Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych."

Transkrypt

1 Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Autorzy: Robert Wojciechowski Michał Denkiewicz Mateusz Gągol

2 Wstęp Celem projektu jest umożliwienie przewidywania trendu światowych indeksów giełdowych na podstawie informacji historycznych. Niektórzy uczeni twierdzą, że ruchy cen akcji przypominają nieliniowy deterministyczny proces (chaos), a tylko trudność jego matematycznego zapisu sprawia, że z pozoru wydają się losowe. W programie zostanie wykorzystana sieć neuronowa, ponieważ posiada właściwości umożliwiające uczenie się nieliniowych zależności między danymi wejściowymi. Sieć typu Backpropagation Sieć składa się z z jednostek wejściowych oraz przetwarzających zwanych neuronami. Neurony połączone z wszystkimi neuronami w kolejnej warstwie z uwzględnieniem wag, które magazynują wiedzę wytrenowanej sieci. W warstwach ukrytej oraz wejściowej może znajdować się jednostka bias zwracająca na wyjściu zawsze 1. Ilość warstw ukrytych oraz neuronów zależy od rozmiaru oraz natury zadania.

3 Sieci typu Backpropagation są jednokierunkowe oraz korzystają z mechanizmów uczenia. Przepływ informacji następuje od warstwy wejściowej do wyjściowej. Proces uczenia natomiast polega na porównywaniu otrzymanych wyników z poprawnymi odpowiedziami, a następnie poprawiania wag w oparciu o algorytm minimalizacji sumy kwadratów błędów. Sieci typu Backpropagation wykorzystywane są w 80% aplikacji służących do prognozowania ruchów cen na giełdach. Preprocessing danych Bazowy zestaw danych wejściowych będzie normalizowany do przedziału [-a,a], gdzie parametr a dobierany będzie eksperymentalnie z przedziału [0,1]. Oprócz bazowego zestawu danych wejściowych, będziemy badać sieci pracujące z wstępnie przetworzonymi danymi wejściowymi. Do zestawu danych zostanie dołączony wskaźnik RSI (Relative Strength Index) lub inny rodzaj ważonej średniej kroczącej. RSI jest popularnym wskaźnikiem analizy technicznej używanym najczęściej w połączeniu z innymi wskaźnikami. Określa siłę trendu porównując ruchy zwyżkujące i zniżkujące cen zamknięcia w danym okresie czasu. Twórca wskaźnika sugeruje okres 14 dniowy jako optymalny. Jednak na potrzeby programu zostaną wykorzystane wersje z 9 lub 7 dniowym przedziałem czasowym (są bardziej czułe na zmiany). Wartości wskaźnika podaje się w skali o 0 do 100. W praktyce stosuje się dwie metody interpretacji wskaźnika. Pierwsza z nich polega na obserwacji rozbieżności pomiędzy wartością wskaźnika a wartością cen akcji (wartością indeksu). Do zastosowania z siecią neuronową, lepiej nadaje się druga metoda. Określane są poziomy wykupienia i wyprzedania rynku. Przekroczenie tych poziomów przez wskaźnik oznacza odwrócenie trendu. Poziomy są dobierane na wysokości 20-30% dla wyprzedania i 70-80% dla wykupienia. Jako dane wejściowe sieci podawana będzie wartość RSI, wartości indeksu na zamknięciu sesji oraz wolumen obrotów. Wszystkie wartości przeskalowane. Inną możliwością wstępnego przetworzenia danych jest obliczenie średniej kroczącej ważonej z uwzględnieniem wolumenu obrotów. Zostanie dobrane średnia o stosunkowo szybkiej reakcji na zmiany. Razem ze średnią jako dane wejściowe podawane będą wartości indeksu na zamknięciu sesji. Dobór danych wejściowych i stosowanych parametrów związanych ze wskaźnikami powinny

4 być elastyczne. Wybrane zostały stosunkowo proste wskaźniki które mogą jedynie wspomagać interpretację samej wartości indeksu. Prognozowanie zmian kursu na podstawie samych wskaźników (np. MACD + RSI) nie zostanie uwzględnione. Zebranie danych wejściowych Jako zbiór uczący oraz do testów zostaną wykorzystane historyczne dzienne wartości światowych indeksów giełdowych. Są one dostępne nieodpłatnie w Internecie na stronie Date Open High Low Close Volume Adj Close ,7 3564,8 3460,7 3542,4 1,57E , ,9 3590,2 3492,1 3530,7 1,59E , ,9 3645,9 3526,4 3529,9 1,52E , ,1 3649,5 3512,1 3645,9 1,28E , ,8 3676,9 3497,3 3512,1 1,55E , ,1 3830,1 3625,8 3625,8 1,49E ,8 Zbiory do trenowania oraz testowania Jest sprawą oczywistą, że zbiór do trenowania sieci neuronowej będzie największy, zawierając około 80% wszystkich rekordów wejściowych. Aby uogólnić proces uczenia rekordy będą przekazywane w sposób losowy do wejścia. Zbiór do testowania posłuży do sprawdzenia czy sieć została poprawnie wyuczona. Architektura sieci Głównym elementem aplikacji jest sieć neuronowa typu perceptron. Wybranie algorytmu backpropagation zapewnia duże możliwości uogólniania oraz stosunkową prostą implementację. Niestety problematyczne może być wykrycie odpowiedniej konfiguracji oraz parametrów sieci. Jeżeli zostania ona jednak znaleziona, a następnie poprawnie wytrenowana można spodziewać się dobrych wyników wydajności jej działania.

