziennym życiu, ale nie potrafimy do końca wyjaśnić jej istoty, przez co jej formalizacja i przekazanie innym jest bardzo trudne. Źródło: Brdulak, J., Zarządzanie wiedzą co to jest i po co to jest?, materiały dydaktyczne do przedmiotu Zarządzanie Wiedzą, Szkoła Główna Handlowa w Warszawie Technologie zarządzania wiedzą 4 Z wiedzą dostępną zwykle nie mamy problemu zapisujemy ją w dokumentach, a jeśli mamy dużo dokumentów, możemy korzystać z systemów zarządzania dokumentami. Cała sztuka polega na choćby częściowym opisaniu i przekazaniu wiedzy ukrytej. 4

5 Wiedza a kultura organizacyjna Psychologiczne bariery przepływu wiedzy: dzieląc się wiedzą oddajesz część swojej władzy, gromadzisz wiedzę masz władzę budujesz swój autorytet, korzystając z cudzej wiedzy przyznajesz, że jesteś niekompetentny, gdy pożyczam czyjąś wiedzę, muszę samemu sobie przyznać, że potrzebuję pomocy, muszę okazać swoją słabość. Motywowanie do dzielenia się wiedzą: ocenianie pracowników, udział w efektach wykorzystania wiedzy, tworzenie warunków do wymiany wiedzy: czas i miejsce, technologia. Na podstawie: Fazlagić, A., Jak motywować do dzielenia się wiedzą, Technologie zarządzania wiedzą 5 Dzielenie się wiedzą jest przede wszystkim aspektem organizacyjnym, a nie technologicznym. Sprawne dzielenie się wiedzą wymaga odpowiedniej kultury organizacyjnej, niwelującej psychologiczne bariery przepływu wiedzy. Braku takiej kultury organizacyjnej nie da się zastąpić wdrożeniem nawet najlepszego systemu zarządzania wiedzą, gdyż będzie on po prostu nieużywany. Technologia jest jedynie jednym z czynników usprawniających wymianę wiedzy, o ile ona w ogóle w organizacji występuje. 5

6 Rozwiązania technologiczne System plików (na dysku sieciowym). System zarządzania dokumentami/treścią: metainformacje, workflow, wersje, uprawnienia,..., Intranet zarządzanie i publikowanie treści w jednym. Portal korporacyjny: każdy jest zarówno czytelnikiem, jak i autorem, udostępnianie zintegrowanej informacji z: systemów biznesowych organizacji, Internetu; jednokrotna autoryzacja dostępu do wszystkich zasobów, personalizacja. Czy to jest zarządzanie wiedzą? Technologie zarządzania wiedzą 6 Często zdarza się, że zwykłe systemy zarządzania dokumentami czy portale korporacyjne są oferowane pod etykietką system zarządzania wiedzą. Warto więc zwrócić uwagę na to, czy rzekomy system zarządzania wiedzą nie jest po prostu zwykłym portalem korporacyjnym. 6

7 Czym tak na prawdę jest wiedza? To więcej niż: informacja, tekst, dokument. To sieć powiązań, relacji, skojarzeń między informacjami, doświadczeniami, spostrzeżeniami. Tymczasem: systemy zarządzania dokumentami, systemy zarządzania treścią, portale korporacyjne operują na dokumentach! Technologie zarządzania wiedzą 7 Systemy zarządzania dokumentami i portale operują bowiem na dokumentach, a wiedza to coś więcej niż tylko treść dokumentów. 7

8 Wiedza a technologia Modelowanie wiedzy: ontologia schemat modelowanej dziedziny: typy pojęć, typy relacji między pojęciami, mapa wiedzy: abstrakcyjne pojęcia, powiązania między pojęciami, dokumenty przyczepione do pojęć. System zarządzania wiedzą: budowanie ontologii, budowanie, rozwijanie mapy wiedzy, nawigacja po mapie wiedzy Technologie zarządzania wiedzą 8 Nie da się sformalizować całej wiedzy ukrytej, ale przynajmniej jej najistotniejszą część można opisać przy pomocy mapy wiedzy, zbudowanej wg określonego schematu, specyficznego dla danej dziedziny, zwanego ontologią. Treścią takiej mapy wiedzy są pojęcia, reprezentujące rzeczywiste byty, oraz powiązania pomiędzy tymi pojęciami. 8

9 Ontologia Ontologia dział filozofii zajmujący się ogólną teorią bytu, charakterem i strukturą rzeczywistości. Słownik wyrazów obcych i zwrotów obcojęzycznych Władysława Kopalińskiego, Ontologia stanowi wspólną reprezentację pewnej dziedziny działalności ludzkiej, która może być wykorzystana jako platforma porozumienia pozwalająca na spójne podejście do rozwiązywania problemów w tej dziedzinie. Ontologia obejmuje pewną wizję świata ograniczoną do danej dziedziny. Taka wizja zazwyczaj jest wyrażana jako zbiór pojęć, definicji tych pojęć oraz ich wzajemnych powiązań. Taką reprezentację dziedziny nazywamy często jej konceptualizacją Źródło: Uschold, M., Artificial Intelligence Application Institute, University of Edinburgh Za: Staniszkis, W., Architektura systemów zarządzania wiedzą, Rodan Systems S.A Technologie zarządzania wiedzą 9 Słowo ontologia ma znaczenie znacznie szersze, niż tylko w kontekście tworzenia map wiedzy. Ale w naszym rozumieniu ontologia oznacza pewien abstrakcyjny model tego wycinka rzeczywistości, który nas interesuje. 9

10 Mapa wiedzy przykład ryba rodzaj śledź rodzaj śledź świeży główny składnik śledzie w oliwie grupa rodzaj śledź solony przygotowywany z śledzie główny składnikw śmietanie grupa składnik podobny do danie rybne suszona pietruszka można zastąpić natka pietruszki Technologie zarządzania wiedzą 1 Pojęcia w tym przykładzie reprezentują przepisy kulinarne oraz składniki tych przepisów. W powiązaniach między pojęciami jest zakodowana wiedza doświadczonego kucharza np. o tym, że jeden składnik można bez większej straty jakościowej zastąpić innym składnikiem. 1

