ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie

Wielkość: px
Rozpocząć pokaz od strony:

Download "ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie"

Transkrypt

1 Akademia Górniczo Hutnicza im. St. Staszica w Krakowie Wydział Energetyki i Paliw Katedra Technologii Paliw ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie Ćwiczenie 8 Pomiar ciśnienia rozprężania 1

2 1. Oddziaływanie ciśnienia rozprężania na ściany komór koksowniczych oraz jakość koksu Ciśnienie rozprężania to jeden z parametrów charakteryzujących własności koksotwórcze węgla. Wzrastające zainteresowanie koksowników tym właśnie parametrem wynika z faktu, iż ciśnienie rozprężania ma znaczący wpływ na bezpieczeństwo ścian komór koksowniczych. Z drugiej strony parametr ten spełnia ważną rolę w procesie koksownia, bowiem ułatwia aglomerację uplastycznionych ziaren węgla oraz sprzyja zmniejszeniu ilości i wielkości szczelin w półkoksie wskutek wnikania w nie masy plastycznej. W konsekwencji prowadzi to do zwiększenia wytrzymałości tworzącego się koksu. Odpowiedź na pytanie dlaczego ciśnienie rozprężania jest tak ważne została już zawarta powyżej, mianowicie ze względu na możliwość deformacji lub trwałego uszkodzenia ceramiki baterii koksowniczej. Bateria koksownicza z ekonomicznego punktu widzenia to jeden z najdroższych elementów koksowni. Wieloletnia praktyka wykazuje, iż ściany komór koksowniczych narażone są na szereg czynników negatywnie wpływających na ich żywotność. W tym momencie pojawiają się kolejne pytania: jakie deformacje są dopuszczalne podczas użytkowania komory i jakie są w takim razie dopuszczalne siły lub ciśnienia, które je powodują. Z tych względów istotnym jest ustalenie bezpiecznej wartości ciśnienia rozprężania, nie powodującej trwałego zniszczenia ceramiki komory koksowniczej. Siły oddziałujące na ściany baterii koksowniczych mają różnorakie źródła. Już przy załadunku komory występują siły poziome, których bezpośrednią przyczyną jest masa wsypywanego węgla (przy systemie zasypowym). Jak podaje literatura [1], siły te są jednak zbyt małe, aby spowodować poważniejsze uszkodzenia, nawet jeśli uwzględnić gradient termiczny związany z kontaktem gorącego masywu z zimnym wsadem węglowym. Ciśnienie gazów w bezpośrednim pobliżu ścian komory, określane w literaturze anglojęzycznej jako gas pressure at the walls, również nie powoduje większych zniszczeń ceramiki komory. Na temat tego oddziaływania jest jednak zbyt mało danych, gdyż zazwyczaj ciśnienie gazu mierzone jest w centrum wsadu. Centralna część wsadu jest bowiem miejscem, gdzie generowane ciśnienie podczas koksownia osiąga maksymalną wartość ze względu na połączenie się dwóch warstw plastycznych. Zdecydowanie największy wpływ na bezpieczeństwo ceramiki ma natomiast ciśnienie generowane w centrum wsadu nazywane wewnętrznym ciśnieniem gazu ( internal gas pressure ) i transmitowane w formie ciśnienia rozprężania na ściany komory. Mechanizmem powodującym powstawanie wewnętrznego ciśnienia jest wydzielenie się gazów i par 2

3 pirolitycznych w warstwie uplastycznionego węgla koksowego. Wydzielenie się pary wodnej ma również swój udział w oddziaływaniu na ściany komory. Ze względu jednak na fakt, iż odparowanie wody następuje w temperaturze około 100 o C, czyli w godzinę po zasypaniu komory, kiedy jeszcze koksowany wsad charakteryzuje się jeszcze dość dużą przepuszczalnością, ciśnienie generowane w tym czasie jest zupełnie niegroźne dla ścian komory. Rozszerzalność temperaturowa węgla podczas ogrzewania wsadu oraz siły generowane podczas wypychania koksu również oddziałują na ściany komory koksowniczej zwiększając ryzyko jej uszkodzenia. W porównaniu jednak z ciśnieniem rozprężania mają niewielkie znacznie przy rozpatrywaniu bezpieczeństwa ceramiki ścian komory koksowniczej. Jak wykazuje wieloletnia praktyka koksownicza ciśnienie rozprężania wielokrotnie było przyczyną tak silnych deformacji komory koksowniczej, że wymagały one przebudowy. Znane są również przypadki zniszczenia baterii koksowniczej po około czterech latach jej eksploatacji w wyniku działania nadmiernego ciśnienia rozprężania. Biorąc pod uwagę powyższe fakty, znajomość maksymalnej wartości ciśnienia rozprężania, która nie powoduje jeszcze uszkodzeń ścian komory koksowniczej jest bardzo cenną informacją. Badania mające na celu wyznaczenie granicznej, bezpiecznej wartości ciśnienia prowadzono w dwóch kierunkach. Pierwszy polegał na empirycznym określeniu bezpiecznej wartości ciśnienia rozprężania (porównawcza analiza ciśnienia rozprężania mierzonego w skali półtechnicznej i w warunkach przemysłowych lub porównanie węgli o różnym ciśnieniu rozprężania w bateriach przeznaczonych do rozbiórki). Drugim kierunkiem były obliczenia wytrzymałościowe układu ścian grzewczych i komór koksowniczych. Analiza uzyskanych na przestrzeni wielu lat wyników pochodzących zarówno z badań empirycznych jak i obliczeń wytrzymałościowych wskazuje na dość duże zróżnicowanie wartości uważanego za bezpieczne ciśnienia rozprężania. Jeśli chodzi o wyniki empiryczne [2] z lat trzydziestych to H. Koppers i A. Jenkner stwierdzili, iż bezpieczna wartość ciśnienia rozprężania to 9 kpa. Badania w Wielkiej Brytanii dowodzą, iż w komorach, których wysokość nie przekracza 4 m, dopuszczalne ciśnienie rozprężania nie powinno przekraczać 14 kpa. Jednak wyniki francuskie i niemieckie z lat sześćdziesiątych dla tej samej wysokości komory podają wartość 10 kpa [2]. Jeśli chodzi o obliczenia wytrzymałościowe, to W. Ahlers podaje wartość bezpiecznego ciśnienia rozprężania 9,5 kpa dla komór o wysokości do 4,5 m. Obecnie projektanci baterii koksowniczych kierują się regułą: ciśnienie rozprężania poniżej 14 kpa dla komór o wysokości do 4 m i poniżej 7 kpa dla baterii wielkokomorowych 3

4 [2]. Jak widać odpowiedź na pytanie dotyczące bezpiecznej wartości ciśnienia rozprężania nie jest jednoznaczna, zależy bowiem od parametrów projektowych komory koksowniczej. Badania wpływu różnych parametrów (ciśnienia rozprężania, grubości wozówek i masy stropu przypadającej na pojedynczy kanał grzewczy) na żywotność komór koksowniczych prowadzone były przez H. Dürselena i J. Janicka [2]. Przedstawiona na rys. 1.1 zależność obrazuje wyniki ich eksperymentów i umożliwia podanie granicznej wartości ciśnienia rozprężania dla rozpatrywanych parametrów projektowych komory. Rys.1.1 Wzajemne relacje dopuszczalnego ciśnienia rozprężania oraz grubości wozówki i masy stropu dla komory koksowniczej o wysokości 7 m [2] W celu zobrazowania różnic pomiędzy wymienionymi wcześniej terminami (wewnętrzne ciśnienie gazu, ciśnienie rozprężania, ciśnienie wywierane bezpośrednio na ściany komory koksowniczej) konieczne jest przypomnienie przemian jakie zachodzą podczas procesu koksowania. W tym celu podzielono cykl koksowniczy na dwa zasadnicze etapy [3]. Pierwszy, w którym temperatura w centrum wsadu nie przekracza 350 o C, zobrazowany został na rys.1.2a. Dwie warstwy plastyczne usytuowane są równolegle do ścian pieca i połączone dwiema kolejnymi poziomymi warstwami z dołu i z góry. W przekroju poprzecznym pokazanym na rys.1.2a widać, iż całość tworzy zamknięty, w przybliżeniu prostokątny kształt. W tej fazie, w centrum wsadu znajduje się nieuplastyczniony jeszcze 4

5 węgiel, otoczony ze wszystkich stron warstwą plastycznej masy. Na tym etapie ciśnienie w samym centrum nieuplastycznionego jeszcze wsadu jest prawie zawsze niższe od ciśnienia rozprężania. Na tej podstawie stwierdzono, że ciśnienie wewnętrzne gazów nie jest równoznaczne z ciśnieniem rozprężania. Wykazuje natomiast bardzo duże wartości, zawsze wyższe od ciśnienia rozprężania. Wyciągnięto zatem wniosek, iż jest ono przekazywane na ściany pieca poprzez warstwy półkoksu i koksu i stanowi przyczynę powstawania ciśnienia rozprężania. W miarę postępowania procesu koksowania, dwie warstwy plastyczne (górna i dolna), zbliżają się w kierunku centrum wsadu, w ten sposób zmniejszając powierzchnię dwóch warstw plastycznych równoległych do ścian komory. Jest więc jasne dlaczego stosunek ciśnienia rozprężania do maksymalnego ciśnienia wewnątrz warstw plastycznych w danej chwili maleje sukcesywnie z upływem czasu. Na początku, kiedy równoległe warstwy plastyczne znajdują się blisko ścian komory stosunek ten wynosi 1, natomiast pod koniec tego etapu, kiedy warstwy spotkają się w centrum jest on równy 0,5. Podczas pierwszej fazy, w której temperatura nie przekracza 350 o C, mamy do czynienia z mniej lub bardziej znaczącym wzrostem wartości ciśnienia rozprężania. Nie należy jednak łączyć tego faktu ze zwiększonym ciśnieniem w warstwie plastycznej. Zjawisko to tłumaczy się zwiększeniem grubości plastycznej masy, co ściśle wiąże się z redukcją gradientu termicznego w pobliżu centrum wsadu. Z jednej strony opuszczające warstwę plastyczną gazy mają do pokonania dłuższą drogę, co łączy się ze zwiększoną stratą ciśnienia. Z drugiej natomiast strony gazy, które uwalniane są w pobliżu centrum wsadu zawierają smołę, która kondensuje i ponownie odparowuje podczas przebywania części lotnych w warstwie plastycznej. Tak więc przepływ gazów zwiększa się wraz z postępem procesu koksownia, co w konsekwencji objawia się zwiększeniem ciśnienia. Ostatecznie kondensująca smoła działa jako impregnat zmieniając lepkość warstwy plastycznej. Trudno jednak określić w jaki sposób ta modyfikacja następuje. Wzrost ciśnienia wewnętrznego i w konsekwencji ciśnienia rozprężania w pierwszych godzinach koksowania nie jest stały, zależy bowiem od rodzaju węgla i warunków samego procesu (np. od sposobu napełniania komory koksowniczej). W drugiej fazie, w której temperatura w centrum wsadu przekracza 350 o C, warstwy plastyczne spotykają się w centralnej części wsadu. Schemat przedstawiający ten etap widoczny jest na rys.1.2b. 5