5 Sieć składać się będzie z trzech warstw: 1. warstwa wejściowa: n*m+1 elementów 1 bias zawsze na wejściu m - równe 3 lub 2 w zależności od wyboru rodzaju informacji wejściowych spośród wartość RSI, wartości indeksu na zamknięciu sesji oraz wolumen obrotów n - ilość dni w oknie czasowym (próbce czasowej) 2. warstwa ukryta : zostanie ona tak zaprojektowana aby umożliwić zmianę liczby neuronów z poziomu programu, w procesie testowania zostanie podjęta próba określenia najlepszej ilości neuronów w tej warstwie. dodatkowo 1 bias - zawsze na wejściu 3. warstwa wyjściowa: 1 neuron o wartości w przedziale <-1,+1>. Wartość <-1,0) oznaczać będzie zachętę do sprzedaży (przewidywana wartość spółki będzie niższa), natomiast wartość <0,1> sugerować kupno (przewidywana wartość spółki będzie wyższa) Każdy element wejściowy połączony jest z każdym neuronem warstwy ukrytej. Każdy neuron warstwy ukrytej połączony jest z neuronem wyjściowym Ilość ukrytych warstw Dzięki ukrytym warstwom sieć posiada możliwość uogólniania. Zgodnie z teorią sieć z jedną warstwą ukrytą jest zdolna do przybliżania funkcji ciągłych. Zbyt duża ilość warstw ukrytych może doprowadzić naddopasowania sieci (overfitting), charakteryzującego się zwiększonymi czasami obliczeń i pogorszeniem zdolności wykrywania ogólnych wzorców. Ilość ukrytych neuronów Nie istnieje wzór umożliwiający dokładne obliczenie optymalnej liczby neuronów w warstwie ukrytej. Możliwe jest jednie podawanie zakresów w jakich się ona znajduje,a następnie testowanie kolejnych wartości w nich się znajdujących. Punktem wyjścia uczynimy wynik otrzymany poprzez zastosowania zasady geometrycznej piramidy sqrt(n x m). Gdzie n oznacza ilość neuronów wejściowych, natomiast m wyjściowych.

6 Funkcja przejścia Funkcja przejścia używana jest do zdefiniowania wartości wyjścia w neuronach. W programie zostanie wykorzystana sigmoidalna funkcja. Zgodnie z literaturą jest ona najlepsza do trenowania sieci mającej symulować zjawiska charakteryzujące się niewielkimi odchyleniami. W przeciwnych wypadkach stosuje się hiperboliczny tangens. W każdym przypadku celem zastosowania funkcji przejścia jest uniemożliwienie otrzymania na wyjściu bardzo dużych wartości,które by paraliżowały sieć oraz uniemożliwiały jej wytrenowanie. Algorytm Backpropagation Algorytm propagacji wstecznej jest podstawowym algorytmem uczenia ( nadzorowanego czy z nauczycielem ) dla wielowarstwowych jednokierunkowych sieci neuronowych. Jest to zasada zmian wag Tij dowolnych połączeń elementów przetwarzających rozmieszczonych w warstwach sieci. Algorytm oparty jest o zasadę minimalizacji sumy kwadratów błędów uczenia z wykorzystaniem optymalizacyjnej metody największego spadku. 1. Aby określić stan j-tego neuronu w warstwie n obliczamy ważoną sumę jego M wejść M E n j = T n n 1 j,i U i i=1 E j n ważona suma wejściowa j-tego neuronu w warstwie n n T j,i waga połączenia i-tego neuronu w warstwie n-1 i j-tego neuronu w warstwie n U i n 1 wyjście i tego neuronu w warstwie n-1 2. Sygnał wyjściowy j-tego neuronu w warstwie n jest równy U i n 1 = f E j n gdzie f jest funkcją przejścia (przenoszenia) neuronu 3. Obliczany jest globalny sygnał błędu, który jest różniczkowalną funkcją wag sieci

