Technologie zarządzania wiedzą
|
|
- Andrzej Dudek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Technologie zarządzania wiedzą 1
2 Tendencje w biznesie Źródło: Gladstone, B., From Know-How to Knowledge The Essential Guide to Understanding and Implementing Knowledge Management (za: Brdulak, J., Zarządzanie wiedzą co to jest i po co to jest?, materiały dydaktyczne do przedmiotu Zarządzanie Wiedzą, Szkoła Główna Handlowa w Warszawie) Technologie zarządzania wiedzą 2 Żyjemy coraz szybciej. Cykl życia produktu i czas jego obecności na rynku zmniejszają się. Produkty stają się coraz bardziej spersonalizowane. Coraz częściej aby spełnić jakąś potrzebę klienta, trzeba ją najpierw stworzyć. 2
3 Modne hasło: zarządzanie wiedzą Wiedza najcenniejszy zasób w organizacji. Zarządzanie wiedzą: powstawanie wiedzy, przesyłanie wiedzy (dzielenie się wiedzą), wykorzystanie wiedzy. Robotnicy wiedzy (knowledge workers) Technologie zarządzania wiedzą 3 Powoduje to, że coraz więcej organizacji (nawet typowo produkcyjnych) musi opierać się na wiedzy. Dlatego zarządzanie wiedzą stało się w ostatnich latach modnym terminem. Powstał wręcz termin knowledge workers, oznaczający osoby, których podstawowym narzędziem pracy jest umysł, zaś materiałem wiedza (kiedyś w Polsce używało się terminu pracownik umysłowy, ale to chyba jednak nie to samo). Wiedza jest jedynym zasobem, którego ilość gdy się go wykorzystuje nie zmniejsza się, ale wręcz zwiększa. Tej cechy nie mają takie zasoby jak węgiel, stal czy papier do drukarki. 3
4 Wiedza dostępna i ukryta Wiedza dostępna (explicit, focal knowledge): wiedza, którą udało się przedstawić za pomocą słów, liczb, znaków, symboli, przez co stała się usystematyzowana i łatwa do przekazania. Wiedza ukryta (tacit knowledge): wiedza, z której istnienia zdajemy sobie sprawę, i którą wykorzystujemy w codziennym życiu, ale nie potrafimy do końca wyjaśnić jej istoty, przez co jej formalizacja i przekazanie innym jest bardzo trudne. Źródło: Brdulak, J., Zarządzanie wiedzą co to jest i po co to jest?, materiały dydaktyczne do przedmiotu Zarządzanie Wiedzą, Szkoła Główna Handlowa w Warszawie Technologie zarządzania wiedzą 4 Z wiedzą dostępną zwykle nie mamy problemu zapisujemy ją w dokumentach, a jeśli mamy dużo dokumentów, możemy korzystać z systemów zarządzania dokumentami. Cała sztuka polega na choćby częściowym opisaniu i przekazaniu wiedzy ukrytej. 4
5 Wiedza a kultura organizacyjna Psychologiczne bariery przepływu wiedzy: dzieląc się wiedzą oddajesz część swojej władzy, gromadzisz wiedzę masz władzę budujesz swój autorytet, korzystając z cudzej wiedzy przyznajesz, że jesteś niekompetentny, gdy pożyczam czyjąś wiedzę, muszę samemu sobie przyznać, że potrzebuję pomocy, muszę okazać swoją słabość. Motywowanie do dzielenia się wiedzą: ocenianie pracowników, udział w efektach wykorzystania wiedzy, tworzenie warunków do wymiany wiedzy: czas i miejsce, technologia. Na podstawie: Fazlagić, A., Jak motywować do dzielenia się wiedzą, Technologie zarządzania wiedzą 5 Dzielenie się wiedzą jest przede wszystkim aspektem organizacyjnym, a nie technologicznym. Sprawne dzielenie się wiedzą wymaga odpowiedniej kultury organizacyjnej, niwelującej psychologiczne bariery przepływu wiedzy. Braku takiej kultury organizacyjnej nie da się zastąpić wdrożeniem nawet najlepszego systemu zarządzania wiedzą, gdyż będzie on po prostu nieużywany. Technologia jest jedynie jednym z czynników usprawniających wymianę wiedzy, o ile ona w ogóle w organizacji występuje. 5
6 Rozwiązania technologiczne System plików (na dysku sieciowym). System zarządzania dokumentami/treścią: metainformacje, workflow, wersje, uprawnienia,..., Intranet zarządzanie i publikowanie treści w jednym. Portal korporacyjny: każdy jest zarówno czytelnikiem, jak i autorem, udostępnianie zintegrowanej informacji z: systemów biznesowych organizacji, Internetu; jednokrotna autoryzacja dostępu do wszystkich zasobów, personalizacja. Czy to jest zarządzanie wiedzą? Technologie zarządzania wiedzą 6 Często zdarza się, że zwykłe systemy zarządzania dokumentami czy portale korporacyjne są oferowane pod etykietką system zarządzania wiedzą. Warto więc zwrócić uwagę na to, czy rzekomy system zarządzania wiedzą nie jest po prostu zwykłym portalem korporacyjnym. 6
7 Czym tak na prawdę jest wiedza? To więcej niż: informacja, tekst, dokument. To sieć powiązań, relacji, skojarzeń między informacjami, doświadczeniami, spostrzeżeniami. Tymczasem: systemy zarządzania dokumentami, systemy zarządzania treścią, portale korporacyjne operują na dokumentach! Technologie zarządzania wiedzą 7 Systemy zarządzania dokumentami i portale operują bowiem na dokumentach, a wiedza to coś więcej niż tylko treść dokumentów. 7