11 Ontologia przykład Typy pojęć: przepis, grupa przepisów, składnik. Relacje: składnik wchodzi w skład przepisu, składnik jest głównym składnikiem przepisu, składnik jest rodzaju składnik, składnik jest przygotowywany ze składnika, składnik można zastąpić składnikiem, przepis należy do grupy przepisów, przepis jest podobny do przepisu Technologie zarządzania wiedzą 11 Ontologia definiuje typy pojęć oraz dopuszczalne powiązania. W ten sposób ontologia porządkuje modelowany przez nas wycinek rzeczywistości. 11

12 Wiedza operacyjna a wiedza abstrakcyjna Wiedza operacyjna: opisuje konkretne instancje obiektów i ich własności, np.: klienta Jana Kowalskiego, polisę nr /22; często się zmienia, ma charakter relacji bazodanowych. Wiedza abstrakcyjna: opisuje własności abstrakcyjnych bytów (klas obiektów), np: zakres ubezpieczenia terminowego na życie; nie zmienia się w wyniku działalności operacyjnej, ma charakter luźnej sieci powiązań Technologie zarządzania wiedzą 12 Wiedzę wykorzystywaną w organizacjach (i modelowaną w mapach wiedzy) możemy podzielić na operacyjną i abstrakcyjną. Oczywiście podział ten ma charakter akademicki pozwala nam uzmysłowić sobie różnicę, ale tak na prawdę rzadko występuje w czystej postaci w przyrodzie. Często bowiem łączymy w mapie wiedzy elementy wiedzy abstrakcyjnej oraz operacyjnej, np. opisując w części abstrakcyjnej własności ubezpieczenia terminowego na życie, oraz dla konkretnych polis z części operacyjnej określając ich rodzaj poprzez powiązania z obiektami części abstrakcyjnej. Najczęściej wiedza operacyjna to po prostu zwykła baza danych. Wydaje się jednak, że nazywanie np. bazy klientów i zamówień systemem zarządzania wiedzą byłoby lekką przesadą. 12

13 Korzenie: sztuczna inteligencja Sztuczna inteligencja: nauka o mechanizmach racjonalnego działania oraz budowaniu algorytmów stosujących te mechanizmy, intensywnie rozwijana w latach 7-tych. Obszary zainteresowań: przetwarzanie języka naturalnego, reprezentacja wiedzy, automatyczne wnioskowanie, uczenie maszynowe. systemy eksperckie. Sztuczna inteligencja a zarządzanie wiedzą: to człowiek, a nie maszyna, wykorzystuje wiedzę, problemem jest efektywny dostęp do zgromadzonej wiedzy Technologie zarządzania wiedzą 13 Każdy zapewne słyszał hasło sztuczna inteligencja. Nie każdy wie, że jest to poważna gałąź informatyki, której rozwój zaowocował opracowaniem zaawansowanych sposobów reprezentacji wiedzy (takich jak sieci semantyczne) oraz algorytmów wykorzystania tej wiedzy np. poprzez automatyczne wnioskowanie. Mechanizmy te były i są wykorzystywane w tzw. systemach eksperckich, które zawierają zakodowaną wiedzę eksperta z danej dziedziny, dzięki czemu mogą pomóc np. w postawieniu diagnozy pacjenta na podstawie objawów, czy też określeniu ryzyka ubezpieczeniowego na podstawie charakterystyki klienta. Uczenie maszynowe polega na reagowaniu przez algorytm na bodźce uczące (przykładowe poprawne wyniki). Algorytm dostosowuje się do nich, potrafiąc w rezultacie rozwiązać przypadki podobne do nich. Najbardziej znanym mechanizmem uczenia maszynowego są sieci neuronowe, których podstawą jest matematyczny model neuronu. 13

14 Mapa wiedzy a dokumenty Wiedza zawarta w: pojęciach i powiązaniach w mapie wiedzy, treści dokumentów. Warstwa pojęć Poeta Szekspir autor napisał dzieło Hamlet biografia zdjęcie treść Warstwa dokumentów Szekspir biografia Hamlet by W. Shakespeare Technologie zarządzania wiedzą 14 Dokumenty nie należą w zasadzie do mapy wiedzy, lecz tworzą osobną warstwę dokumentów, które możemy dowiązać do pojęć mapy wiedzy, określając w ten sposób semantykę tych pojęć. Rozdział ten jest istotny, ponieważ wiedza jest zakodowana nie tylko w samej mapie wiedzy, ale także w treści dokumentów. Aby więc móc korzystać ze zgromadzonej wiedzy w sposób pełny, musimy potrafić w łatwy sposób znaleźć dokumenty zawierające interesującą nas treść. 14

15 Mapy wiedzy technologia Kodowanie map wiedzy: RDF Resource Description Framework, Topic Maps. Języki zapytań o zawartość mapy wiedzy: RDQL Resource Description Query Language, TMQL Topic Map Query Language. Budowanie ontologii: OWL Web Ontology Language. Automatyczne wnioskowanie (tworzenie nowych powiązań) na podstawie zawartości mapy wiedzy i określonych reguł wnioskowania Technologie zarządzania wiedzą 15 15