7 M D=1/2 U. j U wy j 2 i=1. U j wzorcowe wyjście j-tego neuronu w warstwie wyjściowej n T j,i aktualne wyjście j-tego neuronu w warstwie wyjściowej 4. Na tym etapie algorytmu wstecznej propagacji za cel można uznać minimalizację błędu globalnego D, przez modyfikację wag sieci. Można do tego wykorzystać metodę gradientu. T n n j,i = N D/ T j,i N współczynnik uczenia Zmieniamy każdą wagę zgodnie z wielkością i kierunkiem ujemnego gradientu na hiperpowierzchni D(T). 5. Dla elementów położonych w warstwie wyjściowej T wy j,i = N d wy wy 1 j U i Natomiast funkcja błędu użyta do zmodyfikowania wag pomiędzy neuronami warstwy wyjściowej a elementami warstwy poprzedzającej ostatniej pośredniej to: T n j,i t =T n n j,i t 1 N T j,i T n j,i t = T n j, i t 1 1 d n j f E n 1 i Iteracyjne obliczenia pozwalają na poprawianie wag wstecz, aż do warstwy wejściowej.

8 Ilość iteracji W tworzonej aplikacji zastosowane zostaną dwa podejścia do wyboru odpowiedniej liczby iteracji. Pierwszy sposób opiera się na trenowaniu sieci za pomocą zbioru uczącego oraz co pewną stałą liczbę generacji H sprawdzanie przy użyciu zbioru walidacyjnego stopnia nauczenia sieci. Jeżeli będzie on większy niż zadana stała N(N% przewidywań poprawnych) wówczas następuje zakończenie procesu nauki sieci. Będzie istniała możliwość przerwania omawianego procesu przez użytkownika. Drugi sposób trenowania sieci polega na przekazaniu z poziomu interfejsu zadanej liczby iteracji. Współczynnik uczenia Współczynnik uczenia jest stałą określającą siłę z jaką wyznaczony błąd między otrzymanymi a poprawnymi wagami będzie propagowany wzdłuż sieci. Zmiana wagi neuronu zależy także od wpływu wagi na powstały błąd. Analogię tego procesu można porównać do próby umieszczenia piłki z dołka A w dołku C. Zbyt duża użyta siła może sprawić że znajdzie się ona w punkcie B. Natomiast zbyt mała sprawi,że piłka pozostanie w A. Podczas trenowania sieci zbyt wysoki współczynnik uczenia objawia się dużymi zmianami wartości funkcji błędu nie prowadzącymi do stałej poprawy. Za mały współczynnik prowadzi do niezauważalnej poprawy wartości funkcji błędu oraz wydłużenia czasu treningu. W praktyce na początku ustawia się współczynnik uczenia na poziomie powyżej 0.7, a następnie obniża w procesie treningu.

9 Funkcjonalność interfejsu aplikacji (technologia.net) : 1. Zarządzanie danymi wejściowymi dla sieci neuronowej: a) Wybór jednego ze światowych indeksów giełdowych b) Pobieranie danych z internetu (użytkownik podaje okres danych do pobrania) c) Przechowywanie d) Wizualizacja w postaci wykresu 2. Tworzenie i trenowanie sieci przy użyciu uprzednio pozyskanych danych. Użytkownik może sterować: a) Liczbami wykorzystywane do normalizacji danych wejściowych b) Współczynnikiem uczenia sieci c) Ilością generacji d) Wielkością warstwy ukrytej e) Wielkością okna (przedziałem czasowym danych na wejściu sieci) 3. Przechowywanie wytrenowanych sieci wraz z informacją o parametrach trenowania. 4. Generowanie prognozy na kolejny dzień przez wytrenowaną sieć. 5. Testowanie możliwości wytrenowanych sieci przy użyciu wybranych danych. 6. Jednoczesne uruchamianie trenowania kilku sieci o różnych parametrach na tych samych danych, zakończone testowaniem na innym podanym zestawie danych. Analiza efektywności sieci Istnieją cztery możliwe rezultaty porównania prognozy wygenerowanej przez sieć na konkretny dzień: poprawne przewidzenie wzrostu wartości indeksu poprawne przewidzenie spadku wartości indeksu zasygnalizowanie wzrostu, gdy ten nie nastąpił zasygnalizowanie spadku, gdy ten nie nastąpił Analiza efektywności sieci polegać będzie na obliczeniu proporcji występowania każdej z tych sytuacji podczas okresu testowania. Obliczany też będzie procent poprawnych rozpoznań trendu.

Dokumentacja Końcowa

Dokumentacja Końcowa Metody Sztucznej Inteligencji 2 Projekt Prognozowanie kierunku ruchu indeksów giełdowych na podstawie danych historycznych. Dokumentacja Końcowa Autorzy: Robert Wojciechowski Michał Denkiewicz Wstęp Celem

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Sieci neuronowe w Statistica

Sieci neuronowe w Statistica http://usnet.us.edu.pl/uslugi-sieciowe/oprogramowanie-w-usk-usnet/oprogramowaniestatystyczne/ Sieci neuronowe w Statistica Agnieszka Nowak - Brzezińska Podstawowym elementem składowym sztucznej sieci neuronowej

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH W PROGNOZOWANIU THE USE OF ARTIFICIAL NEURAL NETWORKS IN FORECASTING Konrad BAJDA, Sebastian PIRÓG Resume Artykuł opisuje wykorzystanie sztucznych sieci neuronowych

Bardziej szczegółowo

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex.