8 Wiedza a technologia Modelowanie wiedzy: ontologia schemat modelowanej dziedziny: typy pojęć, typy relacji między pojęciami, mapa wiedzy: abstrakcyjne pojęcia, powiązania między pojęciami, dokumenty przyczepione do pojęć. System zarządzania wiedzą: budowanie ontologii, budowanie, rozwijanie mapy wiedzy, nawigacja po mapie wiedzy Technologie zarządzania wiedzą 8 Nie da się sformalizować całej wiedzy ukrytej, ale przynajmniej jej najistotniejszą część można opisać przy pomocy mapy wiedzy, zbudowanej wg określonego schematu, specyficznego dla danej dziedziny, zwanego ontologią. Treścią takiej mapy wiedzy są pojęcia, reprezentujące rzeczywiste byty, oraz powiązania pomiędzy tymi pojęciami. 8
9 Ontologia Ontologia dział filozofii zajmujący się ogólną teorią bytu, charakterem i strukturą rzeczywistości. Słownik wyrazów obcych i zwrotów obcojęzycznych Władysława Kopalińskiego, Ontologia stanowi wspólną reprezentację pewnej dziedziny działalności ludzkiej, która może być wykorzystana jako platforma porozumienia pozwalająca na spójne podejście do rozwiązywania problemów w tej dziedzinie. Ontologia obejmuje pewną wizję świata ograniczoną do danej dziedziny. Taka wizja zazwyczaj jest wyrażana jako zbiór pojęć, definicji tych pojęć oraz ich wzajemnych powiązań. Taką reprezentację dziedziny nazywamy często jej konceptualizacją Źródło: Uschold, M., Artificial Intelligence Application Institute, University of Edinburgh Za: Staniszkis, W., Architektura systemów zarządzania wiedzą, Rodan Systems S.A Technologie zarządzania wiedzą 9 Słowo ontologia ma znaczenie znacznie szersze, niż tylko w kontekście tworzenia map wiedzy. Ale w naszym rozumieniu ontologia oznacza pewien abstrakcyjny model tego wycinka rzeczywistości, który nas interesuje. 9
10 Mapa wiedzy przykład ryba rodzaj śledź rodzaj śledź świeży główny składnik śledzie w oliwie grupa rodzaj śledź solony przygotowywany z śledzie główny składnikw śmietanie grupa składnik podobny do danie rybne suszona pietruszka można zastąpić natka pietruszki Technologie zarządzania wiedzą 1 Pojęcia w tym przykładzie reprezentują przepisy kulinarne oraz składniki tych przepisów. W powiązaniach między pojęciami jest zakodowana wiedza doświadczonego kucharza np. o tym, że jeden składnik można bez większej straty jakościowej zastąpić innym składnikiem. 1
11 Ontologia przykład Typy pojęć: przepis, grupa przepisów, składnik. Relacje: składnik wchodzi w skład przepisu, składnik jest głównym składnikiem przepisu, składnik jest rodzaju składnik, składnik jest przygotowywany ze składnika, składnik można zastąpić składnikiem, przepis należy do grupy przepisów, przepis jest podobny do przepisu Technologie zarządzania wiedzą 11 Ontologia definiuje typy pojęć oraz dopuszczalne powiązania. W ten sposób ontologia porządkuje modelowany przez nas wycinek rzeczywistości. 11
12 Wiedza operacyjna a wiedza abstrakcyjna Wiedza operacyjna: opisuje konkretne instancje obiektów i ich własności, np.: klienta Jana Kowalskiego, polisę nr /22; często się zmienia, ma charakter relacji bazodanowych. Wiedza abstrakcyjna: opisuje własności abstrakcyjnych bytów (klas obiektów), np: zakres ubezpieczenia terminowego na życie; nie zmienia się w wyniku działalności operacyjnej, ma charakter luźnej sieci powiązań Technologie zarządzania wiedzą 12 Wiedzę wykorzystywaną w organizacjach (i modelowaną w mapach wiedzy) możemy podzielić na operacyjną i abstrakcyjną. Oczywiście podział ten ma charakter akademicki pozwala nam uzmysłowić sobie różnicę, ale tak na prawdę rzadko występuje w czystej postaci w przyrodzie. Często bowiem łączymy w mapie wiedzy elementy wiedzy abstrakcyjnej oraz operacyjnej, np. opisując w części abstrakcyjnej własności ubezpieczenia terminowego na życie, oraz dla konkretnych polis z części operacyjnej określając ich rodzaj poprzez powiązania z obiektami części abstrakcyjnej. Najczęściej wiedza operacyjna to po prostu zwykła baza danych. Wydaje się jednak, że nazywanie np. bazy klientów i zamówień systemem zarządzania wiedzą byłoby lekką przesadą. 12