6 półkoks i koks, 2 warstwa plastyczna, 3 węgiel Rys.1.2a. Rozmieszczenie warstwy plastycznej w koksowanym wsadzie (I faza) [2] półkoks i koks, 2 warstwa plastyczna, 3 węgiel Rys.1.2b. Rozmieszczenie warstwy plastycznej w koksowanym wsadzie (II faza) [3] Powstająca jedna warstwa plastyczna o podwójnej grubości sprawia, iż wydostające się lotne produkty mają do pokonania dwa razy większą drogę przez tę przeszkodę. W konsekwencji pojawia się nagły wzrost ciśnienia. Zdarza się często tak, że warstwy plastyczne nie docierają do centrum wsadu w tym samym czasie. Dzieje się tak na skutek nierównomiernego ogrzewania się wsadu. Jest to zarazem wyjaśnieniem, dlaczego czasem piki na wykresach obrazujących zmiany ciśnienia rozprężania nie są wyraźne, a korelacja 6

7 pomiędzy wewnętrznym ciśnieniem gazów i ciśnieniem rozprężania nie zawsze jest spełniona. W Centre de Pyrolyse de Marienau przeprowadzone zostały badania z użyciem wadliwego systemu grzewczego, w celu zaobserwowania wpływu tego czynnika na zachowanie się warstw plastycznych w centrum wsadu. Zauważono, iż warstwy spotykały się w centralnej części wsadu na dwa sposoby: raz tworząc zamkniętą kieszeń z nieuplastycznionym wewnątrz węglem, innym razem warstwy zbliżały się do siebie wypukłą stroną unikając zamknięcia w środku nieuplastycznionego węgla (tworzyły otwartą kieszeń). W obu przypadkach zanotowano wzrost ciśnienia, ale piki zaobserwowane na wykresie nie były już ostre i wyraźne, ale rozmyte i rozłożone w czasie. W stanie plastycznym koksowanego wsadu zachodzą wszystkie przemiany, które wzmacniają wewnętrzną budowę koksu, a także przemiany, które nadają mu wytrzymałość i obniżają jego ścieralność. Przemiany te polegają na wtapianiu się w masę plastyczną węgla wszystkich cząstek nie zawierających topliwych bitumitów czyli pozostałości roślin, dodatków schudzających, oraz cząstek fuzytu, co pozwala na uzyskanie jednolitej struktury koksu a w konsekwencji zwiększenie jego wytrzymałości. Dodatkowo masa plastyczna dzięki działaniu ciśnienia rozprężania wciskana jest w półkoks co likwiduje powstałe w nim szczeliny i przeciwdziała ich rozprzestrzenianiu się [4]. Zestalenie masy plastycznej w szczelinach półkoksu istotnie poprawia jego parametry wytrzymałościowe. Dobre własności mechaniczne koksu determinują jego przydatność w wielu gałęziach przemysłu. Szczególnie istotne znaczenie mają one w przypadku stosowania koksu w wielkim piecu, gdyż zapewniają przewiewność wsadu, co ściśle związane jest z wymianą ciepła i masy w tym procesie. Jak wiadomo 80 % produkowanego koksu trafia właśnie do wielkiego pieca, stąd tak duże zainteresowanie jego parametrami mechanicznymi. Ścisły związek pomiędzy wytrzymałością mechaniczną koksu a ciśnieniem rozprężania w koksowanym wsadzie węglowym sprawia, że poznanie mechanizmu tego zjawiska jak również stworzenie modelu prognozującego wartość tego parametru ma szczególnie istotne znaczenie. W warunkach przemysłowych zależność ciśnienia rozprężania od czasu koksowania przedstawia w sposób ogólny rys.1.3. W pierwszych godzinach w miarę postępowania procesu zwiększa się stopniowo ciśnienie i w temperaturze 100 o C obserwujemy pik pochodzący z odparowania wody. Jest on niewielki w porównaniu z kolejnym pikiem widocznym na wykresie, który obrazuje moment zetknięcia się warstw plastycznych (maksimum ciśnienia rozprężania). 7

8 Rys.1.3. Krzywa przebiegu ciśnienia rozprężania w czasie procesu koksowania [5] 2. Wpływ czynników surowcowych i technologicznych na ciśnienie rozprężania generowane w komorze koksowniczej Wyniki wieloletnich badań potwierdzają wpływ wielu czynników na wartość generowanego ciśnienia rozprężania. Czynniki te można podzielić na dwie zasadnicze grupy. Do pierwszej należą czynniki ukształtowane przez naturę w procesie metamorfizmu jak stopień uwęglenia, dylatacja, plastyczność, spiekalność, wydymanie czy skurcz nazywane są one czynnikami surowcowymi. Drugą grupę stanowią czynniki kształtowane przez człowieka w trakcie przygotowania węgla lub mieszanki węglowej do procesu koksowania takie jak skład ziarnowy, gęstość nasypowa, szybkość koksowania, seryjność obsadzania komór koksowniczych są to czynniki technologiczne Wpływ czynników surowcowych Stopień metamorfizmu wsadu węglowego Najczęściej parametrami opisującym stopień uwęglenia (stopień metamorfizmu) jest zawartość części lotnych V daf oraz zdolność odbicia światła witrynitu R 0. Rozpatrując zawartość części lotnych jako parametr determinujący wartość ciśnienia rozprężania można 8

9 wysunąć błędny wniosek, że w miarę wzrostu zawartości części lotnych rosnąć będzie wartość ciśnienia rozprężania. Intuicyjnie bowiem, im więcej lotnych produktów odgazowania, tym większe ciśnienie wewnętrzne gazu a tym samym większe ciśnienie rozprężania. Nie należy jednak zapominać, że zwiększona zawartość części lotnych powoduje większy ubytek masy karbonizatu, a co za tym idzie większy skurcz poziomy bryły koksu. Należy zaznaczyć, iż wspomniane zjawiska, to jest skurcz poziomy bryły koksu oraz ciśnienie gazu wewnątrz wsadu w przeciwstawny sposób wpływają na wielkość generowanego ciśnienia rozprężania [4]. Występuje więc pewne optimum zawartości części lotnych, dla której generowane ciśnienie rozprężania przyjmuje swoje maksimum. Generalnie przyjmuje się, że możliwość powstawania nadmiernego ciśnienia rozprężania jest największa przy koksowaniu węgli o zawartości części lotnych V daf mieszczących się w przedziale od około 18 % do 25 % i współczynniku odbicia światła witrynitu R 0 od ok. 1,2 % do 1,6 % [5]. Własności koksotwórcze Badania własności koksotwórczych polegają w głównej mierze na pośredniej lub bezpośredniej ocenie procesu uplastycznienia i spiekania węgla w procesie pirolizy. Własności te charakteryzowane są m.in. za pomocą wskaźników dylatometrycznych, wskaźników plastometrycznych według Sapożnikowa oraz wskaźnika stanu plastycznego wg Gieselera Hoehnego [6]. Nie stwierdzono zależności między ciśnieniem rozprężania zmierzonym w warunkach laboratoryjnych zgodnie z PN a maksymalną plastycznością F max oznaczoną metodą Gieselera. Stwierdzono natomiast dobrą korelację tak zmierzonego ciśnienia rozprężania z dylatacją b oraz nieco gorszą, ale również istotną korelację ze wskaźnikami plastometrycznymi oznaczonymi metodą Sapożnikowa, to jest skurczem x i grubością warstwy plastycznej y. Zależności te przedstawia rysunek 2.1. Należy jednak w tym miejscu przypomnieć, że wyników pomiarów ciśnienia rozprężania uzyskiwanych metodami laboratoryjnymi nie można w prosty sposób przekładać na rzeczywiste wartości ciśnienia powstającego w komorze koksowniczej [7]. 9

10 Rys.2.1. Zależność ciśnienia rozprężania węgli górnośląskich od ich dylatacji b oraz wskaźników plastometrycznych x i y [7] 10

11 Amperaż [A] Amperaż [A] 2.2. Wpływ czynników technologicznych Stopień zagęszczenia i skład ziarnowy wsadu Czynniki te obok stopnia metamorfizmu są najważniejszymi parametrami warunkującymi wartość ciśnienia rozprężania. Wzrost ciśnienia rozprężania przy rosnącym zagęszczeniu wsadu węglowego w komorze koksowniczej w warunkach ruchowych objawia się tak zwanym ciężkim biegiem pieców czyli rosnącym poborem prądu potocznie zwanego amperażem przez silnik napędzający drąg wypychowy. Rysunek 2.2 przedstawia zmiany amperażu przy wzrastającym zagęszczeniu wsadu dla dwóch grup mieszanek węglowych. Gęstość wsadu [kg/m 3 ] Rys.2.2. Zmiana poboru prądu (amperażu) przez silnik drąga wypychowego przy różnych gęstościach wsadu (przeliczonych na wsad suchy) w komorze koksowniczej [7] 11