RAPORT Z PRAKTYKI. Zastosowanie Sztucznych Sieci Neuronowych do wspomagania podejmowania decyzji kupna/sprzedaży na rynku Forex. Projekt współfinansowane przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach projektu Wiedza Techniczna Wzmocnienie znaczenia Politechniki Krakowskiej w kształceniu przedmiotów

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Sieci neuronowe - dokumentacja projektu

Sieci neuronowe - dokumentacja projektu Sieci neuronowe - dokumentacja projektu Predykcja finansowa, modelowanie wskaźnika kursu spółki KGHM. Piotr Jakubas Artur Kosztyła Marcin Krzych Kraków 2009 1. Sieci neuronowe - dokumentacja projektu...

Bardziej szczegółowo

Sztuczne siei neuronowe - wprowadzenie

Sztuczne siei neuronowe - wprowadzenie Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 2 Sztuczne siei neuronowe - wprowadzenie Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika Poznańska Poznań, 2 Wstęp

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 5 Sztuczne sieci neuronowe (SSN) 8 grudnia 2011 Plan wykładu 1 Biologiczne wzorce sztucznej sieci neuronowej 2 3 4 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką,

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia

Bardziej szczegółowo

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW

Sztuczne Sieci Neuronowe. Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW Sztuczne Sieci Neuronowe Wiktor Tracz Katedra Urządzania Lasu, Geomatyki i Ekonomiki Leśnictwa, Wydział Leśny SGGW SN są częścią dziedziny Sztucznej Inteligencji Sztuczna Inteligencja (SI) zajmuje się

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

System transakcyjny oparty na wskaźnikach technicznych

System transakcyjny oparty na wskaźnikach technicznych Druga połowa ubiegłego stulecia upłynęła pod znakiem dynamicznego rozwoju rynków finansowych oraz postępującej informatyzacji społeczeństwa w skali globalnej. W tym okresie, znacząco wrosła liczba narzędzi

Bardziej szczegółowo

ROC Rate of Charge. gdzie ROC wskaźnik szybkości zmiany w okresie n, x n - cena akcji na n-tej sesji,

ROC Rate of Charge. gdzie ROC wskaźnik szybkości zmiany w okresie n, x n - cena akcji na n-tej sesji, ROC Rate of Charge Analityk techniczny, który w swej analizie opierałby się wyłącznie na wykresach uzyskiwałby obraz możliwości inwestycyjnych obarczony sporym ryzykiem. Wnioskowanie z wykresów bazuje

Bardziej szczegółowo

Instrukcja realizacji ćwiczenia

Instrukcja realizacji ćwiczenia SIEĆ KOHONENA ROZPOZNAWANIE OBRAZÓW Cel ćwiczenia: zapoznanie się ze sposobem reprezentacji wiedzy w sieciach Kohonena i mechanizmami sąsiedztwa i sumienia neuronów. Zadanie do analizy: analizujemy sieć

Bardziej szczegółowo

ANALIZA TECHNICZNA RYNKÓW FINANSOWYCH

ANALIZA TECHNICZNA RYNKÓW FINANSOWYCH POLITECHNIKA OPOLSKA WYDZIAŁ ZARZĄDZANIA I INŻYNIERII PRODUKCJI ANALIZA TECHNICZNA RYNKÓW FINANSOWYCH ARKADIUSZ SKOWRON OPOLE 2007 Arkadiusz Skowron Analiza techniczna rynków finansowych 1 ANALIZA TECHNICZNA

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

1. Architektury, algorytmy uczenia i projektowanie sieci neuronowych

1. Architektury, algorytmy uczenia i projektowanie sieci neuronowych Sztuczne sieci neuronowe i algorytmy genetyczne Artykuł pobrano ze strony eioba.pl SPIS TREŚCI 1. ARCHITEKTURY, ALGORYTMY UCZENIA I PROJEKTOWANIE SIECI NEURONOWYCH 1.1. HISTORIA ROZWOJU SZTUCZNYCH SIECI

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań Raport 1/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Inteligentne systemy informacyjne

Inteligentne systemy informacyjne Inteligentne systemy informacyjne Moduł 10 Mieczysław Muraszkiewicz www.icie.com.pl/lect_pw.htm M. Muraszkiewicz strona 1 Sieci neuronowe szkic Moduł 10 M. Muraszkiewicz strona 2 Dwa nurty M. Muraszkiewicz

Bardziej szczegółowo

Metody klasyfikacji i rozpoznawania wzorców. Najważniejsze rodzaje klasyfikatorów