13 Korzenie: sztuczna inteligencja Sztuczna inteligencja: nauka o mechanizmach racjonalnego działania oraz budowaniu algorytmów stosujących te mechanizmy, intensywnie rozwijana w latach 7-tych. Obszary zainteresowań: przetwarzanie języka naturalnego, reprezentacja wiedzy, automatyczne wnioskowanie, uczenie maszynowe. systemy eksperckie. Sztuczna inteligencja a zarządzanie wiedzą: to człowiek, a nie maszyna, wykorzystuje wiedzę, problemem jest efektywny dostęp do zgromadzonej wiedzy Technologie zarządzania wiedzą 13 Każdy zapewne słyszał hasło sztuczna inteligencja. Nie każdy wie, że jest to poważna gałąź informatyki, której rozwój zaowocował opracowaniem zaawansowanych sposobów reprezentacji wiedzy (takich jak sieci semantyczne) oraz algorytmów wykorzystania tej wiedzy np. poprzez automatyczne wnioskowanie. Mechanizmy te były i są wykorzystywane w tzw. systemach eksperckich, które zawierają zakodowaną wiedzę eksperta z danej dziedziny, dzięki czemu mogą pomóc np. w postawieniu diagnozy pacjenta na podstawie objawów, czy też określeniu ryzyka ubezpieczeniowego na podstawie charakterystyki klienta. Uczenie maszynowe polega na reagowaniu przez algorytm na bodźce uczące (przykładowe poprawne wyniki). Algorytm dostosowuje się do nich, potrafiąc w rezultacie rozwiązać przypadki podobne do nich. Najbardziej znanym mechanizmem uczenia maszynowego są sieci neuronowe, których podstawą jest matematyczny model neuronu. 13
14 Mapa wiedzy a dokumenty Wiedza zawarta w: pojęciach i powiązaniach w mapie wiedzy, treści dokumentów. Warstwa pojęć Poeta Szekspir autor napisał dzieło Hamlet biografia zdjęcie treść Warstwa dokumentów Szekspir biografia Hamlet by W. Shakespeare Technologie zarządzania wiedzą 14 Dokumenty nie należą w zasadzie do mapy wiedzy, lecz tworzą osobną warstwę dokumentów, które możemy dowiązać do pojęć mapy wiedzy, określając w ten sposób semantykę tych pojęć. Rozdział ten jest istotny, ponieważ wiedza jest zakodowana nie tylko w samej mapie wiedzy, ale także w treści dokumentów. Aby więc móc korzystać ze zgromadzonej wiedzy w sposób pełny, musimy potrafić w łatwy sposób znaleźć dokumenty zawierające interesującą nas treść. 14
15 Mapy wiedzy technologia Kodowanie map wiedzy: RDF Resource Description Framework, Topic Maps. Języki zapytań o zawartość mapy wiedzy: RDQL Resource Description Query Language, TMQL Topic Map Query Language. Budowanie ontologii: OWL Web Ontology Language. Automatyczne wnioskowanie (tworzenie nowych powiązań) na podstawie zawartości mapy wiedzy i określonych reguł wnioskowania Technologie zarządzania wiedzą 15 15
16 Jak dotrzeć do wiedzy zawartej w dokumentach? Znajdowanie właściwych dokumentów: nawigacja po mapie wiedzy, wyszukiwanie pełnotekstowe: często wystarczy odnaleźć rozwiązanie podobne, na czym polega podobieństwo? jak je wyrazić? Wyszukując w treści dokumentów, powinniśmy uwzględnić: wiedzę zakodowaną w mapie wiedzy o zależnościach między pojęciami, wiedzę ukrytą. Rozwiązanie: wyszukiwanie wsparte modelem wiedzy Technologie zarządzania wiedzą 16 Komplementarną do nawigacji po mapie wiedzy metodą dotarcia do właściwej informacji jest wyszukiwanie w treści dokumentów. Jednak zwykłe wyszukiwanie pełnotekstowe nie rozwiązuje problemu, ponieważ nie uwzględnia wiedzy, którą zawarliśmy w mapie wiedzy. Nie uwzględnia także wiedzy ukrytej, którą każdy ekspert posiada i na co dzień z niej korzysta, lecz z oczywistych powodów nie posiada jej system komputerowy. Chodzi tu np. o wiedzę o synonimach, terminach bliskoznacznych, czy też podobieństwach między podstawowymi terminami (np. o tym,że śledź jest rodzajem ryby). Mechanizm wyszukiwania wspartego modelem wiedzy pozwala wykorzystać tego typu wiedzę podczas wyszukiwania, skutkiem czego w wyniku wyszukiwania otrzymujemy nie tylko dokumenty zawierające szukany termin, ale też terminy podobne czy synonimy. 16
17 Wyszukiwanie a wiedza Wyszukiwanie wsparte modelem wiedzy: konfrontuje zapytanie z modelem wiedzy, znajduje dokumenty semantycznie odpowiadające zapytaniu. wiedza zapytanie baza wiedzy dane i dokumenty inteligentne odpowiedzi Technologie zarządzania wiedzą 17 Każda wyszukiwarka przeszukuje zawartość danych i dokumentów. Wyszukiwarka wsparta modelem wiedzy dodatkowo wykorzystuje podczas budowania indeksu oraz wyszukiwania informacje zawarte w modelu wiedzy. Dzięki temu wyniki wyszukiwania uwzględniają pewną wiedzę na temat podobieństw pojęć. 17
18 Model wiedzy przykład Typ: składnik. Wartości i podobieństwa: koperek suszona pietruszka natka pietruszki śledź solony śledź świeży śledź śledź 1 1 śledź świeży 1 9 śledź solony natka pietruszki suszona pietruszka koperek Technologie zarządzania wiedzą 18 Model wiedzy dla wyszukiwarki różni się od mapy wiedzy, po której można nawigować, i jest oparty na podobieństwach pojęć. Typy pojęć, pojęcia oraz podobieństwa pomiędzy nimi trzeba określić metodą ekspercką. Tabela podobieństw nie musi być symetryczna podobieństwo może być inne, gdy szukamy pojęcia śledź solony, a w dokumencie znajduje się śledź świeży, a inne w sytuacji odwrotnej. 18