16 Jak dotrzeć do wiedzy zawartej w dokumentach? Znajdowanie właściwych dokumentów: nawigacja po mapie wiedzy, wyszukiwanie pełnotekstowe: często wystarczy odnaleźć rozwiązanie podobne, na czym polega podobieństwo? jak je wyrazić? Wyszukując w treści dokumentów, powinniśmy uwzględnić: wiedzę zakodowaną w mapie wiedzy o zależnościach między pojęciami, wiedzę ukrytą. Rozwiązanie: wyszukiwanie wsparte modelem wiedzy Technologie zarządzania wiedzą 16 Komplementarną do nawigacji po mapie wiedzy metodą dotarcia do właściwej informacji jest wyszukiwanie w treści dokumentów. Jednak zwykłe wyszukiwanie pełnotekstowe nie rozwiązuje problemu, ponieważ nie uwzględnia wiedzy, którą zawarliśmy w mapie wiedzy. Nie uwzględnia także wiedzy ukrytej, którą każdy ekspert posiada i na co dzień z niej korzysta, lecz z oczywistych powodów nie posiada jej system komputerowy. Chodzi tu np. o wiedzę o synonimach, terminach bliskoznacznych, czy też podobieństwach między podstawowymi terminami (np. o tym,że śledź jest rodzajem ryby). Mechanizm wyszukiwania wspartego modelem wiedzy pozwala wykorzystać tego typu wiedzę podczas wyszukiwania, skutkiem czego w wyniku wyszukiwania otrzymujemy nie tylko dokumenty zawierające szukany termin, ale też terminy podobne czy synonimy. 16

17 Wyszukiwanie a wiedza Wyszukiwanie wsparte modelem wiedzy: konfrontuje zapytanie z modelem wiedzy, znajduje dokumenty semantycznie odpowiadające zapytaniu. wiedza zapytanie baza wiedzy dane i dokumenty inteligentne odpowiedzi Technologie zarządzania wiedzą 17 Każda wyszukiwarka przeszukuje zawartość danych i dokumentów. Wyszukiwarka wsparta modelem wiedzy dodatkowo wykorzystuje podczas budowania indeksu oraz wyszukiwania informacje zawarte w modelu wiedzy. Dzięki temu wyniki wyszukiwania uwzględniają pewną wiedzę na temat podobieństw pojęć. 17

18 Model wiedzy przykład Typ: składnik. Wartości i podobieństwa: koperek suszona pietruszka natka pietruszki śledź solony śledź świeży śledź śledź 1 1 śledź świeży 1 9 śledź solony natka pietruszki suszona pietruszka koperek Technologie zarządzania wiedzą 18 Model wiedzy dla wyszukiwarki różni się od mapy wiedzy, po której można nawigować, i jest oparty na podobieństwach pojęć. Typy pojęć, pojęcia oraz podobieństwa pomiędzy nimi trzeba określić metodą ekspercką. Tabela podobieństw nie musi być symetryczna podobieństwo może być inne, gdy szukamy pojęcia śledź solony, a w dokumencie znajduje się śledź świeży, a inne w sytuacji odwrotnej. 18

19 Model wiedzy przykład Typ: kaloryczność Funkcja podobieństwa: 1% szukana wartość Technologie zarządzania wiedzą 19 Wiedzę na temat wielkości liczbowych można zapisywać w postaci funkcji podobieństwa. Dzięki temu poszukiwanie potraw o podanej kaloryczności zwróci także potrawy o kaloryczności niższej oraz nieznacznie wyższej. 19

20 Semantic Web The Semantic Web will bring structure to the meaningful content of Web pages, creating an environment where software agents roaming from page to page can readily carry out sophisticated tasks for users. Tim Berners-Lee, Scientific American, May 21 Internetowa infrastruktura publikacji danych: neutralna (niezależna od aplikacji), umożliwiająca przetwarzanie informacji przez programy w celu: automatyzacji, agregacji, wielokrotnego użycia. To jest ciągle wizja: zdania nie oznaczają faktów, potrzebna jest kodyfikacja wiedzy codziennej, pojawiają się problemy związane z etyką oraz bezpieczeństwem. Pojawiają się pierwsze technologie Technologie zarządzania wiedzą 2 Sformułowana w 21 roku przez twórcę Internetu Tima Bernersa-Lee wizja Semantic Web to sieć, w której informacje są nie tylko czytane przez ludzi na stronach internetowych, ale także wykorzystywane przez komunikujące się ze sobą inteligentne agenty pomagające nam w prostych zadaniach, takich jak umówienie się do lekarza czy zorganizowanie spotkania. Aby było to możliwe, informacje publikowane i wymieniane w sieci muszą mieć zamiast formy tekstowej postać strukturalną, nadającą się do automatycznego przetworzenia. Co więcej, musi być określone znaczenie wymienianych w te sposób danych (np. danych o wolnych terminach lekarza). Jest to ciągle wizja przyszłości, choć pierwsze prototypowe rozwiązania już powstają. 2

21 Gdzie szukać dalej egov.pl Forum Nowoczesnej Administracji Publicznej Opracowania Zarządzanie wiedzą Fazlagić, A., publikacje n/t zarządzania wiedzą e-mentor czasopismo internetowe Szkoły Głównej Handlowej w Warszawie e-mentor.edu.pl/archiwum.php?id_kategorii=2 Gotcha! On target for the needs of the knowledge management community Technologie zarządzania wiedzą 21 21

22 Gdzie szukać dalej Bray. T., What Is RDF? topicmap.com Hand-crafted Machine-generated Knowledge Interchange Learn more about Topic Maps Berners-Lee, T., Lassila, O., Hendler, J., Semantic Web Scientific American, May 21 modul4/rawdata/article.html Technologie zarządzania wiedzą 22 22

Tendencje w biznesie. Technologie zarządzania wiedzą. Modne hasło: zarządzanie wiedzą. Wiedza dostępna i ukryta. Piramida wiedzy

Tendencje w biznesie. Technologie zarządzania wiedzą. Modne hasło: zarządzanie wiedzą. Wiedza dostępna i ukryta. Piramida wiedzy Tendencje w biznesie Technologie zarządzania wiedzą Źródło: Gladstone, B., From Know-How to Knowledge The Essential Guide to Understanding and Implementing Knowledge Management (za: Brdulak, J., wiedzą

Bardziej szczegółowo

Technologie zarządzania wiedzą

Technologie zarządzania wiedzą Technologie zarządzania wiedzą 1 Tendencje w biznesie Źródło: Gladstone, B., From Know-How to Knowledge The Essential Guide to Understanding and Implementing Knowledge Management (za: Brdulak, J., Zarządzanie

Bardziej szczegółowo

2

2 1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem

Bardziej szczegółowo

Technologie zarządzania wiedzą. Szymon Zioło.