Metody klasyfikacji i rozpoznawania wzorców.  Najważniejsze rodzaje klasyfikatorów Metody klasyfikacji i rozpoznawania wzorców www.michalbereta.pl Najważniejsze rodzaje klasyfikatorów Dla określonego problemu klasyfikacyjnego (tzn. dla danego zestawu danych) należy przetestować jak najwięcej

Bardziej szczegółowo

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA CEN NA GIEŁDZIE ENERGII

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA CEN NA GIEŁDZIE ENERGII WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH DO PROGNOZOWANIA CEN NA GIEŁDZIE ENERGII Autor: Katarzyna Halicka ( Rynek Energii nr 1/2010) Słowa kluczowe: giełda energii, prognozowanie cen energii elektrycznej,

Bardziej szczegółowo

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej.

BIOCYBERNETYKA SIECI NEURONOWE. Akademia Górniczo-Hutnicza. Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk SIECI NEURONOWE www.agh.edu.pl Mózg inspiruje nas od wieków Co takiego

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

Modyfikacja algorytmów retransmisji protokołu TCP.

Modyfikacja algorytmów retransmisji protokołu TCP. Modyfikacja algorytmów retransmisji protokołu TCP. Student Adam Markowski Promotor dr hab. Michał Grabowski Cel pracy Celem pracy było przetestowanie i sprawdzenie przydatności modyfikacji klasycznego

Bardziej szczegółowo

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica.

NEURAL NETWORK ) FANN jest biblioteką implementującą SSN, którą moŝna wykorzystać. w C, C++, PHP, Pythonie, Delphi a nawet w środowisku. Mathematica. Wykorzystanie sztucznych sieci neuronowych do rozpoznawania języków: polskiego, angielskiego i francuskiego Tworzenie i nauczanie sieci przy pomocy języka C++ i biblioteki FANN (Fast Artificial Neural

Bardziej szczegółowo

Testowanie modeli predykcyjnych

Testowanie modeli predykcyjnych Testowanie modeli predykcyjnych Wstęp Podczas budowy modelu, którego celem jest przewidywanie pewnych wartości na podstawie zbioru danych uczących poważnym problemem jest ocena jakości uczenia i zdolności

Bardziej szczegółowo

SIECI RBF (RADIAL BASIS FUNCTIONS)

SIECI RBF (RADIAL BASIS FUNCTIONS) SIECI RBF (RADIAL BASIS FUNCTIONS) Wybrane slajdy z prezentacji prof. Tadeusiewicza Wykład Andrzeja Burdy S. Osowski, Sieci Neuronowe w ujęciu algorytmicznym, Rozdz. 5, PWNT, Warszawa 1996. opr. P.Lula,

Bardziej szczegółowo

Zastosowanie oscylatorów o łapaniu górek i dołków na wykresach. Szymon Kamiński Szef Pionu AT

Zastosowanie oscylatorów o łapaniu górek i dołków na wykresach. Szymon Kamiński Szef Pionu AT Zastosowanie oscylatorów o łapaniu górek i dołków na wykresach Szymon Kamiński Szef Pionu AT Plan prezentacji Definicja oscylatora Rodzaje oscylatorów Przykłady Zabawa z MetaStockiem Co to jest oscylator?

Bardziej szczegółowo

Studenckie Koło Naukowe Rynków Kapitałowych Zbieżność i rozbieżność średnich kroczących - MACD (Moving Average Convergence Divergence).

Studenckie Koło Naukowe Rynków Kapitałowych Zbieżność i rozbieżność średnich kroczących - MACD (Moving Average Convergence Divergence). Zbieżność i rozbieżność średnich kroczących - MACD (Moving Average Convergence Divergence). MACD (zbieżność i rozbieżność średnich kroczących) - jest jednym z najczęściej używanych wskaźników. Jego popularność

Bardziej szczegółowo

STEROWANIE PROCESEM PRODUKCJI PRZY UŻYCIU SIECI NEURONOWYCH

STEROWANIE PROCESEM PRODUKCJI PRZY UŻYCIU SIECI NEURONOWYCH STEROWANIE PROCESEM PRODUKCJI PRZY UŻYCIU SIECI NEURONOWYCH Izabela ROJEK, Przemysław STASZYŃSKI Streszczenie: W pracy przedstawiono aplikację wspomagającą sterowanie procesem produkcji sody kalcynowanej

Bardziej szczegółowo

Testy popularnych wskaźników - RSI

Testy popularnych wskaźników - RSI Testy popularnych wskaźników - RSI Wskaźniki analizy technicznej generują wskazania kupna albo sprzedaży pomagając przy tym inwestorom podjąć odpowiednie decyzje. Chociaż przeważnie patrzy się na co najmniej