19 Model wiedzy przykład Typ: kaloryczność Funkcja podobieństwa: 1% szukana wartość Technologie zarządzania wiedzą 19 Wiedzę na temat wielkości liczbowych można zapisywać w postaci funkcji podobieństwa. Dzięki temu poszukiwanie potraw o podanej kaloryczności zwróci także potrawy o kaloryczności niższej oraz nieznacznie wyższej. 19
20 Semantic Web The Semantic Web will bring structure to the meaningful content of Web pages, creating an environment where software agents roaming from page to page can readily carry out sophisticated tasks for users. Tim Berners-Lee, Scientific American, May 21 Internetowa infrastruktura publikacji danych: neutralna (niezależna od aplikacji), umożliwiająca przetwarzanie informacji przez programy w celu: automatyzacji, agregacji, wielokrotnego użycia. To jest ciągle wizja: zdania nie oznaczają faktów, potrzebna jest kodyfikacja wiedzy codziennej, pojawiają się problemy związane z etyką oraz bezpieczeństwem. Pojawiają się pierwsze technologie Technologie zarządzania wiedzą 2 Sformułowana w 21 roku przez twórcę Internetu Tima Bernersa-Lee wizja Semantic Web to sieć, w której informacje są nie tylko czytane przez ludzi na stronach internetowych, ale także wykorzystywane przez komunikujące się ze sobą inteligentne agenty pomagające nam w prostych zadaniach, takich jak umówienie się do lekarza czy zorganizowanie spotkania. Aby było to możliwe, informacje publikowane i wymieniane w sieci muszą mieć zamiast formy tekstowej postać strukturalną, nadającą się do automatycznego przetworzenia. Co więcej, musi być określone znaczenie wymienianych w te sposób danych (np. danych o wolnych terminach lekarza). Jest to ciągle wizja przyszłości, choć pierwsze prototypowe rozwiązania już powstają. 2
21 Gdzie szukać dalej egov.pl Forum Nowoczesnej Administracji Publicznej Opracowania Zarządzanie wiedzą Fazlagić, A., publikacje n/t zarządzania wiedzą e-mentor czasopismo internetowe Szkoły Głównej Handlowej w Warszawie e-mentor.edu.pl/archiwum.php?id_kategorii=2 Gotcha! On target for the needs of the knowledge management community Technologie zarządzania wiedzą 21 21
22 Gdzie szukać dalej Bray. T., What Is RDF? topicmap.com Hand-crafted Machine-generated Knowledge Interchange Learn more about Topic Maps Berners-Lee, T., Lassila, O., Hendler, J., Semantic Web Scientific American, May 21 modul4/rawdata/article.html Technologie zarządzania wiedzą 22 22
Tendencje w biznesie. Technologie zarządzania wiedzą. Modne hasło: zarządzanie wiedzą. Wiedza dostępna i ukryta. Piramida wiedzy
Tendencje w biznesie Technologie zarządzania wiedzą Źródło: Gladstone, B., From Know-How to Knowledge The Essential Guide to Understanding and Implementing Knowledge Management (za: Brdulak, J., wiedzą
Technologie zarządzania wiedzą
Technologie zarządzania wiedzą 1 Tendencje w biznesie Źródło: Gladstone, B., From Know-How to Knowledge The Essential Guide to Understanding and Implementing Knowledge Management (za: Brdulak, J., Zarządzanie
2
1 2 3 4 5 Dużo pisze się i słyszy o projektach wdrożeń systemów zarządzania wiedzą, które nie przyniosły oczekiwanych rezultatów, bo mało kto korzystał z tych systemów. Technologia nie jest bowiem lekarstwem
Technologie zarządzania wiedzą. Szymon Zioło.
Technologie zarządzania wiedzą Szymon Zioło sziolo@mimuw.edu.pl Tendencje w biznesie Źródło: Gladstone, B., From Know-How to Knowledge The Essential Guide to Understanding and Implementing Knowledge Management
Technologie zarządzania wiedzą
Technologie zarządzania wiedzą Szymon Zioło sziolo@mimuw.edu.pl Tendencje w biznesie Źródło: Gladstone, B., From Know-How to Knowledge The Essential Guide to Understanding and Implementing Knowledge Management
Modne hasło: zarządzanie wiedzą. Technologie wspierające zarządzanie wiedzą. Wiedza a kultura organizacyjna. Rozwiązania. Co autor miał na myśli
Modne hasło: zarządzanie wiedzą Technologie wspierające zarządzanie wiedzą Wiedza najcenniejszy zasób w organizacji. Zarządzanie wiedzą: powstawanie wiedzy, przesyłanie wiedzy (dzielenie się wiedzą), wykorzystanie
Zarządzanie wiedzą. Technologie wspierające zarządzanie wiedzą. Modne hasło: zarządzanie wiedzą. Wiedza a kultura organizacyjna
Zarządzanie wiedzą 18 grudnia 23 Technologie wspierające zarządzanie wiedzą Kontekst organizacyjny zarządzania wiedzą. Techniki wspierające zarządzanie wiedzą: sieci semantyczne / mapy wiedzy, wyszukiwanie
Zarządzanie wiedzą. Technologie wspierające zarządzanie wiedzą. Modne hasło: zarządzanie wiedzą. Wiedza a kultura organizacyjna.
Zarządzanie wiedzą Technologie wspierające zarządzanie wiedzą Kontekst organizacyjny zarządzania wiedzą. Techniki wspierające zarządzanie wiedzą: sieci semantyczne, wyszukiwanie wsparte modelem wiedzy.