Technologie zarządzania wiedzą. Szymon Zioło. Technologie zarządzania wiedzą Szymon Zioło sziolo@mimuw.edu.pl Tendencje w biznesie Źródło: Gladstone, B., From Know-How to Knowledge The Essential Guide to Understanding and Implementing Knowledge Management

Bardziej szczegółowo

Technologie zarządzania wiedzą

Technologie zarządzania wiedzą Technologie zarządzania wiedzą Szymon Zioło sziolo@mimuw.edu.pl Tendencje w biznesie Źródło: Gladstone, B., From Know-How to Knowledge The Essential Guide to Understanding and Implementing Knowledge Management

Bardziej szczegółowo

Modne hasło: zarządzanie wiedzą. Technologie wspierające zarządzanie wiedzą. Wiedza a kultura organizacyjna. Rozwiązania. Co autor miał na myśli

Modne hasło: zarządzanie wiedzą. Technologie wspierające zarządzanie wiedzą. Wiedza a kultura organizacyjna. Rozwiązania. Co autor miał na myśli Modne hasło: zarządzanie wiedzą Technologie wspierające zarządzanie wiedzą Wiedza najcenniejszy zasób w organizacji. Zarządzanie wiedzą: powstawanie wiedzy, przesyłanie wiedzy (dzielenie się wiedzą), wykorzystanie

Bardziej szczegółowo

Zarządzanie wiedzą. Technologie wspierające zarządzanie wiedzą. Modne hasło: zarządzanie wiedzą. Wiedza a kultura organizacyjna

Zarządzanie wiedzą. Technologie wspierające zarządzanie wiedzą. Modne hasło: zarządzanie wiedzą. Wiedza a kultura organizacyjna Zarządzanie wiedzą 18 grudnia 23 Technologie wspierające zarządzanie wiedzą Kontekst organizacyjny zarządzania wiedzą. Techniki wspierające zarządzanie wiedzą: sieci semantyczne / mapy wiedzy, wyszukiwanie

Bardziej szczegółowo

Zarządzanie wiedzą. Technologie wspierające zarządzanie wiedzą. Modne hasło: zarządzanie wiedzą. Wiedza a kultura organizacyjna.

Zarządzanie wiedzą. Technologie wspierające zarządzanie wiedzą. Modne hasło: zarządzanie wiedzą. Wiedza a kultura organizacyjna. Zarządzanie wiedzą Technologie wspierające zarządzanie wiedzą Kontekst organizacyjny zarządzania wiedzą. Techniki wspierające zarządzanie wiedzą: sieci semantyczne, wyszukiwanie wsparte modelem wiedzy.

Bardziej szczegółowo

3 grudnia Sieć Semantyczna

3 grudnia Sieć Semantyczna Akademia Górniczo-Hutnicza http://www.agh.edu.pl/ 1/19 3 grudnia 2005 Sieć Semantyczna Michał Budzowski budzow@grad.org 2/19 Plan prezentacji Krótka historia Problemy z WWW Koncepcja Sieci Semantycznej

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność

Bardziej szczegółowo

Wprowadzenie do teorii systemów ekspertowych

Wprowadzenie do teorii systemów ekspertowych Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział

Bardziej szczegółowo

Internet Semantyczny. Linked Open Data

Internet Semantyczny. Linked Open Data Internet Semantyczny Linked Open Data Dzień dzisiejszy database Internet Dzisiejszy Internet to Internet dokumentów (Web of Dokuments) przeznaczonych dla ludzi. Dzień dzisiejszy Internet (Web) to dokumenty

Bardziej szczegółowo

Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum

Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum Lp. Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum 1. Internet i sieci [17 godz.] 1 Sieci komputerowe. Rodzaje sieci, topologie, protokoły transmisji danych w sieciach. Internet jako sie rozległa

Bardziej szczegółowo

Semantic Web Internet Semantyczny

Semantic Web Internet Semantyczny Semantic Web Internet Semantyczny Semantyczny Internet - Wizja (1/2) Pomysłodawca sieci WWW - Tim Berners-Lee, fizyk pracujący w CERN Jego wizja sieci o wiele bardziej ambitna niż istniejąca obecnie (syntaktyczna)

Bardziej szczegółowo

Wykład I. Wprowadzenie do baz danych

Wykład I. Wprowadzenie do baz danych Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles

Bardziej szczegółowo

Ontologie, czyli o inteligentnych danych

Ontologie, czyli o inteligentnych danych 1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?

Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące

Bardziej szczegółowo

Tomasz Grześ. Systemy zarządzania treścią

Tomasz Grześ. Systemy zarządzania treścią Tomasz Grześ Systemy zarządzania treścią Co to jest CMS? CMS (ang. Content Management System System Zarządzania Treścią) CMS definicje TREŚĆ Dowolny rodzaj informacji cyfrowej. Może to być np. tekst, obraz,

Bardziej szczegółowo

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina

Bardziej szczegółowo

Zarządzanie wiedzą w instytucji naukowej cz. I

Zarządzanie wiedzą w instytucji naukowej cz. I Zarządzanie wiedzą w instytucji naukowej cz. I Jolanta Przyłuska Dział Zarządzania Wiedzą IMP Łódź Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego

Bardziej szczegółowo

Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.

Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK STUDIÓW INFORMATYCZNE TECHNIKI ZARZĄDZANIA

KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK STUDIÓW INFORMATYCZNE TECHNIKI ZARZĄDZANIA KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK STUDIÓW INFORMATYCZNE TECHNIKI ZARZĄDZANIA Nazwa kierunku studiów: Informatyczne Techniki Zarządzania Ścieżka kształcenia: IT Project Manager, Administrator Bezpieczeństwa

Bardziej szczegółowo

The Binder Consulting

The Binder Consulting The Binder Consulting Contents Indywidualne szkolenia specjalistyczne...3 Konsultacje dla tworzenia rozwiazan mobilnych... 3 Dedykowane rozwiazania informatyczne... 3 Konsultacje i wdrożenie mechanizmów

Bardziej szczegółowo

OBIEG INFORMACJI I WSPOMAGANIE DECYZJI W SYTUACJACH KRYZYSOWYCH

OBIEG INFORMACJI I WSPOMAGANIE DECYZJI W SYTUACJACH KRYZYSOWYCH OBIEG INFORMACJI I WSPOMAGANIE DECYZJI W SYTUACJACH KRYZYSOWYCH AGENDA Prezentacja firmy Tecna Informacja i jej przepływ Workflow i BPM Centralny portal informacyjny Wprowadzanie danych do systemu Interfejsy

Bardziej szczegółowo

Narzędzia Informatyki w biznesie

Narzędzia Informatyki w biznesie Narzędzia Informatyki w biznesie Przedstawiony program specjalności obejmuje obszary wiedzy informatycznej (wraz z stosowanymi w nich technikami i narzędziami), które wydają się być najistotniejsze w kontekście

Bardziej szczegółowo

Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.

Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej. Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja

Elementy kognitywistyki II: Sztuczna inteligencja Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu

Bardziej szczegółowo

Semantic Web. Grzegorz Olędzki. prezentacja w ramach seminarium Protokoły komunikacyjne. luty 2005

Semantic Web. Grzegorz Olędzki. prezentacja w ramach seminarium Protokoły komunikacyjne. luty 2005 Semantic Web Grzegorz Olędzki prezentacja w ramach seminarium Protokoły komunikacyjne luty 2005 Co to jest Semantic Web? "The Semantic Web is an extension of the current web in which information is given

Bardziej szczegółowo

SHAREPOINT SHAREPOINT QM SHAREPOINT DESINGER SHAREPOINT SERWER. Opr. Barbara Gałkowska

SHAREPOINT SHAREPOINT QM SHAREPOINT DESINGER SHAREPOINT SERWER. Opr. Barbara Gałkowska SHAREPOINT SHAREPOINT QM SHAREPOINT DESINGER SHAREPOINT SERWER Opr. Barbara Gałkowska Microsoft SharePoint Microsoft SharePoint znany jest również pod nazwą Microsoft SharePoint Products and Technologies

Bardziej szczegółowo

Pojęcie bazy danych. Funkcje i możliwości.

Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych Baza danych to: zbiór informacji zapisanych według ściśle określonych reguł, w strukturach odpowiadających założonemu modelowi danych, zbiór

Bardziej szczegółowo

Wprowadzenie do XML. Joanna Jędrzejowicz. Instytut Informatyki

Wprowadzenie do XML. Joanna Jędrzejowicz. Instytut Informatyki Instytut Informatyki Literatura http://www.w3c.org/tr/ - Technical Reports K. B. Stall - XML Family of Specifications, Addison-Wesley 2003 P. Kazienko, K. Gwiazda - XML na poważnie, Helion 2002 XML Rozszerzalny

Bardziej szczegółowo

Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol

Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział Informatyki i Zarządzania Kierunek studiów INFORMATYKA (INF) Stopień studiów - pierwszy Profil studiów - ogólnoakademicki Projekt v1.0 z 18.02.2015 Odniesienie do

Bardziej szczegółowo

BPM vs. Content Management. Jarosław Żeliński analityk biznesowy, projektant systemów

BPM vs. Content Management. Jarosław Żeliński analityk biznesowy, projektant systemów BPM vs. Content Management Jarosław Żeliński analityk biznesowy, projektant systemów Cel prezentacji Celem prezentacji jest zwrócenie uwagi na istotne różnice pomiędzy tym co nazywamy: zarzadzaniem dokumentami,

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Web 3.0 Sieć Pełna Znaczeń (Semantic Web) Perspektywy dla branży motoryzacyjnej i finansowej. Przyjęcie branżowe EurotaxGlass s Polska 10 luty 2012

Web 3.0 Sieć Pełna Znaczeń (Semantic Web) Perspektywy dla branży motoryzacyjnej i finansowej. Przyjęcie branżowe EurotaxGlass s Polska 10 luty 2012 Web 3.0 Sieć Pełna Znaczeń (Semantic Web) Perspektywy dla branży motoryzacyjnej i finansowej Przyjęcie branżowe EurotaxGlass s Polska 10 luty 2012 Web 3.0 - prawdziwa rewolucja czy puste hasło? Web 3.0

Bardziej szczegółowo

3.1. Na dobry początek

3.1. Na dobry początek Klasa I 3.1. Na dobry początek Regulamin pracowni i przepisy BHP podczas pracy przy komputerze Wykorzystanie komputera we współczesnym świecie Zna regulamin pracowni i przestrzega go. Potrafi poprawnie

Bardziej szczegółowo

Załącznik nr 1. Specyfikacja. Do tworzenia Mapy Kompetencji

Załącznik nr 1. Specyfikacja. Do tworzenia Mapy Kompetencji Załącznik nr 1 Specyfikacja Do tworzenia Mapy Kompetencji 1. Cel projektu Celem projektu jest utworzenie Mapy kompetencji. Ma ona zawierać informacje o kompetencjach, celach kształcenia, umożliwiać ich

Bardziej szczegółowo

Wprowadzenie do multimedialnych baz danych. Opracował: dr inż. Piotr Suchomski

Wprowadzenie do multimedialnych baz danych. Opracował: dr inż. Piotr Suchomski Wprowadzenie do multimedialnych baz danych Opracował: dr inż. Piotr Suchomski Wprowadzenie bazy danych Multimedialne bazy danych to takie bazy danych, w których danymi mogą być tekst, zdjęcia, grafika,

Bardziej szczegółowo

Topic Maps geneza. Modelowanie wiedzy. Pojęcia. Wystąpienia. Kompletny przykład. Powiązania. Firma. urodzony w. siedziba. stolica.

Topic Maps geneza. Modelowanie wiedzy. Pojęcia. Wystąpienia. Kompletny przykład. Powiązania. Firma. urodzony w. siedziba. stolica. Topic Maps geneza Modelowanie wiedzy W dzisiejszych czasach większość ludzi nie potrzebuje więcej informacji. Jeśli już, to potrzebują jej mniej, ponieważ już toną w ogromnych jej ilościach. Pepper, S.