Bardziej szczegółowo

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WYKORZYSTANIEM MODELI JEDNOKIERUNKOWYCH SIECI NEURONOWYCH

PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WYKORZYSTANIEM MODELI JEDNOKIERUNKOWYCH SIECI NEURONOWYCH Michał Sarapata Uniwersytet Ekonomiczny w Katowicach PROGNOZOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WYKORZYSTANIEM MODELI JEDNOKIERUNKOWYCH SIECI NEURONOWYCH Wprowadzenie Kluczową kwestią w procesie podejmowania

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2 Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych

Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Elektroniczne materiały dydaktyczne do przedmiotu Wstęp do Sieci Neuronowych Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-21 Koncepcja kursu Koncepcja

Bardziej szczegółowo

SAPRI TRADE składanie zleceń

SAPRI TRADE składanie zleceń SAPRI TRADE składanie zleceń Piotr Oryński Architekt Aplikacji Giełdowych IX FORUM OBROTU Janów Podlaski, 20-22 czerwca 2016 Strona Agenda Wprowadzenie 3 Portfolia i statusy zleceń 5 Rodzaje zleceń i składanie

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Dostawa oprogramowania. Nr sprawy: ZP /15

Dostawa oprogramowania. Nr sprawy: ZP /15 ........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład III: Psychologiczne modele umysłu Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe)

Bardziej szczegółowo

Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe.

Badacze zbudowali wiele systemów technicznych, naśladujących w komputerze ludzki mózg. Najbardziej pożyteczne okazały się sieci neuronowe. Naśladując w komputerze ludzki mózg staramy się połączyć zalety komputera (dostępność i szybkość działania) z zaletami mózgu (zdolność do uczenia się) informatyka + 2 Badacze zbudowali wiele systemów technicznych,

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

WSKAŹNIK RUCHU KIERUNKOWEGO (DMI) ŚREDNI INDEKS RUCHU KIERUNKOWEGO (ADX)

WSKAŹNIK RUCHU KIERUNKOWEGO (DMI) ŚREDNI INDEKS RUCHU KIERUNKOWEGO (ADX) WSKAŹNIK RUCHU KIERUNKOWEGO (DMI) ŚREDNI INDEKS RUCHU KIERUNKOWEGO (ADX) Wszelkie wskaźniki i oscylatory zostały stworzone z myślą pomocy w identyfikowaniu pewnych stanów rynku i w ten sposób generowaniu

Bardziej szczegółowo

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe

Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XI: Sztuczne sieci neuronowe Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XI: Sztuczne sieci neuronowe [pattern associator], PA struktura: Sieci kojarzące wzorce programowanie: wyjście jednostki = aktywacji sieciowej (N)

Bardziej szczegółowo

Analiza statystyczna trudności tekstu

Analiza statystyczna trudności tekstu Analiza statystyczna trudności tekstu Łukasz Dębowski ldebowsk@ipipan.waw.pl Problem badawczy Chcielibyśmy mieć wzór matematyczny,...... który dla dowolnego tekstu...... na podstawie pewnych statystyk......

Bardziej szczegółowo

statystyczne dowodzące, że w istocie rozkład zmian cen nie jest rozkładem normalnym.

statystyczne dowodzące, że w istocie rozkład zmian cen nie jest rozkładem normalnym. Jesteś tu: Bossa.pl» Edukacja» AT» Techniki» Transformata Fishera Zastosowanie transformaty Fishera na rynku kapitałowym Krzysztof Borowski Katedra Bankowości SGH Wprowadzenie Wiele metod statystycznych

Bardziej szczegółowo

PROGNOZOWANIE PORÓWNAWCZE ENERGII PROCESOWEJ ZESTAWÓW MASZYN DO ROBÓT ZIEMNYCH JAKO CZYNNIKA RYZYKA EMISYJNOŚCI CO2

PROGNOZOWANIE PORÓWNAWCZE ENERGII PROCESOWEJ ZESTAWÓW MASZYN DO ROBÓT ZIEMNYCH JAKO CZYNNIKA RYZYKA EMISYJNOŚCI CO2 PROGNOZOWANIE PORÓWNAWCZE ENERGII PROCESOWEJ ZESTAWÓW MASZYN DO ROBÓT ZIEMNYCH JAKO CZYNNIKA RYZYKA EMISYJNOŚCI CO2 Celem opracowania algorytmu obliczeń jest umożliwienie doboru zestawu maszyn do robót

Bardziej szczegółowo

Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie

Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie Adam Stawowy Paweł Jastrzębski Wydział Zarządzania AGH Zastosowanie sieci neuronowej do oceny klienta banku pod względem ryzyka kredytowego Streszczenie Jedną z najczęściej podejmowanych decyzji w działalności

Bardziej szczegółowo

WOLUMEN OBROTÓW I LICZBA OTWARTYCH POZYCJI

WOLUMEN OBROTÓW I LICZBA OTWARTYCH POZYCJI WOLUMEN OBROTÓW I LICZBA OTWARTYCH POZYCJI Inwestorzy oceniający sytuację na rynkach terminowych zazwyczaj posługują się metodą uwzględniającą trzy wielkości - cenę, wolumen i liczbę otwartych kontraktów.