3 grudnia Sieć Semantyczna
Akademia Górniczo-Hutnicza http://www.agh.edu.pl/ 1/19 3 grudnia 2005 Sieć Semantyczna Michał Budzowski budzow@grad.org 2/19 Plan prezentacji Krótka historia Problemy z WWW Koncepcja Sieci Semantycznej
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Internet Semantyczny. Linked Open Data
Internet Semantyczny Linked Open Data Dzień dzisiejszy database Internet Dzisiejszy Internet to Internet dokumentów (Web of Dokuments) przeznaczonych dla ludzi. Dzień dzisiejszy Internet (Web) to dokumenty
Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum
Lp. Wymagania edukacyjne z informatyki w klasie IIIa gimnazjum 1. Internet i sieci [17 godz.] 1 Sieci komputerowe. Rodzaje sieci, topologie, protokoły transmisji danych w sieciach. Internet jako sie rozległa
Semantic Web Internet Semantyczny
Semantic Web Internet Semantyczny Semantyczny Internet - Wizja (1/2) Pomysłodawca sieci WWW - Tim Berners-Lee, fizyk pracujący w CERN Jego wizja sieci o wiele bardziej ambitna niż istniejąca obecnie (syntaktyczna)
Wykład I. Wprowadzenie do baz danych
Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles
Ontologie, czyli o inteligentnych danych
1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?
Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące
Tomasz Grześ. Systemy zarządzania treścią
Tomasz Grześ Systemy zarządzania treścią Co to jest CMS? CMS (ang. Content Management System System Zarządzania Treścią) CMS definicje TREŚĆ Dowolny rodzaj informacji cyfrowej. Może to być np. tekst, obraz,
Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl
Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
Zarządzanie wiedzą w instytucji naukowej cz. I
Zarządzanie wiedzą w instytucji naukowej cz. I Jolanta Przyłuska Dział Zarządzania Wiedzą IMP Łódź Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Rozwoju Regionalnego
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,
KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK STUDIÓW INFORMATYCZNE TECHNIKI ZARZĄDZANIA
KIERUNKOWE EFEKTY KSZTAŁCENIA KIERUNEK STUDIÓW INFORMATYCZNE TECHNIKI ZARZĄDZANIA Nazwa kierunku studiów: Informatyczne Techniki Zarządzania Ścieżka kształcenia: IT Project Manager, Administrator Bezpieczeństwa
The Binder Consulting
The Binder Consulting Contents Indywidualne szkolenia specjalistyczne...3 Konsultacje dla tworzenia rozwiazan mobilnych... 3 Dedykowane rozwiazania informatyczne... 3 Konsultacje i wdrożenie mechanizmów
OBIEG INFORMACJI I WSPOMAGANIE DECYZJI W SYTUACJACH KRYZYSOWYCH
OBIEG INFORMACJI I WSPOMAGANIE DECYZJI W SYTUACJACH KRYZYSOWYCH AGENDA Prezentacja firmy Tecna Informacja i jej przepływ Workflow i BPM Centralny portal informacyjny Wprowadzanie danych do systemu Interfejsy
Narzędzia Informatyki w biznesie
Narzędzia Informatyki w biznesie Przedstawiony program specjalności obejmuje obszary wiedzy informatycznej (wraz z stosowanymi w nich technikami i narzędziami), które wydają się być najistotniejsze w kontekście
Efekt kształcenia. Ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną w zakresie algorytmów i ich złożoności obliczeniowej.
Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Informatyka w języku polskim i w języku angielskim (Computer Science) na Wydziale Matematyki i Nauk Informacyjnych, gdzie: * Odniesienie-
Elementy kognitywistyki II: Sztuczna inteligencja
Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu
Semantic Web. Grzegorz Olędzki. prezentacja w ramach seminarium Protokoły komunikacyjne. luty 2005
Semantic Web Grzegorz Olędzki prezentacja w ramach seminarium Protokoły komunikacyjne luty 2005 Co to jest Semantic Web? "The Semantic Web is an extension of the current web in which information is given
SHAREPOINT SHAREPOINT QM SHAREPOINT DESINGER SHAREPOINT SERWER. Opr. Barbara Gałkowska
SHAREPOINT SHAREPOINT QM SHAREPOINT DESINGER SHAREPOINT SERWER Opr. Barbara Gałkowska Microsoft SharePoint Microsoft SharePoint znany jest również pod nazwą Microsoft SharePoint Products and Technologies
Pojęcie bazy danych. Funkcje i możliwości.