Bardziej szczegółowo

Przetwarzanie języka naturalnego (NLP)

Przetwarzanie języka naturalnego (NLP) Przetwarzanie języka naturalnego (NLP) NLP jest dziedziną informatyki łączącą zagadnienia sztucznej inteligencji i lingwistyki zajmującą się automatyzacją analizy, rozumienia, tłumaczenia i generowania

Bardziej szczegółowo

Inteligentne Multimedialne Systemy Uczące

Inteligentne Multimedialne Systemy Uczące Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr

Bardziej szczegółowo

Proporcje podziału godzin na poszczególne bloki. Tematyka lekcji. Rok I. Liczba godzin. Blok

Proporcje podziału godzin na poszczególne bloki. Tematyka lekcji. Rok I. Liczba godzin. Blok Proporcje podziału godzin na poszczególne bloki Blok Liczba godzin I rok II rok Na dobry początek 7 Internet i gromadzenie danych 6 2 Multimedia 5 3 Edytory tekstu i grafiki 6 4 Arkusz kalkulacyjny 7 4

Bardziej szczegółowo

PROGRAM NAUCZANIA DLA I I II KLASY GIMNAZJUM

PROGRAM NAUCZANIA DLA I I II KLASY GIMNAZJUM PROGRAM NAUCZANIA DLA I I II KLASY GIMNAZJUM Proporcje podziału godzin na poszczególne bloki Blok Liczba godzin I rok II rok Na dobry początek 7 Internet i gromadzenie danych 6 2 Multimedia 5 3 Edytory

Bardziej szczegółowo

UCHWAŁA NR 46/2013. Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 19 września 2013 roku

UCHWAŁA NR 46/2013. Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 19 września 2013 roku UCHWAŁA NR 46/2013 Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 19 września 2013 roku w sprawie: korekty efektów kształcenia dla kierunku informatyka Na podstawie ustawy z dnia

Bardziej szczegółowo

Zarządzanie wiedzą jako element systemu zarządzania zasobami ludzkimi

Zarządzanie wiedzą jako element systemu zarządzania zasobami ludzkimi Zarządzanie wiedzą jako element systemu zarządzania zasobami ludzkimi Struktura prezentacji Czym jest wiedza? Zarządzanie wiedzą wybrane definicje Dlaczego warto zarządzać wiedzą? Zarządzanie wiedzą w

Bardziej szczegółowo

DLA SEKTORA INFORMATYCZNEGO W POLSCE

DLA SEKTORA INFORMATYCZNEGO W POLSCE DLA SEKTORA INFORMATYCZNEGO W POLSCE SRK IT obejmuje kompetencje najważniejsze i specyficzne dla samego IT są: programowanie i zarządzanie systemami informatycznymi. Z rozwiązań IT korzysta się w każdej

Bardziej szczegółowo

M T E O T D O ZI Z E E A LG L O G R O Y R TM

M T E O T D O ZI Z E E A LG L O G R O Y R TM O ALGORYTMACH I METODZIE ALGORYTMICZNEJ Czym jest algorytm? Czym jest algorytm? przepis schemat zestaw reguł [ ] program ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające

Bardziej szczegółowo

Szkolenie autoryzowane. MS Zaawansowany użytkownik programu SharePoint 2016

Szkolenie autoryzowane. MS Zaawansowany użytkownik programu SharePoint 2016 Szkolenie autoryzowane MS 55217 Zaawansowany użytkownik programu SharePoint 2016 Strona szkolenia Terminy szkolenia Rejestracja na szkolenie Promocje Opis szkolenia Szkolenie przeznaczone jest dla zaawansowanych

Bardziej szczegółowo

i działanie urządzeń związanych równieŝ budowę i funkcje urządzeń

i działanie urządzeń związanych równieŝ budowę i funkcje urządzeń Wymagania edukacyjne Informatyka III etap edukacyjny (gimnazjum) Uczeń potrafi I. Bezpiecznie posługiwać się komputerem i jego oprogramowaniem, wykorzystywać sieć komputerową; komunikować się za pomocą

Bardziej szczegółowo

Systemy ekspertowe i sztuczna inteligencja. dr Agnieszka Nowak Brzezioska

Systemy ekspertowe i sztuczna inteligencja. dr Agnieszka Nowak Brzezioska Systemy ekspertowe i sztuczna inteligencja dr Agnieszka Nowak Brzezioska Email: agnieszka.nowak@us.edu.pl Architektura SE Pojęcia z dziedziny systemów ekspertowych Inżynieria wiedzy - dziedzina sztucznej

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Tajemniczy ciąg Fibonacciego sztuka przygotowania dobrej prezentacji

SCENARIUSZ LEKCJI. Tajemniczy ciąg Fibonacciego sztuka przygotowania dobrej prezentacji SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Rozszerzenie funkcjonalności systemów wiki w oparciu o wtyczki i Prolog

Rozszerzenie funkcjonalności systemów wiki w oparciu o wtyczki i Prolog Knowledge Rozszerzenie funkcjonalności systemów wiki w oparciu o wtyczki i Prolog 9 stycznia 2009 Knowledge 1 Wstęp 2 3 4 5 Knowledge 6 7 Knowledge Duża ilość nieusystematyzowanych informacji... Knowledge

Bardziej szczegółowo

O ALGORYTMACH I MASZYNACH TURINGA

O ALGORYTMACH I MASZYNACH TURINGA O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego

Bardziej szczegółowo

DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE:

DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: JAKIE PROBLEMY ROZWIĄZUJE BI 1 S t r o n a WSTĘP Niniejszy dokument to zbiór podstawowych problemów, z jakimi musi zmagać się przedsiębiorca, analityk,

Bardziej szczegółowo

Platforma Microsoft SharePoint. Opis usługi

Platforma Microsoft SharePoint. Opis usługi Platforma Microsoft SharePoint Opis usługi Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym

Bardziej szczegółowo

INFORMATYKA POZIOM ROZSZERZONY

INFORMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 2016/2017 FORMUŁA OD 2015 ( NOWA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2017 Uwaga: Akceptowane są wszystkie odpowiedzi

Bardziej szczegółowo

Wykorzystanie standardów serii ISO 19100 oraz OGC dla potrzeb budowy infrastruktury danych przestrzennych

Wykorzystanie standardów serii ISO 19100 oraz OGC dla potrzeb budowy infrastruktury danych przestrzennych Wykorzystanie standardów serii ISO 19100 oraz OGC dla potrzeb budowy infrastruktury danych przestrzennych dr inż. Adam Iwaniak Infrastruktura Danych Przestrzennych w Polsce i Europie Seminarium, AR Wrocław

Bardziej szczegółowo

Internet, jako ocean informacji. Technologia Informacyjna Lekcja 2

Internet, jako ocean informacji. Technologia Informacyjna Lekcja 2 Internet, jako ocean informacji Technologia Informacyjna Lekcja 2 Internet INTERNET jest rozległą siecią połączeń, między ogromną liczbą mniejszych sieci komputerowych na całym świecie. Jest wszechstronnym

Bardziej szczegółowo

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM,

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM, Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Oczekiwania? 2 3 Bazy danych Jak przechowywać informacje? Jak opisać rzeczywistość?

Bardziej szczegółowo

Nowoczesne aplikacje mobilne i ich rola w podnoszeniu jakości danych

Nowoczesne aplikacje mobilne i ich rola w podnoszeniu jakości danych Nowoczesne aplikacje mobilne i ich rola w podnoszeniu jakości danych www.ascen.pl 1 Agenda O firmie Zarządzanie jakością danych Aplikacje mobilne i ich rola w zarządzaniu jakością danych 2 O firmie Data

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3 KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:

Bardziej szczegółowo

INFORMATYKA, TECHNOLOGIA INFORMACYJNA ORAZ INFORMATYKA W LOGISTYCE

INFORMATYKA, TECHNOLOGIA INFORMACYJNA ORAZ INFORMATYKA W LOGISTYCE Studia podyplomowe dla nauczycieli INFORMATYKA, TECHNOLOGIA INFORMACYJNA ORAZ INFORMATYKA W LOGISTYCE Przedmiot JĘZYKI PROGRAMOWANIA DEFINICJE I PODSTAWOWE POJĘCIA Autor mgr Sławomir Ciernicki 1/7 Aby

Bardziej szczegółowo

UCHWAŁA NR 60/2013 Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 21 listopada 2013 roku

UCHWAŁA NR 60/2013 Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 21 listopada 2013 roku UCHWAŁA NR 60/2013 Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 21 listopada 2013 roku w sprawie: korekty efektów kształcenia dla kierunku informatyka Na podstawie ustawy z dnia

Bardziej szczegółowo

Projektowanie logiki aplikacji

Projektowanie logiki aplikacji Jarosław Kuchta Projektowanie Aplikacji Internetowych Projektowanie logiki aplikacji Zagadnienia Rozproszone przetwarzanie obiektowe (DOC) Model klas w projektowaniu logiki aplikacji Klasy encyjne a klasy

Bardziej szczegółowo

Stanusch Technologies S.A. lider w rozwiązaniach opartych o sztuczną inteligencję

Stanusch Technologies S.A. lider w rozwiązaniach opartych o sztuczną inteligencję Stanusch Technologies S.A. lider w rozwiązaniach opartych o sztuczną inteligencję Maciej Stanusch Prezes Zarządu Stanusch is getting a real runner-up in the world wide list of chatbot developers! Erwin

Bardziej szczegółowo

Repozytorium Zasobów Wiedzy FTP

Repozytorium Zasobów Wiedzy FTP Repozytorium Zasobów Wiedzy FTP Spis treści Wprowadzenie... 1 Architektura Repozytorium Zasobów Wiedzy... 1 Mapy Wiedzy... 4 Wprowadzanie zasobów wiedzy do repozytorium... 7 Prezentacja zasobów wiedzy

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI 2016 ROK

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI 2016 ROK PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI 2016 ROK KLUCZ ODPOWIEDZI Arkusz I ZADANIE 1. TEST (5 PUNKTÓW) ZADANIE 1.1 (0-1) Zdający przedstawia sposoby reprezentowania różnych form informacji w komputerze:

Bardziej szczegółowo

STUDIA I MONOGRAFIE NR

STUDIA I MONOGRAFIE NR STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU

Bardziej szczegółowo

OfficeObjects e-forms

OfficeObjects e-forms OfficeObjects e-forms Rodan Development Sp. z o.o. 02-820 Warszawa, ul. Wyczółki 89, tel.: (+48-22) 643 92 08, fax: (+48-22) 643 92 10, http://www.rodan.pl Spis treści Wstęp... 3 Łatwość tworzenia i publikacji

Bardziej szczegółowo

Spis treści. Analiza i modelowanie_nowicki, Chomiak_Księga1.indb :03:08

Spis treści. Analiza i modelowanie_nowicki, Chomiak_Księga1.indb :03:08 Spis treści Wstęp.............................................................. 7 Część I Podstawy analizy i modelowania systemów 1. Charakterystyka systemów informacyjnych....................... 13 1.1.

Bardziej szczegółowo

Rozkład materiału do zajęć z informatyki. realizowanych według podręcznika

Rozkład materiału do zajęć z informatyki. realizowanych według podręcznika Rozkład materiału do zajęć z informatyki realizowanych według podręcznika E. Gurbiel, G. Hardt-Olejniczak, E. Kołczyk, H. Krupicka, M.M. Sysło Informatyka, nowe wydanie z 007 roku Poniżej przedstawiamy

Bardziej szczegółowo

Metody indeksowania dokumentów tekstowych

Metody indeksowania dokumentów tekstowych Metody indeksowania dokumentów tekstowych Paweł Szołtysek 21maja2009 Metody indeksowania dokumentów tekstowych 1/ 19 Metody indeksowania dokumentów tekstowych 2/ 19 Czym jest wyszukiwanie informacji? Wyszukiwanie

Bardziej szczegółowo

[1] [2] [3] [4] [5] [6] Wiedza

[1] [2] [3] [4] [5] [6] Wiedza 3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale

Bardziej szczegółowo

Kraków, 14 marca 2013 r.