Bardziej szczegółowo

Wykorzystanie sztucznej inteligencji do prognozowania notowań Warszawskiej Giełdy Papierów Wartościowych. opiekun: dr A. Wojna.

Wykorzystanie sztucznej inteligencji do prognozowania notowań Warszawskiej Giełdy Papierów Wartościowych. opiekun: dr A. Wojna. Wykorzystanie sztucznej inteligencji do prognozowania notowań Warszawskiej Giełdy Papierów Wartościowych opiekun: dr A. Wojna Łukasz Kowalski 1. Świece japońskie Plan prezentacji Plan prezentacji 1. Świece

Bardziej szczegółowo

Wprowadzenie do klasyfikacji

Wprowadzenie do klasyfikacji Wprowadzenie do klasyfikacji ZeroR Odpowiada zawsze tak samo Decyzja to klasa większościowa ze zbioru uczącego A B X 1 5 T 1 7 T 1 5 T 1 5 F 2 7 F Tutaj jest więcej obiektów klasy T, więc klasyfikator

Bardziej szczegółowo

Próbny egzamin gimnazjalny w części matematyczno-przyrodniczej dnia r.

Próbny egzamin gimnazjalny w części matematyczno-przyrodniczej dnia r. Próbny egzamin gimnazjalny w części matematyczno-przyrodniczej dnia 06.12.2007r. L.p. Klasa Liczba uczniów w klasie Liczba uczniów, którzy przystąpili do egzaminu Liczba uczniów nieobecnych 1. III a 14

Bardziej szczegółowo

METODY INŻYNIERII WIEDZY

METODY INŻYNIERII WIEDZY METODY INŻYNIERII WIEDZY WALIDACJA KRZYŻOWA dla ZAAWANSOWANEGO KLASYFIKATORA KNN ĆWICZENIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman

Seminarium magisterskie. Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Seminarium magisterskie Dyskusja nad tematem pracy magisterskiej pisanej pod kierunkiem pani Dr hab. Małgorzaty Doman Plan wystąpienia Ogólnie o sztucznych sieciach neuronowych Temat pracy magisterskiej

Bardziej szczegółowo

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty

Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Wstęp do sieci neuronowych laboratorium 01 Organizacja zajęć. Perceptron prosty Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-10-03 Projekt pn. Wzmocnienie potencjału

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

WYKORZYSTANIE ANALIZY TECHNICZNEJ W PROCESIE PODEJMOWANIA DECYZJI INWESTYCYJNYCH NA PRZYKŁADZIE KGHM POLSKA MIEDŹ S.A.

WYKORZYSTANIE ANALIZY TECHNICZNEJ W PROCESIE PODEJMOWANIA DECYZJI INWESTYCYJNYCH NA PRZYKŁADZIE KGHM POLSKA MIEDŹ S.A. Uniwersytet Wrocławski Wydział Prawa, Administracji i Ekonomii Instytut Nauk Ekonomicznych Zakład Zarządzania Finansami Studia Stacjonarne Ekonomii pierwszego stopnia Krzysztof Maruszczak WYKORZYSTANIE

Bardziej szczegółowo

1 Podstawy programowania sieci neuronowych w programie Matlab 7.0

1 Podstawy programowania sieci neuronowych w programie Matlab 7.0 1 Podstawy programowania sieci neuronowych w programie Matlab 7.0 1.1 Wczytanie danych wejściowych Pomocny przy tym będzie program Microsoft Excel. W programie tym obrabiamy wstępnie nasze dane poprzez

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Spis treści. Przedmowa... 11

Spis treści. Przedmowa... 11 Spis treści Przedmowa.... 11 Nowe trendy badawcze w ruchu lotniczym. Zagadnienia wstępne... 13 I. Ruch lotniczy jako efekt potrzeby komunikacyjnej pasażera.... 13 II. Nowe środki transportowe w ruchu lotniczym....

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Zastosowanie symulacji komputerowej do badania właściwości hydraulicznych sieci wodociągowej

Zastosowanie symulacji komputerowej do badania właściwości hydraulicznych sieci wodociągowej Zastosowanie symulacji komputerowej do badania właściwości hydraulicznych sieci wodociągowej prof. dr hab. inż. Andrzej J. OSIADACZ Politechnika Warszawska Wydział Inżynierii Środowiska dr hab. inż. Maciej

Bardziej szczegółowo

Wprowadzenie do Sieci Neuronowych lista zadań 1

Wprowadzenie do Sieci Neuronowych lista zadań 1 Wprowadzenie do Sieci Neuronowych lista zadań 1 Maja Czoków, Jarosław Piersa 2010-10-04 1 Zasadyzaliczania 1.1 Oceny Zaliczenie laboratoriów na podstawie implementowania omawianych algorytmów. Każde zadanie