Pojęcie bazy danych. Funkcje i możliwości. Pojęcie bazy danych Baza danych to: zbiór informacji zapisanych według ściśle określonych reguł, w strukturach odpowiadających założonemu modelowi danych, zbiór
Wprowadzenie do XML. Joanna Jędrzejowicz. Instytut Informatyki
Instytut Informatyki Literatura http://www.w3c.org/tr/ - Technical Reports K. B. Stall - XML Family of Specifications, Addison-Wesley 2003 P. Kazienko, K. Gwiazda - XML na poważnie, Helion 2002 XML Rozszerzalny
Odniesienie do efektów kształcenia dla obszaru nauk EFEKTY KSZTAŁCENIA Symbol
KIERUNKOWE EFEKTY KSZTAŁCENIA Wydział Informatyki i Zarządzania Kierunek studiów INFORMATYKA (INF) Stopień studiów - pierwszy Profil studiów - ogólnoakademicki Projekt v1.0 z 18.02.2015 Odniesienie do
BPM vs. Content Management. Jarosław Żeliński analityk biznesowy, projektant systemów
BPM vs. Content Management Jarosław Żeliński analityk biznesowy, projektant systemów Cel prezentacji Celem prezentacji jest zwrócenie uwagi na istotne różnice pomiędzy tym co nazywamy: zarzadzaniem dokumentami,
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Web 3.0 Sieć Pełna Znaczeń (Semantic Web) Perspektywy dla branży motoryzacyjnej i finansowej. Przyjęcie branżowe EurotaxGlass s Polska 10 luty 2012
Web 3.0 Sieć Pełna Znaczeń (Semantic Web) Perspektywy dla branży motoryzacyjnej i finansowej Przyjęcie branżowe EurotaxGlass s Polska 10 luty 2012 Web 3.0 - prawdziwa rewolucja czy puste hasło? Web 3.0
3.1. Na dobry początek
Klasa I 3.1. Na dobry początek Regulamin pracowni i przepisy BHP podczas pracy przy komputerze Wykorzystanie komputera we współczesnym świecie Zna regulamin pracowni i przestrzega go. Potrafi poprawnie
Załącznik nr 1. Specyfikacja. Do tworzenia Mapy Kompetencji
Załącznik nr 1 Specyfikacja Do tworzenia Mapy Kompetencji 1. Cel projektu Celem projektu jest utworzenie Mapy kompetencji. Ma ona zawierać informacje o kompetencjach, celach kształcenia, umożliwiać ich
Wprowadzenie do multimedialnych baz danych. Opracował: dr inż. Piotr Suchomski
Wprowadzenie do multimedialnych baz danych Opracował: dr inż. Piotr Suchomski Wprowadzenie bazy danych Multimedialne bazy danych to takie bazy danych, w których danymi mogą być tekst, zdjęcia, grafika,
Topic Maps geneza. Modelowanie wiedzy. Pojęcia. Wystąpienia. Kompletny przykład. Powiązania. Firma. urodzony w. siedziba. stolica.
Topic Maps geneza Modelowanie wiedzy W dzisiejszych czasach większość ludzi nie potrzebuje więcej informacji. Jeśli już, to potrzebują jej mniej, ponieważ już toną w ogromnych jej ilościach. Pepper, S.
Przetwarzanie języka naturalnego (NLP)
Przetwarzanie języka naturalnego (NLP) NLP jest dziedziną informatyki łączącą zagadnienia sztucznej inteligencji i lingwistyki zajmującą się automatyzacją analizy, rozumienia, tłumaczenia i generowania
Inteligentne Multimedialne Systemy Uczące
Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr
Proporcje podziału godzin na poszczególne bloki. Tematyka lekcji. Rok I. Liczba godzin. Blok
Proporcje podziału godzin na poszczególne bloki Blok Liczba godzin I rok II rok Na dobry początek 7 Internet i gromadzenie danych 6 2 Multimedia 5 3 Edytory tekstu i grafiki 6 4 Arkusz kalkulacyjny 7 4
PROGRAM NAUCZANIA DLA I I II KLASY GIMNAZJUM
PROGRAM NAUCZANIA DLA I I II KLASY GIMNAZJUM Proporcje podziału godzin na poszczególne bloki Blok Liczba godzin I rok II rok Na dobry początek 7 Internet i gromadzenie danych 6 2 Multimedia 5 3 Edytory
UCHWAŁA NR 46/2013. Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 19 września 2013 roku
UCHWAŁA NR 46/2013 Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 19 września 2013 roku w sprawie: korekty efektów kształcenia dla kierunku informatyka Na podstawie ustawy z dnia
Zarządzanie wiedzą jako element systemu zarządzania zasobami ludzkimi
Zarządzanie wiedzą jako element systemu zarządzania zasobami ludzkimi Struktura prezentacji Czym jest wiedza? Zarządzanie wiedzą wybrane definicje Dlaczego warto zarządzać wiedzą? Zarządzanie wiedzą w
DLA SEKTORA INFORMATYCZNEGO W POLSCE
DLA SEKTORA INFORMATYCZNEGO W POLSCE SRK IT obejmuje kompetencje najważniejsze i specyficzne dla samego IT są: programowanie i zarządzanie systemami informatycznymi. Z rozwiązań IT korzysta się w każdej
M T E O T D O ZI Z E E A LG L O G R O Y R TM
O ALGORYTMACH I METODZIE ALGORYTMICZNEJ Czym jest algorytm? Czym jest algorytm? przepis schemat zestaw reguł [ ] program ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające
Szkolenie autoryzowane. MS Zaawansowany użytkownik programu SharePoint 2016
Szkolenie autoryzowane MS 55217 Zaawansowany użytkownik programu SharePoint 2016 Strona szkolenia Terminy szkolenia Rejestracja na szkolenie Promocje Opis szkolenia Szkolenie przeznaczone jest dla zaawansowanych
i działanie urządzeń związanych równieŝ budowę i funkcje urządzeń
Wymagania edukacyjne Informatyka III etap edukacyjny (gimnazjum) Uczeń potrafi I. Bezpiecznie posługiwać się komputerem i jego oprogramowaniem, wykorzystywać sieć komputerową; komunikować się za pomocą
Systemy ekspertowe i sztuczna inteligencja. dr Agnieszka Nowak Brzezioska
Systemy ekspertowe i sztuczna inteligencja dr Agnieszka Nowak Brzezioska Email: agnieszka.nowak@us.edu.pl Architektura SE Pojęcia z dziedziny systemów ekspertowych Inżynieria wiedzy - dziedzina sztucznej
SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
SCENARIUSZ LEKCJI. Tajemniczy ciąg Fibonacciego sztuka przygotowania dobrej prezentacji
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Rozszerzenie funkcjonalności systemów wiki w oparciu o wtyczki i Prolog
Knowledge Rozszerzenie funkcjonalności systemów wiki w oparciu o wtyczki i Prolog 9 stycznia 2009 Knowledge 1 Wstęp 2 3 4 5 Knowledge 6 7 Knowledge Duża ilość nieusystematyzowanych informacji... Knowledge
O ALGORYTMACH I MASZYNACH TURINGA
O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego
DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE:
DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: JAKIE PROBLEMY ROZWIĄZUJE BI 1 S t r o n a WSTĘP Niniejszy dokument to zbiór podstawowych problemów, z jakimi musi zmagać się przedsiębiorca, analityk,
Platforma Microsoft SharePoint. Opis usługi
Platforma Microsoft SharePoint Opis usługi Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym
INFORMATYKA POZIOM ROZSZERZONY
EGZAMIN MATURALNY W ROKU SZKOLNYM 2016/2017 FORMUŁA OD 2015 ( NOWA MATURA ) INFORMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MIN-R1, R2 MAJ 2017 Uwaga: Akceptowane są wszystkie odpowiedzi
Wykorzystanie standardów serii ISO 19100 oraz OGC dla potrzeb budowy infrastruktury danych przestrzennych
Wykorzystanie standardów serii ISO 19100 oraz OGC dla potrzeb budowy infrastruktury danych przestrzennych dr inż. Adam Iwaniak Infrastruktura Danych Przestrzennych w Polsce i Europie Seminarium, AR Wrocław
Internet, jako ocean informacji. Technologia Informacyjna Lekcja 2
Internet, jako ocean informacji Technologia Informacyjna Lekcja 2 Internet INTERNET jest rozległą siecią połączeń, między ogromną liczbą mniejszych sieci komputerowych na całym świecie. Jest wszechstronnym
Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM,
Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Oczekiwania? 2 3 Bazy danych Jak przechowywać informacje? Jak opisać rzeczywistość?
Nowoczesne aplikacje mobilne i ich rola w podnoszeniu jakości danych
Nowoczesne aplikacje mobilne i ich rola w podnoszeniu jakości danych www.ascen.pl 1 Agenda O firmie Zarządzanie jakością danych Aplikacje mobilne i ich rola w zarządzaniu jakością danych 2 O firmie Data
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
INFORMATYKA, TECHNOLOGIA INFORMACYJNA ORAZ INFORMATYKA W LOGISTYCE
Studia podyplomowe dla nauczycieli INFORMATYKA, TECHNOLOGIA INFORMACYJNA ORAZ INFORMATYKA W LOGISTYCE Przedmiot JĘZYKI PROGRAMOWANIA DEFINICJE I PODSTAWOWE POJĘCIA Autor mgr Sławomir Ciernicki 1/7 Aby
UCHWAŁA NR 60/2013 Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 21 listopada 2013 roku
UCHWAŁA NR 60/2013 Senatu Akademii Marynarki Wojennej im. Bohaterów Westerplatte z dnia 21 listopada 2013 roku w sprawie: korekty efektów kształcenia dla kierunku informatyka Na podstawie ustawy z dnia
Projektowanie logiki aplikacji
Jarosław Kuchta Projektowanie Aplikacji Internetowych Projektowanie logiki aplikacji Zagadnienia Rozproszone przetwarzanie obiektowe (DOC) Model klas w projektowaniu logiki aplikacji Klasy encyjne a klasy
Stanusch Technologies S.A. lider w rozwiązaniach opartych o sztuczną inteligencję
Stanusch Technologies S.A. lider w rozwiązaniach opartych o sztuczną inteligencję Maciej Stanusch Prezes Zarządu Stanusch is getting a real runner-up in the world wide list of chatbot developers! Erwin
Repozytorium Zasobów Wiedzy FTP
Repozytorium Zasobów Wiedzy FTP Spis treści Wprowadzenie... 1 Architektura Repozytorium Zasobów Wiedzy... 1 Mapy Wiedzy... 4 Wprowadzanie zasobów wiedzy do repozytorium... 7 Prezentacja zasobów wiedzy
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI 2016 ROK
PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI 2016 ROK KLUCZ ODPOWIEDZI Arkusz I ZADANIE 1. TEST (5 PUNKTÓW) ZADANIE 1.1 (0-1) Zdający przedstawia sposoby reprezentowania różnych form informacji w komputerze:
STUDIA I MONOGRAFIE NR
STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU
OfficeObjects e-forms
OfficeObjects e-forms Rodan Development Sp. z o.o. 02-820 Warszawa, ul. Wyczółki 89, tel.: (+48-22) 643 92 08, fax: (+48-22) 643 92 10, http://www.rodan.pl Spis treści Wstęp... 3 Łatwość tworzenia i publikacji
Spis treści. Analiza i modelowanie_nowicki, Chomiak_Księga1.indb :03:08
Spis treści Wstęp.............................................................. 7 Część I Podstawy analizy i modelowania systemów 1. Charakterystyka systemów informacyjnych....................... 13 1.1.
Rozkład materiału do zajęć z informatyki. realizowanych według podręcznika
Rozkład materiału do zajęć z informatyki realizowanych według podręcznika E. Gurbiel, G. Hardt-Olejniczak, E. Kołczyk, H. Krupicka, M.M. Sysło Informatyka, nowe wydanie z 007 roku Poniżej przedstawiamy
Metody indeksowania dokumentów tekstowych
Metody indeksowania dokumentów tekstowych Paweł Szołtysek 21maja2009 Metody indeksowania dokumentów tekstowych 1/ 19 Metody indeksowania dokumentów tekstowych 2/ 19 Czym jest wyszukiwanie informacji? Wyszukiwanie
[1] [2] [3] [4] [5] [6] Wiedza
3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale
Kraków, 14 marca 2013 r.