12 Przy omawianiu tych problemów należy podkreślić, że kłopoty z wypychaniem koksu z komór mogą być spowodowane nie tylko przez nadmierne ciśnienie rozprężania, ale również niedotrzymaniem właściwych warunków czasowo-temperaturowych procesu koksowania prowadzących do niedoprażenia czy przegarowania koksu albo też złym stanem technicznym masywu ceramicznego komór koksowniczych. Kolejnym czynnikiem, o którym należy również wspomnieć, jest zróżnicowany stopień zagęszczenia wsadu w poszczególnych fragmentach komory koksowniczej co ma miejsce w szczególności przy stosowaniu systemu zasypowego. Różnice gęstości nasypowej wsadu dochodzą nawet do kilkunastu procent. Największe zagęszczenie występuje pod otworami zasypowymi, co skutkuje zwiększonym ciśnieniem w tych fragmentach komory rozkład ciśnienia wewnątrz wsadu w komorze koksowniczej ilustruje rysunek 2.3. Rys.2.3. Rozkład ciśnienia gazu wewnątrz wsadu w komorze koksowniczej [7] Gęstość nasypowa wsadu węglowego w komorze koksowniczej jest determinowana rozkładem uziarnienia i zawartością wilgoci [7]. Wpływ zawartości wilgoci w mieszance węglowej na wartość gęstości nasypowej przedstawia rysunek 2.4. Wilgoć przemijająca gromadząca się w pierwszej kolejności wokół punktów styku ziaren, jest źródłem kapilarnych sił spójności zmniejszających ruchliwość ziaren a tym samym gęstość nasypową. Po przekroczeniu pewnej określonej zawartości wilgoci występuje z kolei zjawisko smarowania hydrodynamicznego filmu wodnego, które powiększa stopień zagęszczenia wsadu [6]. 12

13 Gęstość nasypowa [kg/m 3 ] Zawartość wilgoci [%] Rys.2.4. Wpływ zawartości wilgoci na gęstość nasypową mieszanki wartość gęstości podana w przeliczeniu na stan suchy [6] Na rysunku 2.5 przedstawione są wyniki badań pokazujące jaki wpływ na wielkość generowanego ciśnienia ma zagęszczenie i uziarnienie wsadu węglowego. Miarą uziarnienia węgla w tym przypadku jest zawartość frakcji poniżej 2 mm. Wykres na rysunku 2.5 prowadzi do następującej konkluzji: wsad węglowy będzie wytwarzał podczas koksowania tym wyższe ciśnienie im większa będzie jego gęstość, a przy tej samej gęstości im grubsze będą ziarna węgla [7]. Zdaniem wielu autorów wymiar ziaren bardzo istotnie, o ile nie decydująco, wpływa na poziom ciśnienia rozprężania. Ilustruje to rysunek 2.6 obrazujący zmianę ciśnienia gazu wewnątrz wsadu w funkcji uziarnienia, przy zachowaniu stałej gęstości 830 kg/m 3 [7]. Szybkość koksowania Jest ona zależna od wielu czynników określających wymianę ciepła pomiędzy ścianą grzewczą a wsadem. W dotychczasowych badaniach nad ciśnieniem rozprężania koncentrowano się w zasadzie na dwóch spośród tych czynników, to jest temperaturze w kanałach grzewczych i szerokości komory koksowniczej. Choć można by oczekiwać, że wzrost szybkości ogrzewania powiększając gradient temperatury wewnątrz wsadu i dynamikę jego odgazowania, będzie powodował przyrost ciśnienia, uzyskiwane wyniki nie są 13

14 Ciśnienie gazu wewnątrz wsadu [kpa] jednoznaczne. Badania przeprowadzano na przełomie lat 40 i 50-tych ubiegłego wieku w Wielkiej Brytanii nie dowiodły związku pomiędzy szybkością koksowania a ciśnieniem rozprężania. Podobnie prace francuskie nie potwierdziły wpływu zmian szerokości komory w granicach od 350 do 500 mm na wielkość tego ciśnienia. Odmienne wyniki uzyskano natomiast podczas badań przeprowadzonych w Niemczech, w wyniku których stwierdzono wyraźną zależność pomiędzy szerokością komory koksowniczej i temperaturą w kanałach grzewczych a ciśnieniem rozprężania [7]. Zawartość ziaren węgla poniżej 2 mm [%] Rys.2.5. Wpływ gęstości wsadu węglowego i zawartości w nim ziaren poniżej 2 mm na ciśnienie gazu wewnątrz koksowanego wsadu [7] 14

15 Ciśnienie gazu wewnątrz wsadu [kpa] Średnia średnica ziaren [mm] Rys.2.6. Wpływ wymiaru ziaren użytego węgla na ciśnienie gazu wewnątrz koksowanego wsad [7] Seryjność obsadzania komór koksowniczych Seryjność, czyli kolejność obsługi komór baterii, odgrywa niebagatelną rolę w zabezpieczeniu ścian komór koksowniczych przed działaniem nadmiernego ciśnienia rozprężania. Ściana grzewcza znajdująca się pomiędzy sąsiadującymi komorami koksowniczymi podlega działaniom ciśnień rozprężania powstających w każdej z nich i działających na nią z przeciwnych kierunków. Operacje opróżniania z koksu i napełniania wsadem jednej z komór oddziaływają na komorę sąsiednią. Ilustruje to rysunek 2.7 przedstawiający zmiany ciśnienia gazu wewnątrz wsadu w komorze środkowej podczas obsługi sąsiednich komór w baterii pracującej seryjnością 2-1 [2]. 15

16 Ciśnienie gazu wewnątrz wsadu [kpa] Faza koksowania [h] Rys.2.7. Oddziaływanie operacji wypychania koksu i napełniania wsadem sąsiednich komór na zmiany ciśnienia wewnątrz wsadu [2] 2.3 Możliwość oddziaływania na ciśnienie rozprężania w warunkach komory koksowniczej Niebezpieczeństwo wynikające ze stosowania w procesie koksowania węgli o nadmiernym ciśnieniu rozprężania może być niwelowane dodatkami do mieszanek koksowniczych węgli niżej zmetamorfizowanych, czyli odpowiedników naszych węgli gazowo-koksowych lub naturalnych składników schudzających w rodzaju węgli chudych czy antracytowych. Należy zaznaczyć, że ustalenie bezpiecznej receptury mieszanki koksowniczej utrudnia brak addytywności wskaźnika ciśnienia rozprężania. Już stosunkowo niewielki dodatek węgli niżej uwęglonych, o zwiększonej zawartości części lotnych, do węgli niebezpiecznych powoduje nieproporcjonalne zmniejszenie ciśnienia rozprężania co potwierdza rysunek 2.8. Specyficzny rodzaj komponentów koksowniczych mieszanek węglowych obniżających ciśnienie rozprężania stanowią karbonizaty węglowe w postaci półkoksu czy koksu, dodawane w ilości od kilku do kilkunastu procent. Ciśnienie rozprężania wsadu można natomiast w razie potrzeby zwiększyć stosując kilku procentowe dodatki paku węglowego. 16

17 Ciśnienie rozprężania [kpa] Udział węgla w mieszance [%] Rys.2.8. Wpływ wielkości udziału węgla gazowo-koksowego na ciśnienie rozprężania dwuskładnikowej mieszanki węgla ortokoksowego i gazowo-koksowego [2] a węgiel ortokoksowy V daf = 23,5 %, b węgiel gazowo-koksowy V daf = 30,0 % Jak już wcześniej wspomniano druga grupa czynników, za pomocą których można oddziaływać na ciśnienie rozprężania, jest związana z operacjami technologicznymi przygotowania wsadu węglowego do procesu koksowania. Można więc stosując głębsze mielenie wsadu, obniżyć nadmierne ciśnienie rozprężania a ten stosunkowo prosty sposób jest często stosowany w praktyce koksowniczej. Na ciśnienie rozprężania można również wpływać poprzez inne operacje o charakterze mechanicznym lub termicznym, wykonywane na mieszance węglowej a prowadzące do zmiany stopnia zagęszczenia wsadu w komorze koksowniczej i szybkości nagrzewania ziaren. Działania mechaniczne sprowadzają się do brykietowania lub ubijania, natomiast termiczne do podsuszania wsadu węglowego. Wpływ tych operacji na ciśnienie rozprężania mieszanki o ustalonej recepturze, generowane w piecu półtechnicznym z ruchomą ścianą, przedstawia rysunek 2.9 [2]. Ubijanie oraz podgrzewanie wsadu prowadzi nie tylko do zwiększenia maksymalnej wartości, ale również do zmiany 17

18 Ciśnienie rozprężania [kpa] charakteru krzywych ciśnienia rozprężania. Jako przykład na rysunku 2.10 przedstawiono krzywe ciśnienia rozprężania przy koksowaniu wsadu systemem zasypowym i ubijanym [3]. Wynika z nich, że w komorze napełnionej systemem ubijanym, maksymalne ciśnienie rozprężania występuje w pierwszych godzinach koksowania. Gęstość wsadu [kg/m 3 ] Rys.2.9. Wpływ różnego rodzaju obróbki mechanicznej i termicznej wsadu węglowego na ciśnienie rozprężania [2] 1 4 system zasypowy, wsad wilgotny, 5 6 system zasypowy, wsad suchy, 9 system zasypowy, wsad podgrzany, 7 8 system ubijany Podobny charakter mają krzywe zmiany ciśnienia przy koksowaniu węgli wstępnie podgrzanych - maksymalne ciśnienie występuje w początkowej fazie koksowania [2]. Stosowanie podgrzewania wsadu węglowego może nieść ze sobą bardzo niebezpieczne skutki, co sugerują wyniki prezentowane na rysunku 2.11 potwierdzają doświadczenia ruchowe koksowni stosujących tę operację. Ostatnia grupa czynników technologicznych oddziaływujących na ciśnienie rozprężania związana jest z szybkością koksowania oraz z kolejnością obsługi komór koksowniczych. 18

19 Ciśnienie rozprężania Chociaż jak już wcześniej wspomniano zdania co do wpływu szybkości koksowania na ciśnienie rozprężania są podzielone, to można jednak skłaniać się ku opinii, że zmniejszenie szybkości koksowania poprzez obniżenie temperatury w kanałach grzewczych a także stosowanie komór o większej szerokości sprzyja zmniejszeniu ciśnienia rozprężania [2]. Czas koksowania Rys Krzywe ciśnienia rozprężania podczas koksowania wsadu [2] a system zasypowy, b system ubijany 19