Bardziej szczegółowo

System wizyjny OMRON Xpectia FZx

System wizyjny OMRON Xpectia FZx Ogólna charakterystyka systemu w wersji FZ3 w zależności od modelu można dołączyć od 1 do 4 kamer z interfejsem CameraLink kamery o rozdzielczościach od 300k do 5M pikseli możliwość integracji oświetlacza

Bardziej szczegółowo

Zastosowania sieci neuronowych predykcja - giełda

Zastosowania sieci neuronowych predykcja - giełda Zastosowania sieci neuronowych predykcja - giełda LABORKA Piotr Ciskowski AKCJE INDEKS WIG20 plik giełda-wig.xlsx : dane: indeks WIG od 1991 do 2005 ok. 3000 sesji bez ostatniej szalonej hossy dla każdej

Bardziej szczegółowo

Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od -1 do 1.

Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od -1 do 1. Politechnika Rzeszowska Wydział Elektrotechniki i Informatyki Mateusz Błażej Nr albumu: 130366 Zrealizować sieć neuronową (learnbpm) uczącą się odwzorowania z = x 2 + y 2 dla x i y zmieniających się od

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów

Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów Przykładowe funkcje przejścia używane przy budowie sztucznych neuronów Funkcja Wzór funkcji Wzór pochodnej Sigmoida f(s)=1/(1+e -(β*s) ) f (s)=β*(1- f(s))* f(s) Funkcje przejścia neuronu powinno się rozpatrywać

Bardziej szczegółowo

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change

Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change Raport 4/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu dla odczytu Australia Employment Change autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe wykład 1. Właściwości sieci neuronowych Model matematyczny sztucznego neuronu Rodzaje sieci neuronowych Przegląd d głównych g

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Vodafone Group plc (VOD)- spółka notowana na giełdzie londyńskiej.

Vodafone Group plc (VOD)- spółka notowana na giełdzie londyńskiej. Vodafone Group plc (VOD)- spółka notowana na giełdzie londyńskiej. Czym zajmuje się firma? Vodafone (VOice - DAta - FONE) - to międzynarodowy operator telefonii komórkowej, którego zarząd znajduje się

Bardziej szczegółowo

ANALIZA SPÓŁEK 21.08.2006. Witam.

ANALIZA SPÓŁEK 21.08.2006. Witam. ANALIZA SPÓŁEK 21.08.2006 Witam. DWORY Spółka zadebiutowała na GPW w grudniu 2004 roku. Przez pierwszych dziesięć miesięcy notowania przebiegały w bardzo wąskiej stabilizacji. Cena akcji wahała się pomiędzy

Bardziej szczegółowo

oferty kupujących oferty wytwórców

oferty kupujących oferty wytwórców Adam Bober Rybnik, styczeń Autor jest pracownikiem Wydziału Rozwoju Elektrowni Rybnik S.A. Artykuł stanowi wyłącznie własne poglądy autora. Jak praktycznie zwiększyć obrót na giełdzie? Giełda jako jedna

Bardziej szczegółowo

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4

METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 1 2 SZTUCZNE SIECI NEURONOWE HISTORIA SSN 3 Walter Pitts, Warren McCulloch (1943) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich

Bardziej szczegółowo

SZTUCZNE SIECI NEURONOWE

SZTUCZNE SIECI NEURONOWE METODY INTELIGENCJI OBLICZENIOWEJ wykład 4 SZTUCZNE SIECI NEURONOWE HISTORIA SSN Walter Pitts, Warren McCulloch (94) opracowanie matematyczne pojęcia sztucznego neuronu.. Udowodnili też, iż ich wynalazek

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

MACD wskaźnik trendu

MACD wskaźnik trendu MACD wskaźnik trendu Opracowany przez Geralda Appela oscylator MACD (Moving Average Convergence/Divergence) to jeden z najpopularniejszych wskaźników analizy technicznej. Jest on połączeniem funkcji oscylatora

Bardziej szczegółowo

Prace magisterskie 1. Założenia pracy 2. Budowa portfela

Prace magisterskie 1. Założenia pracy 2. Budowa portfela 1. Założenia pracy 1 Założeniem niniejszej pracy jest stworzenie portfela inwestycyjnego przy pomocy modelu W.Sharpe a spełniającego następujące warunki: - wybór akcji 8 spółek + 2 papiery dłużne, - inwestycja

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4

Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4 Cyfrowe algorytmy sterowania AR S1 semestr 4 Projekt 4 MPC Sterowanie predykcyjne Cel: Poznanie podstaw regulacji predykcyjnej i narzędzi do badań symulacyjnych Wykonali: Konrad Słodowicz Patryk Frankowski

Bardziej szczegółowo