Scenariusze i trendy rozwojowe wybranych technologii społeczeństwa informacyjnego do roku 2025 Antoni Ligęza Perspektywy rozwoju systemów eksperckich do roku 2025 Kraków, 14 marca 2013 r. Dane informacja
Prezentacja specjalności studiów II stopnia. Inteligentne Technologie Internetowe
Prezentacja specjalności studiów II stopnia Inteligentne Technologie Internetowe Koordynator specjalności Prof. dr hab. Jarosław Stepaniuk Tematyka studiów Internet jako zbiór informacji Przetwarzanie:
zna podstawową terminologię w języku obcym umożliwiającą komunikację w środowisku zawodowym
Wykaz kierunkowych efektów kształcenia PROGRAM KSZTAŁCENIA: Kierunek Edukacja techniczno-informatyczna POZIOM KSZTAŁCENIA: studia pierwszego stopnia PROFIL KSZTAŁCENIA: praktyczny Przyporządkowanie kierunku
Od metadanych do map wiedzy
Od metadanych do map wiedzy BachoTeX 2004 Mariusz Olko Mariusz.Olko@empolis.pl 1 maja 2004 1 20 lutego 2004 Metadane co to jest? Informacja na temat informacji! Opisuje własności informacji
Matryca pokrycia efektów kształcenia
Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego wyboru) Efekty
Technologie cyfrowe. Artur Kalinowski. Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.
Technologie cyfrowe Artur Kalinowski Zakład Cząstek i Oddziaływań Fundamentalnych Pasteura 5, pokój 4.15 Artur.Kalinowski@fuw.edu.pl Semestr letni 2014/2015 Usługi internetowe usługa internetowa (ang.
Zakładane efekty kształcenia dla kierunku Wydział Telekomunikacji, Informatyki i Elektrotechniki
Jednostka prowadząca kierunek studiów Nazwa kierunku studiów Specjalności Obszar kształcenia Profil kształcenia Poziom kształcenia Forma kształcenia Tytuł zawodowy uzyskiwany przez absolwenta Dziedziny
5 Moduył do wyboru II *[zobacz opis poniżej] 4 Projektowanie i konfiguracja sieci komputerowych Z
1. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 2016/2017L 3. Poziom kształcenia studia drugiego stopnia 4. Profil kształcenia ogólnoakademicki 5. Forma prowadzenia studiów stacjonarna Specjalizacja:
KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO
KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot informatyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela
Nowe spojrzenie na prawo
LEX 2 Nowe spojrzenie na prawo Od 25 lat informujemy o prawie i tworzymy narzędzia przekazujące tę wiedzę. Szybko. Intuicyjnie. Nowocześnie. Stawiamy sobie za cel sprostanie wymaganiom naszych Klientów.
Sztuczna inteligencja
Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)
JAKIEGO RODZAJU NAUKĄ JEST
JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów
Uniwersytet Łódzki Wydział Matematyki i Informatyki, Katedra Analizy Nieliniowej. Wstęp. Programowanie w Javie 2. mgr inż.
Uniwersytet Łódzki Wydział Matematyki i Informatyki, Katedra Analizy Nieliniowej Wstęp Programowanie w Javie 2 mgr inż. Michał Misiak Agenda Założenia do wykładu Zasady zaliczeń Ramowy program wykładu
Transformacja wiedzy w budowie i eksploatacji maszyn
Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces
Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne:
WYDOBYWANIE I WYSZUKIWANIE INFORMACJI Z INTERNETU Forma wykład: 30 godzin laboratorium: 30 godzin Główny cel kursu W ramach kursu studenci poznają podstawy stosowanych powszechnie metod wyszukiwania informacji
Microsoft Class Server. Waldemar Pierścionek, DC EDUKACJA
Microsoft Class Server Waldemar Pierścionek, DC EDUKACJA Czym jest Microsoft Class Server? Platforma edukacyjna dla szkół Nowe możliwości dla: nauczyciela, ucznia, rodzica Tworzenie oraz zarządzanie biblioteką
Wymagania edukacyjne na poszczególne oceny z informatyki w gimnazjum klasa III Rok szkolny 2015/16
Wymagania edukacyjne na poszczególne oceny z informatyki w gimnazjum klasa III Rok szkolny 2015/16 Internet i sieci Temat lekcji Wymagania programowe 6 5 4 3 2 1 Sieci komputerowe. Rodzaje sieci, topologie,
Informacje i zalecenia dla zdających egzamin maturalny z informatyki 1. Część pierwsza egzaminu z informatyki polega na rozwiązaniu zadań
Informacje i zalecenia dla zdających egzamin maturalny z informatyki 1. Część pierwsza egzaminu z informatyki polega na rozwiązaniu zadań egzaminacyjnych bez korzystania z komputera i przebiega według
DDM funkcjonalność
DDM 9000 funkcjonalność Logotec DDM9000 Web Edition (Document Data Management) to system Zarządzania Dokumentami i Przepływem Informacji. Obsługuje on centralną bazę dokumentów zapewniając prosty i szybki
UML w Visual Studio. Michał Ciećwierz
UML w Visual Studio Michał Ciećwierz UNIFIED MODELING LANGUAGE (Zunifikowany język modelowania) Pozwala tworzyć wiele systemów (np. informatycznych) Pozwala obrazować, specyfikować, tworzyć i dokumentować