20 Ciśnienie rozprężania [kpa] Zawartość części lotnych V daf [%] Rys Wyniki badań wpływu zawartości części lotnych i podgrzewania wsadu na ciśnienie rozprężania [2] 3. Metody badania ciśnienia rozprężania oraz ciśnienia gazów w warstwie plastycznej Źródłem ciśnienia rozprężania jest wydzielanie się lotnych produktów pirolizy w warstwie uplastycznionego węgla koksowego. Wewnątrz tej części wsadu powstaje wówczas ciśnienie ( internal gas pressure ) przekazywane poprzez płytę utworzonego wcześniej półkoksu i koksu na ścianę komory koksownicze w formie ciśnienia rozprężania ( coking pressure ) [5]. Ponieważ bezpośredni i wiarygodny pomiar ciśnienia rozprężania jest praktycznie niemożliwy do zrealizowania, próbuje się oszacować wartość tego parametru w skali laboratoryjnej, półtechnicznej i przemysłowej. 3.1 Metody laboratoryjne i wielkolaboratoryjne Ze względu na łatwość prowadzenia pomiarów i ich niskie koszty ta grupa metod należy do najliczniejszych i jest często stosowana do wstępnego oszacowania zagrożeń jakie niesie koksowanie węgli i ich mieszanek o nadmiernym ciśnieniu rozprężania. 20

21 W metodach laboratoryjnych i wielkolaboratoryjnych masa badanych próbek wynosi od kilku gramów do około trzydziestu kilogramów. W większości metod laboratoryjnych badany węgiel umieszczany jest w tyglu stalowym, ogrzewanym jednostronnie od dołu, a wielkość ciśnienia rozprężania jest wyznaczana poprzez bezpośredni pomiar tego parametru lub szacowana pośrednio na podstawie końcowego skurczu próbki. Jedną z najstarszych metod oceny ciśnienia rozprężania, mającą obecnie już tylko znaczenie historyczne jest tzw. wałbrzyska metoda muflowa. Próba polega na pirolizie badanego wsadu w stalowej skrzynce i obserwacji jej deformacji jak też otrzymanego koksu. Badany węgiel lub mieszankę węglową ubija się w stalowej skrzynce o grubości ścianek 1mm i wymiarach: szerokość 45 mm, wysokość 135 mm, długość 160 mm. Napełnioną skrzynkę umieszcza się na 1 godzinę w piecu muflowym ogrzanym do temperatury 900 o C. Po wyjęciu skrzynki i ochłodzeniu wodą szacuje się ciśnienie rozprężania na podstawie deformacji skrzynki (im większa tym większe ciśnienie rozprężania) oraz wyglądu otrzymanego koksu. Metoda ta nie służy do wyznaczania wartości ciśnienia rozprężania, ale jedynie do oceny zagrożenia jakie niesie koksowanie danego węgla lub mieszanki węglowej. Przykłady deformacji skrzynek oraz otrzymanego koksu uszeregowane według wzrastającego niebezpieczeństwa ze strony koksowanego wsadu przedstawia rysunek 3.1. Rys.3.1. Przykładowe wyniki wałbrzyskiej metody muflowej [5] A kształt skrzynki, B wygląd otrzymanego koksu. Klasycznymi przykładami bezpośredniego sposobu oceny są metody Nedelmanna oraz Nadziakiewicza i Sonntaga, przy czym ta druga stanowi przedmiot Polskiej Normy PN/G Wymieniona norma przewiduje pomiar ciśnienia rozprężania za pomocą manometrów rtęciowych umieszczonych bądź bezpośrednio na tłoczku spoczywającym na próbce węgla 21

22 do ciśnienia 0,4 kg / cm 2 lub pod belką dźwigni obciążającej próbkę węgla dla ciśnienia powyżej 0,4 kg / cm 2. W obu wariantach próbka o masie 80 g węgla w stanie powietrzno - suchym i uziarnieniu poniżej 1,4 mm, jest zagęszczana w stalowym tyglu o średnicy 60 mm i umieszczana w piecu nagrzanym uprzednio do 250 o C. Dalsze ogrzewanie prowadzi się z szybkością 10 o C / min, odczytując w określonych odstępach czasu położenie słupka rtęci. Schemat aparatury służącej do pomiaru ciśnienia rozprężania tą metodą dla ciśnienia do 0,4 kg / cm 2 przedstawia rysunek 3.2. Rys.3.2. Schemat aparatu do pomiaru ciśnienia rozprężania o wartości do 0,4 kg / cm 2 według PN/G [8] 1 piec oporowy; 2 tygiel; 3 termoelement; 4 tłoczek; 5 manometr; 6 dźwignia; 7 obciążnik; 8 prowadnica z zaczepem unieruchamiającym dźwignię. Schemat aparatury stosowanej do pomiaru ciśnienia rozprężania powyżej 0,4 kg / cm 2 przedstawia rysunek 3.3. Dla wartości ciśnienia do 2,4 kg / cm 2 stosuje się dźwignie dwuramienną oraz obciążenia o masie 10 kg a powyżej 2,4 kg / cm 2 dźwignię o długości 1300 mm oraz obciążenie o masie 20 kg [8]. Do obliczenia ciśnienia rozprężania o wartości od 0 do 0,4 kg / cm 2 stosuje się zależność [8]: 22

23 P max = 0,0395 (q + a) (3.1) gdzie: 0,0395 odwrotność powierzchni tłoczka [cm -2 ], q siła wywierana na tłoczek, odczytana z wykresu cechowania manometru, odpowiadająca najwyższemu poziomowi rtęci w kapilarze [kg], a ciężar tłoczka wraz z manometrem rtęciowym [kg]. Jeżeli ciśnienie rozprężania przekracza wartość 0,4 kg / cm 2 stosuje się zależność: gdzie: 0,0395 jak we wzorze (3.1), P max = 0,0395 d 2 d 1 (q 1 q 2 ) + 0,0395 b d 2 odległość (rys. 3.3) punktu N umocowania obciążnika L na ramieniu dźwigni G [cm], d 1 odległość (rys. 3.3) punktu zetknięcia tłoczka z nasadką z gniazdkiem K na ramieniu dźwigni od osi obrotu dźwigni G [cm], q 1 ciężar obciążnika umieszczonego na manometrze rtęciowym [kg], q 2 siła wywierana na tłoczek, odczytana z wykresu cechowania manometru, odpowiadająca najniższemu poziomowi rtęci w kapilarze [kg], b ciężar tłoczka z nasadką [kg]. (3.2) 23

24 Rys.3.3. Schemat aparatu do pomiaru ciśnienia rozprężania o wartości powyżej 0,4 kg / cm 2 według PN/G [8] A piec oporowy; B tygiel; C termoelement; D tłoczek; E manometr; F dźwignia; G oś obrotu dźwigni; H przeciwciężar; K przytwierdzenie nasadki; L obciążnik; M nasadka; N przytwierdzenie obciążnika. Przykładem metod, w których pośrednio szacuje się ciśnienie rozprężania na podstawie skurczu odgazowanej próbki węgla są : laboratoryjna metoda Koppers - INCAR czy wielkolaboratoryjna metoda Bureau of Mines (próbka o masie około 35 kg). W obu tych metodach próbka węgla ogrzewana jednostronnie od dołu jest poddawana stałemu naciskowi od góry, a przedmiotem pomiaru jest dynamika skurczu i jego końcowa wartość; im większa tym stwarzająca mniejsze zagrożenie generowania nadmiernego ciśnienia rozprężania. Niewątpliwie wadą opisanych metod laboratoryjnych jest jednostronne, oddolne ogrzewanie próbki badanego węgla, przez co nie dochodzi do najistotniejszego etapu procesu koksowania połączenia się dwóch warstw plastycznych który to moment wyznacza stopień niebezpieczeństwa pochodzący od ciśnienia rozprężania. W skali wielkolaboratoryjnej ocena ciśnienia rozprężania prowadzona jest w pewnym stopniu w warunkach symulujących przemysłowy proces koksowania. Dotyczy to w szczególności dwustronnego ogrzewania badanej próbki, powodującego tworzenie się dwóch warstw plastycznych, spotykających się w osi wsadu. Do takich metod można zaliczyć 24

25 między innymi piec koksowniczy, który pracował w laboratorium Dortmunder Bergbau AG, o masie wsadu około 30 kg oraz japoński piec o wsadzie 22,5 kg. W obu tych aparatach ciśnienie mierzone było na jednej z ogrzewanych ścian [5]. Bardzo ważnym etapem w procesie badania ciśnienia rozprężania jest przygotowanie próbek. Wszelkie błędy popełnione w czasie ich sporządzania mają istotny wpływ na wynik badań. Polska Norma PN/G określa na przykład jedynie górny zakres ziaren, jednak nie mówi nic o składzie ziarnowym próbki, który w sposób istotny wpływa na poziom ciśnienia rozprężania. Podobne zastrzeżenia dotyczą precyzji zagęszczenia próbki [9]. 3.2 Metody półtechniczne Półtechniczna metoda oceny ciśnienia rozprężania realizowana jest w tak zwanym piecu z ruchomą ścianą, którego uproszczony schemat przedstawia rysunek 3.4. W takim piecu możliwa jest symulacja warunków panujących w komorach przemysłowych z jednoczesnym pomiarem ciśnienia rozprężania. W piecu tej konstrukcji jedna ze ścian grzewczych umieszczona jest na ruchomej platformie i dociskana stałą siłą do wsadu. Na zewnętrznej powierzchni ściany ruchomej jest zainstalowany jeden lub kilka czujników tensometrycznych przekazujących wielkość sił pochodzących od ciśnienia rozprężania do układu pomiarowo-rejestrującego [5]. Warunki odpowiadające warunkom przemysłowym procesu koksowania zrealizowane są poprzez odpowiednie wymiary pieca z ruchomą ścianą (szerokość równa szerokości komory przemysłowej) oraz masę koksowanego wsadu (w zależności od rozwiązania od około 100 do około 600 kg). Dzięki takiemu rozwiązaniu został zachowany taki sam lub bardzo zbliżony do przemysłowych poziom czynników, które rzutują na wielkość ciśnienia rozprężania, takich jak: szerokość komory i temperatura jej ścian, a więc szybkość koksowania oraz uziarnienie i zagęszczenie wsadu. 25