Kraków, 14 marca 2013 r. Scenariusze i trendy rozwojowe wybranych technologii społeczeństwa informacyjnego do roku 2025 Antoni Ligęza Perspektywy rozwoju systemów eksperckich do roku 2025 Kraków, 14 marca 2013 r. Dane informacja

Bardziej szczegółowo

Prezentacja specjalności studiów II stopnia. Inteligentne Technologie Internetowe

Prezentacja specjalności studiów II stopnia. Inteligentne Technologie Internetowe Prezentacja specjalności studiów II stopnia Inteligentne Technologie Internetowe Koordynator specjalności Prof. dr hab. Jarosław Stepaniuk Tematyka studiów Internet jako zbiór informacji Przetwarzanie:

Bardziej szczegółowo

zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym

zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym Wykaz kierunkowych efektów kształcenia PROGRAM KSZTAŁCENIA: Kierunek Edukacja techniczno-informatyczna POZIOM KSZTAŁCENIA: studia pierwszego stopnia PROFIL KSZTAŁCENIA: praktyczny Przyporządkowanie kierunku

Bardziej szczegółowo

Od metadanych do map wiedzy

Od metadanych do map wiedzy Od metadanych do map wiedzy BachoTeX 2004 Mariusz Olko Mariusz.Olko@empolis.pl 1 maja 2004 1 20 lutego 2004 Metadane co to jest? Informacja na temat informacji! Opisuje własności informacji

Bardziej szczegółowo

Matryca pokrycia efektów kształcenia

Matryca pokrycia efektów kształcenia Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego wyboru) Efekty

Bardziej szczegółowo

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.

Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu. Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Usługi internetowe usługa internetowa (ang.

Bardziej szczegółowo

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki

Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar kształcenia Profil kształcenia Poziom kształcenia Forma kształcenia Tytuł zawodowy uzyskiwany przez absolwenta Dziedziny

Bardziej szczegółowo

5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z

5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z 1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalizacja:

Bardziej szczegółowo

KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO

KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot informatyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela

Bardziej szczegółowo

Nowe spojrzenie na prawo

Nowe spojrzenie na prawo LEX 2 Nowe spojrzenie na prawo Od 25 lat informujemy o prawie i tworzymy narzędzia przekazujące tę wiedzę. Szybko. Intuicyjnie. Nowocześnie. Stawiamy sobie za cel sprostanie wymaganiom naszych Klientów.

Bardziej szczegółowo

Sztuczna inteligencja

Sztuczna inteligencja Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)

Bardziej szczegółowo

JAKIEGO RODZAJU NAUKĄ JEST

JAKIEGO RODZAJU NAUKĄ JEST JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów

Bardziej szczegółowo

Uniwersytet Łódzki Wydział Matematyki i Informatyki, Katedra Analizy Nieliniowej. Wstęp. Programowanie w Javie 2. mgr inż.

Uniwersytet Łódzki Wydział Matematyki i Informatyki, Katedra Analizy Nieliniowej. Wstęp. Programowanie w Javie 2. mgr inż. Uniwersytet Łódzki Wydział Matematyki i Informatyki, Katedra Analizy Nieliniowej Wstęp Programowanie w Javie 2 mgr inż. Michał Misiak Agenda Założenia do wykładu Zasady zaliczeń Ramowy program wykładu

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne:

Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne: WYDOBYWANIE I WYSZUKIWANIE INFORMACJI Z INTERNETU Forma wykład: 30 godzin laboratorium: 30 godzin Główny cel kursu W ramach kursu studenci poznają podstawy stosowanych powszechnie metod wyszukiwania informacji

Bardziej szczegółowo

Microsoft Class Server. Waldemar Pierścionek, DC EDUKACJA

Microsoft Class Server. Waldemar Pierścionek, DC EDUKACJA Microsoft Class Server Waldemar Pierścionek, DC EDUKACJA Czym jest Microsoft Class Server? Platforma edukacyjna dla szkół Nowe możliwości dla: nauczyciela, ucznia, rodzica Tworzenie oraz zarządzanie biblioteką

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z informatyki w gimnazjum klasa III Rok szkolny 2015/16

Wymagania edukacyjne na poszczególne oceny z informatyki w gimnazjum klasa III Rok szkolny 2015/16 Wymagania edukacyjne na poszczególne oceny z informatyki w gimnazjum klasa III Rok szkolny 2015/16 Internet i sieci Temat lekcji Wymagania programowe 6 5 4 3 2 1 Sieci komputerowe. Rodzaje sieci, topologie,

Bardziej szczegółowo

Informacje i zalecenia dla zdających egzamin maturalny z informatyki 1. Część pierwsza egzaminu z informatyki polega na rozwiązaniu zadań

Informacje i zalecenia dla zdających egzamin maturalny z informatyki 1. Część pierwsza egzaminu z informatyki polega na rozwiązaniu zadań Informacje i zalecenia dla zdających egzamin maturalny z informatyki 1. Część pierwsza egzaminu z informatyki polega na rozwiązaniu zadań egzaminacyjnych bez korzystania z komputera i przebiega według

Bardziej szczegółowo

DDM funkcjonalność

DDM funkcjonalność DDM 9000 funkcjonalność Logotec DDM9000 Web Edition (Document Data Management) to system Zarządzania Dokumentami i Przepływem Informacji. Obsługuje on centralną bazę dokumentów zapewniając prosty i szybki

Bardziej szczegółowo

UML w Visual Studio. Michał Ciećwierz

UML w Visual Studio. Michał Ciećwierz UML w Visual Studio Michał Ciećwierz UNIFIED MODELING LANGUAGE (Zunifikowany język modelowania) Pozwala tworzyć wiele systemów (np. informatycznych) Pozwala obrazować, specyfikować, tworzyć i dokumentować

Bardziej szczegółowo