26 Rys.3.4. Schemat pieca półtechnicznego z ruchomą ścianą [3] 1 sztywna rama; 2,5 szczelina; 3 ściana ruchoma; 4 koksowany wsad; 6,7 układ dynamometryczny; 8 przeciwciężar dociskający ruchomą ścianę. W tych warunkach, dość wiernie odtwarzających przebieg procesu koksowania w baterii koksowniczej, łącznie z fazą połączenia się dwóch warstw plastycznych w osi wsadu, istnieje duża szansa uzyskania wiarygodnych informacji o rzeczywistym przebiegu i wielkości ciśnienia rozprężania generowanego w komorach baterii koksowniczej. Warunki te z reguły nie są spełnione w metodach laboratoryjnych i można się spodziewać, że wyniki z tych prób nie będą korelować z wynikami prób półtechnicznych [5]. 3.3 Pomiary ciśnienia w warunkach przemysłowych Ze względu na trudności techniczne związane z pomiarem ciśnienia rozprężania w warunkach przemysłowych, jedynym realnym sposobem oszacowania tego parametru podczas koksowania mieszanki węglowej w komorze koksowniczej pozostaje pomiar ciśnienia gazu wewnątrz wsadu. Przy pomiarze ciśnienia gazu wewnątrz wsadu, pęk 26

27 impulsowych rurek stalowych jest wprowadzony w połowie szerokości komory poprzez otwory zasypowe lub też otwory w drzwiach pieca na odpowiednią głębokość. Rurki impulsowe sondy mają średnicę od kilku do dwudziestu milimetrów, przy czym im są cieńsze, tym mniej zaburzają przebieg przemieszczania się warstw plastycznych, ale za to mogą sprawiać kłopoty pomiarowe związane z częściowym zatykaniem się otworów impulsowych. Różne końcówki sond do pomiaru ciśnienia gazu i ich rozmieszczenie w pakiecie przedstawia rysunek 3.5. Rys.3.5. Różne końcówki sond do pomiaru ciśnienia gazu i ich rozmieszczenie w pakiecie [5] Najczęściej stosowane jest rozwiązanie, w którym końce rurek impulsowych wprowadzonych do wsadu są zaślepione, a na ich pobocznicy są wycięte szczeliny o szerokości 1 mm i długości do 20 mm. Ponieważ warstwy plastyczne mają niewielką grubość (rzędu mm) a płaszczyzna ich połączenia, w której występuje największe ciśnienie, nie zawsze znajdują się dokładnie w osi komory, dlatego najczęściej stosuje się pakiet rurek impulsowych (rys. 3.5), z których jedna ma duże szanse znaleźć się w strefie najwyższego ciśnienia [5]. Ponieważ ciśnienie rozprężania jest pochodną ciśnienia gazu wewnątrz warstwy plastycznej wsadu, znajomość ich wzajemnego związku ma ważne znaczenie praktyczne, jeśli chcemy wykorzystać wyniki pomiarów ciśnienia gazu wewnętrznego do oszacowania potencjalnych zagrożeń dla ścian komór koksowniczych. Miarą tych relacji jest stosunek ciśnienia rozprężania do ciśnienia wewnątrz warstwy plastycznej wsadu w chwili zetknięcia się tych warstw, a więc w chwili gdy oba te ciśnienia osiągają swe maksymalne wartości. 27

28 Ciśnienie rozprężania [kpa] Wyniki badań przeprowadzonych w piecach półtechnicznych z ruchomą ścianą w Wielkiej Brytanii, Francji czy Holandii wykazały, że stosunek tych ciśnień jest zbliżony do wartości 0,5, co obrazuje rysunek 3.6. Ciśnienie gazu wewnątrz wsadu [kpa] Rys.3.6. Wzajemna relacja ciśnienia rozprężania i ciśnienia gazu wewnątrz wsadu w centrum komory zmierzonych w piecu z ruchomą ścianą [3] Uzyskaną wartość liczbową 0,5 objaśnia się w ten sposób, że z chwilą połączenia się dwóch warstw plastycznych w osi wsadu, powierzchnia ich zetknięcia w warunkach pieca półtechnicznego jest około dwukrotnie mniejsza jest to skutek postępu procesu koksowania od trzonu i przestrzeni podsklepieniowej do powierzchni ściany komory, na która działa ciśnienie rozprężania. Tak więc projekcja ciśnienia w obszarze warstw plastycznych na ciśnienie wywierane na ścianę będzie wyznaczone stosunkiem powierzchni warstwy plastycznej do powierzchni ściany komory [5]. Odmienne wyniki uzyskano w badaniach prowadzonych w laboratoriach niemieckich, w których wartość stosunku obu rozpatrywanych ciśnień była zbliżona do 1. Można przypuszczać, że niebagatelny wpływ na zaistniałe różnice miała metodyka pomiarów [5]. Generalnie przyjmuje się, że podczas koksowania mieszanki węglowej w warunkach przemysłowych, stosunek ciśnienia rozprężania do ciśnienia wewnątrz wsadu mieści się w granicach od 0,8 do 1,0 [4] 28

29 4. Mechanizm powstawania ciśnienia rozprężania Chociaż ciśnienie rozprężania już od dziesiątków lat stanowi obiekt intensywnych badań, to jak dotąd mechanizm jego powstawania nie został dokładnie wyjaśniony. Co więcej, wśród badaczy zajmujących się zagadnieniem ciśnienia rozprężania, występują różne koncepcje co do obszaru w koksowanym wsadzie gdzie jest ono generowane. Rozpatrując jako kryterium miejsce generowania ciśnienia rozprężania, opinie dotyczące jego powstawania można podzielić na trzy grupy. Według pierwszej, najstarszej z nich, ciśnienie rozprężania generowane jest w obszarze nie uplastycznionej jeszcze części wsadu. Otaczająca ten obszar warstwa plastyczna tworzy swoistą kopertę, wewnątrz której zatrzymywana jest część lotnych produktów pirolizy. Z tego powodu w miarę postępu procesu koksowania wzrasta ilość i ciśnienie gazów zawartych w kopercie. Po połączeniu się warstw plastycznych w osi komory zatrzymane w kopercie lotne produkty pirolizy zostają uwolnione, a ciśnienie raptownie maleje, co spowodowane jest pękaniem zestalających się warstw plastycznych. Ta koncepcja spotkała się jednak z dość powszechną krytyką, między innymi dlatego, że warstwy plastyczne w komorze przemysłowej tworzą raczej układ plastycznej rury niż plastycznej koperty. Świadczy o tym choćby fakt, że około % lotnych produktów pirolizy opuszcza komorę koksowniczą poprzez warstwę zimnego jeszcze wsadu jako tak zwany gaz wewnętrzny [4]. Zgodnie z drugą grupą koncepcji miejscem generowania ciśnienia rozprężania są warstwy półkoksu i koksu. Autorzy tych koncepcji uzasadniają to niską gazoprzepuszczalnością wspomnianych warstw karbonizatu, a zwłaszcza pozbawionej szczelin warstwy półkoksu. Dla węgli generujących podczas pirolizy wysokie ciśnienie rozprężania gazoprzepuszczalność wspomnianych warstw jest silnie obniżana na skutek procesów krakingu, polimeryzacji i kondensacji części lotnych produktów pirolizy, kontaktujących się z gorącymi warstwami półkoksu i koksu. Obserwowany w miarę postępu procesu koksowania wzrost ciśnienia rozprężania spowodowany jest sukcesywnym zwiększaniem się grubości warstw półkoksu i koksu. Gwałtowny wzrost ciśnienia w końcowej fazie procesu koksowania związany jest z zanikiem buforu jakim jest zimny wsad, do którego może się przedostawać część lotnych produktów pirolizy. Najczęściej jednak jako obszar w koksowanym wsadzie, w którym generowane jest ciśnienie rozprężania, rozpatruje się warstwę plastyczna. Opinie autorów są jednak podzielone co do przyczyn generowania tego ciśnienia. 29

30 Według części z nich przyczyną zaistnienia ciśnienia rozprężania jest uwięzienie w warstwie plastycznej powstających w niej lotnych produktów pirolizy. Spowodowane to jest niską przepuszczalnością sąsiadujących z warstwą plastyczną warstw półkoksu z jednej strony oraz nasyconego skondensowanymi produktami pirolizy nie przereagowanego jeszcze wsadu z drugiej strony. Wśród krajowych badaczy zajmujących się problematyką ciśnienia rozprężania przeważa pogląd, że bezpośrednim źródłem ciśnienia rozprężania jest wzrost objętości uplastycznionych ziaren węgla wskutek formowania się w ich wnętrzu pęcherzy lotnych produktów pirolizy. Jeśli wzrost objętości takich ziaren jest większy niż objętość pustych przestrzeni pomiędzy nimi, to warstwa plastyczna rozszerza się. Towarzyszy temu dociskanie warstw półkoksu i koksu do ścian komory koksowniczej oraz kompresja nieuplastycznionej jeszcze części wsadu. Jeśli skurcz warstwy półkoksu i koksu jak również kompresja zimnej części wsadu nie są wystarczająco duże aby skompensować przyrost objętości uplastycznionych ziaren węglowych, to w takiej sytuacji warstwa plastyczna może wywierać duży nacisk na ściany komory poprzez przylegające do niej warstwy karbonizatu [4]. Nie można też wykluczyć, że generowane w warstwie plastycznej ciśnienie jest spowodowane jej niską gazoprzepuszczalnością. W dalszej części niniejszego opracowania jako miejsce generowania ciśnienia rozprężania rozpatrywana będzie wyłącznie warstwa plastyczna. 4.1 Uplastycznione ziarna węgli koksowych jako generatory ciśnienia rozprężania Ziarna mieszanki węglowej w procesie koksowania nagrzewają się z różnymi szybkościami w zależności od ich umiejscowienia w komorze koksowniczej. Z reguły są to szybkości rzędu kilku stopni na minutę [4]. Najszybciej rośnie temperatura w warstwach przyściennych, podczas gdy w osi wsadu przez większą część okresu koksowania sięga zaledwie 100 o C [6]. Przykład dynamiki zmian temperatur wewnątrz koksowanego wsadu przedstawia rysunek 4.1. Przy średniej szybkości nagrzewania wsadu w komorze koksowniczej, wynoszącej 3 o C / min, różnica temperatury na powierzchni i w środku ziarna węgla o średnicy 3 mm nie przekracza 0,2 o C. Można więc założyć, że cała objętość ziarna jest nagrzewana z taką sama szybkością. W tych warunkach możliwość ewakuacji gazów pirolitycznych zależy przede wszystkim od dynamiki ich wydzielania się oraz drożności układu porów, przez które gazy te przepływają z wnętrza ziarna do otoczenia. 30

31 Temperatura [ o C] Rys.4.1. Rozkład temperatur w koksowanym wsadzie - dynamika przyrostu temperatur wsadu w zależności od jego odległości od ściany komory [6]. Czas [h] Przy pewnych założeniach upraszczających odnośnie kształtu ziarna oraz i porów, intensywności wydzielania się lotnych produktów pirolizy jak też laminarnego charakteru przepływu tych produktów przez pory, transport gazów pirolitycznych poprzez ziarno węgla można opisać równaniem różniczkowym: gdzie: p 2 d 2 ( p2 2p ) 0 dx d ( x 2p ) 0 dx + e z δ z = 0 p ciśnienie w dowolnym punkcie wewnątrz ziarna [Pa], P 0 ciśnienie odniesienia Pa, x odległość rozpatrywanego punktu od środka ziarna [m], e z wydajność wewnętrznego źródła gazu odniesiona do jednostki objętości [1/s], δ z wskaźnik charakteryzujący gazoprzepuszczalność materiału ziarna [s m 3 /kg]. Rozwiązując powyższe równanie otrzymuje się wzór opisujący ciśnienie gazów w dowolnym punkcie wewnątrz karbonizowanego ziarna: (4.1) 31

32 p x = 2 p 0 [ e z (r 2 x 2 ) ] + p2 δ zz z (4.2) gdzie: r promień ziarna [m], p zz - ciśnienie panujące wewnątrz ziarna [Pa]. Występujący w powyższych wzorach wskaźnik gazoprzepuszczalności δ z zależny jest od porowatości ziarna, średniego promienia porów oraz lepkości lotnych produktów pirolizy: δ z = ε 2 z r por 8 η g (4.3) gdzie: ε z porowatość ziarna (uwzględnia się wyłącznie pory otwarte) [-], r por średni promień porów transportowych (otwartych) w ziarnie [m], η g lepkość dynamiczna lotnych produktów pirolizy [Pa s]. Jeśli ciśnienie wewnątrz ziarna przekroczy pewną krytyczną wartość, to w przypadku węgli nieuplastyczniających się następuje pękanie ziaren, natomiast w przypadku węgli uplastyczniających się we wnętrzu ziaren formują się i rozwijają pęcherze lotnych produktów pirolizy, co prowadzi do wzrostu objętości ziarna. Ze wzoru (4.2) wynika, że ciśnienie powstające wewnątrz ziarna węgla jest proporcjonalne do jego promienia. Z tego powodu w przypadku ziaren uplastyczniających się powstawanie w nich pęcherzy jest uzależnione od ich wymiarów. Dla ziaren o odpowiednio małych wymiarach (poniżej 0,2 0,3 mm) wewnętrzne ciśnienie gazów pirolitycznych jest niższe do ciśnienia krytycznego i dlatego w ziarnach takich nie tworzą się pęcherze. W przypadku ziaren o większych wymiarach, ze wzrostem ich średnicy formowanie i rozwój pęcherzy intensyfikuje się. W oparciu o zależności (4.2) i (4.3) można podjąć próbę wyjaśnienia dlaczego ziarna węgli koksowych o niskiej zawartości części lotnych wykazują silniejszą tendencję do wzrostu objętości w okresie uplastycznienia niż ma to miejsce w przypadku podobnych węgli o wyższej zawartości części lotnych. Decydującym czynnikiem nie jest bowiem w tym przypadku intensywność wydzielania się lotnych produktów pirolizy, lecz ich zdolność do 32

33 Porowatość węgla [%] migracji poprzez uplastycznioną substancję węglową ziarna. Transport lotnych produktów pirolizy wewnątrz ziarna węgla w okresie przedplastycznym oraz w początkowej fazie uplastycznienia odbywa się systemem porów, którego rozwinięcie zależy od stopnia uwęglenia surowca [4]. Porowatość węgla w zależności od stopnia uwęglenia zmienia się od 4 do 23 % i osiąga minimum przy zawartości C daf około 89 % [10]. Wartość ta odpowiada zawartości V daf na poziomie 20 %, charakterystycznej dla węgli koksowych, generujące najwyższe ciśnienie rozprężania. Dowodzi to wprost słuszności opisywanego poglądu na generowanie ciśnienia rozprężania. C daf [%] Rys.4.2. Zależność porowatości węgla kamiennego od stopnia metamorfizmu [10]. Kolejną przyczyną zróżnicowanej zdolności do tworzenia się pęcherzy wewnątrz ziaren węgli koksowych o różnym stopniu metamorfizmu może być inny skład gazów pirolitycznych. W przypadku węgli niżej zmetamorfizowanych więcej jest składników o wyższej lepkości, a zarazem łatwiej ulegających kondensacji i polimeryzacji na ściankach porów transportowych. Odkładanie się w porach transportowych produktów kondensacji i polimeryzacji powoduje zmniejszenie ich średnicy hydraulicznej, a tym samym wzrost oporów przepływu gazów pirolitycznych przez ziarno. Zjawisko to jest tym intensywniejsze, im większa jest średnica ziarna, gdyż dłuższy jest w tym przypadku czas kontaktowania się 33

34 gazów pirolitycznych ze ściankami porów [4]. Potwierdzają to badania przeprowadzone przez A. Karcza i Z. Bębenka, które wykazały, że w przypadku węgli koksowych o dużej plastyczności największy przyrost objętości obserwowano podczas pirolizy najgrubszych ziaren (2,5 3,15 mm), które w krańcowym przypadku około pięciokrotnie zwiększały swoją objętość. Wyraźnie najmniejsze zmiany objętości (średnio od 1,285 do 1,661) wykazywały ziarna najdrobniejsze z przedziału 0,2 0,315 mm [11]. Pewien wpływ na wielkość wzrostu objętości uplastycznionych ziaren węgla, a tym samym generowane przez nie ciśnienie rozprężania, wywiera też stopień utlenienia ich powierzchni. Otóż jego wzrost wpływa niekorzystnie na elastoplastyczne właściwości węgla w stanie jego termicznego uplastycznienia [4]. 4.2 Warstwa plastyczna jako miejsce formowania się ciśnienia rozprężania Warstwa plastyczna, stanowiąca swoistą membranę oddzielającą warstwę zimnego wsadu od warstw gorących, wywiera istotny wpływ na wielkość generowanego ciśnienia rozprężania oraz dynamikę jego zmian. Porównanie izochron temperatury wewnątrz koksowanego w komorze koksowniczej wsadu z zakresem temperatur, w których węgiel pozostaje w stanie uplastycznionym (wyznaczonych np. metodą Gieselera) umożliwia wyznaczenie hipotetycznej zmiany grubości warstwy plastycznej, przemieszczającej się od ściany komory do jej środka [4]. Obrazuje to przedstawiony na rysunku 4.3 przykład koksowania mieszanki, której zakres temperatur plastyczności mieści się w przedziale 370 o C 400 o C. Z rysunku 4.3 wynika, że grubość warstwy plastycznej powinna rosnąć w miarę zbliżania się do osi komory [6] ze względu na malejący w tym kierunku gradient temperatury. Informacji o faktycznej grubości i kształcie dostarczają obserwacje zamrożonej bryły koksowanego wsadu. Badanie polega na przerwaniu procesu koksowania i analizie poszczególnych fragmentów bryły wypchniętego wsadu ustalając między innymi grubość i kształt warstwy plastycznej odpowiadających różnym fazom koksowania. Rezultaty tych badań wykazały, że grubość warstwy plastycznej w miarę jej przemieszczania się do osi komory nie rośnie tak daleko jakby to wynikało z obliczeń teoretycznych. Mieści się ona z reguły w przedziale mm, przy czym warstwy plastyczne nie tworzą idealnych płaszczyzn, lecz są zdeformowane, a ich wybrzuszenia sięgają do 20 mm. Oczywiście z chwilą połączenia się obu warstw plastycznych w osi komory płyta uplastycznionego węgla osiąga podwójną grubość warstwy plastycznej i wtedy to właśnie występuje maksymalne ciśnienie gazu wewnątrz wsadu oraz maksymalne ciśnienie rozprężania [4]. 34

35 Temperatura [ o C] Szerokość komory [mm] Rys.4.3. Zmiana grubości warstwy plastycznej podczas koksowania obliczona na podstawie izochron temperatury wewnątrz wsadu oraz konwencjonalnie wyznaczonego zakresu temperatur stanu plastycznego [6]. W zakresie temperatur uplastycznienia mięknące ziarna węgla, jak już wcześniej wspomniano, wydymają się i wypełniają puste przestrzenie międzyziarnowe, stanowiące % wyjściowej objętości wsadu. W miarę przebiegu tego procesu sukcesywnie maleje gazoprzepuszczalność warstwy plastycznej, osiągając minimalną wartość w pobliżu temperatury maksymalnej plastyczności według Gieselera. W konsekwencji znacznie utrudniona jest ewakuacja lotnych produktów pirolizy z tej warstwy, a w jej wnętrzu następuje znaczny wzrost ciśnienia. W warunkach swobodnej ekspansji taki wzrost ciśnienia prowadzi do wzrostu objętości całej warstwy, natomiast w warunkach ograniczonej ekspansji, a takie występują w komorze koksowniczej, wzrost ciśnienia generuje ciśnienie rozprężania [4]. 35

Michał REJDAK, Andrzej STRUGAŁA, Ryszard WASIELEWSKI, Martyna TOMASZEWICZ, Małgorzata PIECHACZEK. Koksownictwo

Michał REJDAK, Andrzej STRUGAŁA, Ryszard WASIELEWSKI, Martyna TOMASZEWICZ, Małgorzata PIECHACZEK. Koksownictwo Michał REJDAK, Andrzej STRUGAŁA, Ryszard WASIELEWSKI, Martyna TOMASZEWICZ, Małgorzata PIECHACZEK Koksownictwo 2015 01.10.2015 Karpacz System zasypowy vs. System ubijany PORÓWNANIE ZAŁADUNEK KOMÓR KOKSOWNICZYCH

Bardziej szczegółowo

ĆWICZENIA LABORATORYJNE

ĆWICZENIA LABORATORYJNE Akademia Górniczo - Hutnicza im. St. Staszica w Krakowie Wydział Energetyki i Paliw Katedra Technologii Paliw ĆWICZENIA LABORATORYJNE Surowce energetyczne i ich przetwarzanie cz. II - paliwa stałe Oznaczanie

Bardziej szczegółowo

Doświadczenia eksploatacyjne po wdrożeniu nowego sposobu eksploatacji baterii koksowniczych przy zróżnicowanych ciśnieniach gazu surowego w

Doświadczenia eksploatacyjne po wdrożeniu nowego sposobu eksploatacji baterii koksowniczych przy zróżnicowanych ciśnieniach gazu surowego w Doświadczenia eksploatacyjne po wdrożeniu nowego sposobu eksploatacji baterii koksowniczych przy zróżnicowanych ciśnieniach gazu surowego w odbieralnikach spełniającego kryteria BAT 46 i BAT 49 Plan prezentacji

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Przemysłowe laboratorium technologii. ropy naftowej i węgla II. TCCO17004l

Przemysłowe laboratorium technologii. ropy naftowej i węgla II. TCCO17004l Technologia chemiczna Przemysłowe laboratorium technologii ropy naftowej i węgla II TCCO17004l Ćwiczenie nr IV Opracowane: dr inż. Ewa Lorenc-Grabowska Wrocław 2012 1 Spis treści I. Wstęp 3 1.1. Metoda

Bardziej szczegółowo

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej 1. Zasady metody Zasada metody polega na stopniowym obciążaniu środka próbki do badania, ustawionej

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

Temat: NAROST NA OSTRZU NARZĘDZIA

Temat: NAROST NA OSTRZU NARZĘDZIA AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:

Bardziej szczegółowo

PODSTAWY TECHNOLOGII WYTWARZANIA I PRZETWARZANIA

PODSTAWY TECHNOLOGII WYTWARZANIA I PRZETWARZANIA im. Stanisława Staszica w Krakowie WYDZIAŁ INŻYNIERII METALI I INFORMATYKI PRZEMYSŁOWEJ Prof. dr hab. inż. Andrzej Łędzki Dr inż. Krzysztof Zieliński Dr inż. Arkadiusz Klimczyk PODSTAWY TECHNOLOGII WYTWARZANIA

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym? Schemat 1 Strefy reakcji Rodzaje efektów sonochemicznych Oscylujący pęcherzyk gazu Woda w stanie nadkrytycznym? Roztwór Znaczne gradienty ciśnienia Duże siły hydrodynamiczne Efekty mechanochemiczne Reakcje

Bardziej szczegółowo

KOMPENDIUM WIEDZY. Opracowanie: BuildDesk Polska CHARAKTERYSTYKA ENERGETYCZNA BUDYNKÓW I ŚWIADECTWA ENERGETYCZNE NOWE PRZEPISY.

KOMPENDIUM WIEDZY. Opracowanie: BuildDesk Polska CHARAKTERYSTYKA ENERGETYCZNA BUDYNKÓW I ŚWIADECTWA ENERGETYCZNE NOWE PRZEPISY. Sprawdzanie warunków cieplno-wilgotnościowych projektowanych przegród budowlanych (wymagania formalne oraz narzędzie: BuildDesk Energy Certificate PRO) Opracowanie: BuildDesk Polska Nowe Warunki Techniczne

Bardziej szczegółowo

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej Instrukcja do zajęć laboratoryjnych Eksploatacja i obróbka skał Badania geometrycznych właściwości Temat: kruszyw Oznaczanie kształtu

Bardziej szczegółowo

Polskie koksownictwo głównym europejskim producentem koksu odlewniczego

Polskie koksownictwo głównym europejskim producentem koksu odlewniczego Polskie koksownictwo głównym europejskim producentem koksu odlewniczego Rajmund Balcerek Waldemar Wal Zbigniew Zięba Zastosowanie koksu odlewniczego BRANŻA ODLEWNICZA Odlewnie żeliwa i stali Odlewnie metali

Bardziej szczegółowo

ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE EFEKTÓW ROZDRABNIANIA POJEDYNCZYCH ZIAREN

ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE EFEKTÓW ROZDRABNIANIA POJEDYNCZYCH ZIAREN Akademia Górniczo Hutnicza im. Stanisława Staszica Wydział Górnictwa i Geoinżynierii Katedra Inżynierii Środowiska i Przeróbki Surowców Rozprawa doktorska ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

LABORATORIUM SPALANIA I PALIW

LABORATORIUM SPALANIA I PALIW 1. Wprowadzenie 1.1. Skład węgla LABORATORIUM SPALANIA I PALIW Węgiel składa się z substancji organicznej, substancji mineralnej i wody (wilgoci). Substancja mineralna i wilgoć stanowią bezużyteczny balast.

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Piece półtechniczne jako elementy systemów sterowania jakością koksu

Piece półtechniczne jako elementy systemów sterowania jakością koksu Piece półtechniczne jako elementy systemów sterowania jakością koksu H. Fitko 1), B. Mertas 1), M. Rejdak 1), J. Lis 2), P. Szecówka 2), R. Baron 2) 1) Instytut Chemicznej Przeróbki Węgla, 2) Koksownia

Bardziej szczegółowo

Naprężenia i odkształcenia spawalnicze

Naprężenia i odkształcenia spawalnicze Naprężenia i odkształcenia spawalnicze Cieplno-mechaniczne właściwości metali i stopów Parametrami, które określają stan mechaniczny metalu w różnych temperaturach, są: - moduł sprężystości podłużnej E,

Bardziej szczegółowo

Skraplanie czynnika chłodniczego R404A w obecności gazu inertnego. Autor: Tadeusz BOHDAL, Henryk CHARUN, Robert MATYSKO Środa, 06 Czerwiec :42

Skraplanie czynnika chłodniczego R404A w obecności gazu inertnego. Autor: Tadeusz BOHDAL, Henryk CHARUN, Robert MATYSKO Środa, 06 Czerwiec :42 Przeprowadzono badania eksperymentalne procesu skraplania czynnika chłodniczego R404A w kanale rurowym w obecności gazu inertnego powietrza. Wykazano negatywny wpływ zawartości powietrza w skraplaczu na

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie

ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie Akademia Górniczo Hutnicza im. St. Staszica w Krakowie Wydział Energetyki i Paliw Katedra Technologii Paliw ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie Ćwiczenie 2b Zawartość

Bardziej szczegółowo

Mirosław Bronny, Piotr Kaczmarczyk JSW KOKS SA

Mirosław Bronny, Piotr Kaczmarczyk JSW KOKS SA Ocena jakości koksu wielkopiecowego wyprodukowanego z baterii koksowniczych z zasypowym i ubijanym systemem obsadzania komór koksowniczych oraz różnym systemem chłodzenia koksu Mirosław Bronny, Piotr Kaczmarczyk

Bardziej szczegółowo

Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie

Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie Ćwiczenie 5 POMIARY TWARDOŚCI 1. Cel ćwiczenia Celem ćwiczenia jest zaznajomienie studentów ze metodami pomiarów twardości metali, zakresem ich stosowania, zasadami i warunkami wykonywania pomiarów oraz

Bardziej szczegółowo

PROCEDURA DOBORU POMP DLA PRZEMYSŁU CUKROWNICZEGO

PROCEDURA DOBORU POMP DLA PRZEMYSŁU CUKROWNICZEGO PROCEDURA DOBORU POMP DLA PRZEMYSŁU CUKROWNICZEGO Wskazujemy podstawowe wymagania jakie muszą być spełnione dla prawidłowego doboru pompy, w tym: dobór układu konstrukcyjnego pompy, parametry pompowanego

Bardziej szczegółowo

DOBÓR KSZTAŁTEK DO SYSTEMÓW RUROWYCH.SZTYWNOŚCI OBWODOWE

DOBÓR KSZTAŁTEK DO SYSTEMÓW RUROWYCH.SZTYWNOŚCI OBWODOWE Bogdan Majka Przedsiębiorstwo Barbara Kaczmarek Sp. J. DOBÓR KSZTAŁTEK DO SYSTEMÓW RUROWYCH.SZTYWNOŚCI OBWODOWE 1. WPROWADZENIE W branży związanej z projektowaniem i budową systemów kanalizacyjnych, istnieją

Bardziej szczegółowo

PL B1. Sposób kątowego wyciskania liniowych wyrobów z materiału plastycznego, zwłaszcza metalu

PL B1. Sposób kątowego wyciskania liniowych wyrobów z materiału plastycznego, zwłaszcza metalu PL 218911 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218911 (13) B1 (21) Numer zgłoszenia: 394839 (51) Int.Cl. B21C 23/02 (2006.01) B21C 25/02 (2006.01) Urząd Patentowy Rzeczypospolitej

Bardziej szczegółowo

Potencjalne możliwości poprawy efektywności pracy wyeksploatowanych baterii koksowniczych

Potencjalne możliwości poprawy efektywności pracy wyeksploatowanych baterii koksowniczych Konferencja Koksownictwo 2017 Potencjalne możliwości poprawy efektywności pracy wyeksploatowanych baterii koksowniczych Janusz Mytych Szczyrk Październik 2017 Plan Prezentacji Wprowadzenie myśl przewodnia

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

ZALETY STOSOWANIA KRZEMIONKI AMORFICZNEJ PRZY PROWADZENIU REMONTÓW MASYWU CERAMICZNEGO BATERII KOKSOWNICZEJ

ZALETY STOSOWANIA KRZEMIONKI AMORFICZNEJ PRZY PROWADZENIU REMONTÓW MASYWU CERAMICZNEGO BATERII KOKSOWNICZEJ ZALETY STOSOWANIA KRZEMIONKI AMORFICZNEJ PRZY PROWADZENIU REMONTÓW MASYWU CERAMICZNEGO BATERII KOKSOWNICZEJ G. JAKUBINA (ICHPW ZABRZE) J. MYTYCH (AMP ODDZIAŁ ZDZIESZOWICE), M. GRZYBEK, A. PROKHODA (REMKO

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

prędkości przy przepływie przez kanał

prędkości przy przepływie przez kanał Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

Pozycja okna w murze. Karol Reinsch, Aluplast Sp. z o.o.

Pozycja okna w murze. Karol Reinsch, Aluplast Sp. z o.o. Pozycja okna w murze Karol Reinsch, Aluplast Sp. z o.o. Określenie dokładnego miejsca montażu okna w murze otworu okiennego należy przede wszystkim do obowiązków projektanta budynku. Jest to jeden z ważniejszych

Bardziej szczegółowo

BADANIE PROCESU ROZDRABNIANIA MATERIAŁÓW ZIARNISTYCH 1/8 PROCESY MECHANICZNE I URZĄDZENIA. Ćwiczenie L6

BADANIE PROCESU ROZDRABNIANIA MATERIAŁÓW ZIARNISTYCH 1/8 PROCESY MECHANICZNE I URZĄDZENIA. Ćwiczenie L6 BADANIE PROCESU ROZDRABNIANIA MATERIAŁÓW ZIARNISTYCH /8 PROCESY MECHANICZNE I URZĄDZENIA Ćwiczenie L6 Temat: BADANIE PROCESU ROZDRABNIANIA MATERIAŁÓW ZIARNISTYCH Cel ćwiczenia: Poznanie metod pomiaru wielkości

Bardziej szczegółowo

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni. Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

Temat ćwiczenia. Pomiary otworów na przykładzie tulei cylindrowej

Temat ćwiczenia. Pomiary otworów na przykładzie tulei cylindrowej POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary otworów na przykładzie tulei cylindrowej I Cel ćwiczenia Zapoznanie się z metodami pomiaru otworów na przykładzie pomiaru zuŝycia gładzi

Bardziej szczegółowo

WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE

WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE Artykul zamieszczony w "Inżynierze budownictwa", styczeń 2008 r. Michał A. Glinicki dr hab. inż., Instytut Podstawowych Problemów Techniki PAN Warszawa WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE 1.

Bardziej szczegółowo

Wskaźnik szybkości płynięcia termoplastów

Wskaźnik szybkości płynięcia termoplastów Katedra Technologii Polimerów Przedmiot: Inżynieria polimerów Ćwiczenie laboratoryjne: Wskaźnik szybkości płynięcia termoplastów Wskaźnik szybkości płynięcia Wielkością która charakteryzuje prędkości płynięcia

Bardziej szczegółowo

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE

Bardziej szczegółowo

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH Temat: Badanie cyklonu ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZIAŁ BMiP 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 5 Wyznaczanie rozkładu prędkości przy przepływie przez kanał 1. Wprowadzenie Stanowisko umożliwia w eksperymentalny sposób zademonstrowanie prawa Bernoulliego. Układ wyposażony jest w dyszę

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod

Bardziej szczegółowo

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków 1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków Gęstością teoretyczną spieku jest stosunek jego masy do jego objętości rzeczywistej, to jest objętości całkowitej pomniejszonej o objętość

Bardziej szczegółowo

Hydrostatyczne Układy Napędowe Laboratorium

Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

PL B1. Sposób transportu i urządzenie transportujące ładunek w wodzie, zwłaszcza z dużych głębokości

PL B1. Sposób transportu i urządzenie transportujące ładunek w wodzie, zwłaszcza z dużych głębokości RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 228529 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 414387 (22) Data zgłoszenia: 16.10.2015 (51) Int.Cl. E21C 50/00 (2006.01)

Bardziej szczegółowo

Zagęszczanie gruntów niespoistych i kontrola zagęszczenia w budownictwie drogowym

Zagęszczanie gruntów niespoistych i kontrola zagęszczenia w budownictwie drogowym Zagęszczanie gruntów niespoistych i kontrola zagęszczenia w budownictwie drogowym Data wprowadzenia: 20.10.2017 r. Zagęszczanie zwane również stabilizacją mechaniczną to jeden z najważniejszych procesów

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

PRZYKŁADY CHARAKTERYSTYK ŁOŻYSK

PRZYKŁADY CHARAKTERYSTYK ŁOŻYSK ROZDZIAŁ 9 PRZYKŁADY CHARAKTERYSTYK ŁOŻYSK ŁOŻYSKO LABORATORYJNE ŁOŻYSKO TURBINOWE Przedstawimy w niniejszym rozdziale przykładowe wyniki obliczeń charakterystyk statycznych i dynamicznych łożysk pracujących

Bardziej szczegółowo

Temat: Badanie Proctora wg PN EN

Temat: Badanie Proctora wg PN EN Instrukcja do ćwiczeń laboratoryjnych Technologia robót drogowych Temat: Badanie wg PN EN 13286-2 Celem ćwiczenia jest oznaczenie maksymalnej gęstości objętościowej szkieletu gruntowego i wilgotności optymalnej

Bardziej szczegółowo

Magazynowanie cieczy

Magazynowanie cieczy Magazynowanie cieczy Do magazynowania cieczy służą zbiorniki. Sposób jej magazynowania zależy od jej objętości i właściwości takich jak: prężność par, korozyjność, palność i wybuchowość. Zbiorniki mogą

Bardziej szczegółowo

WARUNKI TECHNICZNE 2. DEFINICJE

WARUNKI TECHNICZNE 2. DEFINICJE WARUNKI TECHNICZNE 1. ZAKRES WARUNKÓW TECHNICZNYCH W niniejszych WT określono wymiary i minimalne wymagania dotyczące jakości (w odniesieniu do wad optycznych i widocznych) szkła float stosowanego w budownictwie,

Bardziej szczegółowo

Egzamin z MGIF, I termin, 2006 Imię i nazwisko

Egzamin z MGIF, I termin, 2006 Imię i nazwisko 1. Na podstawie poniższego wykresu uziarnienia proszę określić rodzaj gruntu, zawartość głównych frakcji oraz jego wskaźnik różnoziarnistości (U). Odpowiedzi zestawić w tabeli: Rodzaj gruntu Zawartość

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE

WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE ĆWICZENIE 4 WYZNACZANIE MODUŁU YOUNGA PRZEZ ZGINANIE Wprowadzenie Pręt umocowany na końcach pod wpływem obciążeniem ulega wygięciu. własnego ciężaru lub pod Rys. 4.1. W górnej warstwie pręta następuje

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo

Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych

Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych Jednym z parametrów istotnie wpływających na proces odprowadzania ciepła z kolektora

Bardziej szczegółowo

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę

Bardziej szczegółowo

Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe

Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe 1. Wstęp Klimatyzacja hali basenu wymaga odpowiedniej wymiany i dystrybucji powietrza, która jest kształtowana przez nawiew oraz wywiew.

Bardziej szczegółowo

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła

Bardziej szczegółowo

Temat 2 (2 godziny) : Próba statyczna ściskania metali

Temat 2 (2 godziny) : Próba statyczna ściskania metali Temat 2 (2 godziny) : Próba statyczna ściskania metali 2.1. Wstęp Próba statyczna ściskania jest podstawowym sposobem badania materiałów kruchych takich jak żeliwo czy beton, które mają znacznie lepsze

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

gruntów Ściśliwość Wytrzymałość na ścinanie

gruntów Ściśliwość Wytrzymałość na ścinanie Właściwości mechaniczne gruntów Ściśliwość Wytrzymałość na ścinanie Ściśliwość gruntów definicja, podstawowe informacje o zjawisku, podstawowe informacje z teorii sprężystości, parametry ściśliwości, laboratoryjne

Bardziej szczegółowo

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

PŁYTY GIPSOWO-KARTONOWE: OZNACZANIE TWARDOŚCI, POWIERZCHNIOWEGO WCHŁANIANIA WODY ORAZ WYTRZYMAŁOŚCI NA ZGINANIE

PŁYTY GIPSOWO-KARTONOWE: OZNACZANIE TWARDOŚCI, POWIERZCHNIOWEGO WCHŁANIANIA WODY ORAZ WYTRZYMAŁOŚCI NA ZGINANIE PŁYTY GIPSOWO-KARTONOWE: OZNACZANIE TWARDOŚCI, POWIERZCHNIOWEGO WCHŁANIANIA WODY ORAZ WYTRZYMAŁOŚCI NA ZGINANIE NORMY PN-EN 520: Płyty gipsowo-kartonowe. Definicje, wymagania i metody badań. WSTĘP TEORETYCZNY

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH KATEDRA MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Instrukcja przeznaczona jest dla studentów następujących kierunków: 1. Energetyka - sem. 3

Bardziej szczegółowo

Kompensatory stalowe. Produkcja. Strona 1 z 76

Kompensatory stalowe. Produkcja. Strona 1 z 76 Strona 1 z 76 Kompensatory stalowe Jeśli potencjalne odkształcenia termiczne lub mechaniczne nie mogą być zaabsorbowane przez system rurociągów, istnieje konieczność stosowania kompensatorów. Nie przestrzeganie

Bardziej szczegółowo

Zasady oceniania karta pracy

Zasady oceniania karta pracy Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

PRÓBNE OBCIĄśANIE GRUNTU ZA POMOCĄ PRESJOMETRU

PRÓBNE OBCIĄśANIE GRUNTU ZA POMOCĄ PRESJOMETRU PRÓBNE OBCIĄśANIE GRUNTU ZA POMOCĄ PRESJOMETRU Próbne obciąŝanie jest badaniem terenowym, przeprowadzanym bezpośrednio w miejscu występowania badanego gruntu. Badanie to pozwala ustalić zaleŝność pomiędzy

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 4

INSTRUKCJA DO CWICZENIA NR 4 INSTRUKCJA DO CWICZENIA NR 4 Temat ćwiczenia: Statyczna próba rozciągania metali Celem ćwiczenia jest wykonanie próby statycznego rozciągania metali, na podstawie której można określić następujące własności

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Badanie udarności metali Numer ćwiczenia: 7 Laboratorium z przedmiotu: wytrzymałość

Bardziej szczegółowo

Innowacyjne warstwy azotowane nowej generacji o podwyższonej odporności korozyjnej wytwarzane na elementach maszyn

Innowacyjne warstwy azotowane nowej generacji o podwyższonej odporności korozyjnej wytwarzane na elementach maszyn Tytuł projektu: Innowacyjne warstwy azotowane nowej generacji o podwyższonej odporności korozyjnej wytwarzane na elementach maszyn Umowa nr: TANGO1/268920/NCBR/15 Akronim: NITROCOR Planowany okres realizacji

Bardziej szczegółowo

OZNACZENIE WILGOTNOSCI POWIETRZA 1

OZNACZENIE WILGOTNOSCI POWIETRZA 1 OZNACZENIE WILGOTNOSCI POWIETRZA 1 PODSTAWOWE POJĘCIA I OKREŚLENIA Powietrze atmosferyczne jest mieszaniną gazową zawierającą zawsze pewną ilość pary wodnej. Zawartość pary wodnej w powietrzu atmosferycznym

Bardziej szczegółowo

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.

Bardziej szczegółowo

1. Wprowadzenie: dt q = - λ dx. q = lim F

1. Wprowadzenie: dt q = - λ dx. q = lim F PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych

Bardziej szczegółowo

ĆWICZENIE 15 WYZNACZANIE (K IC )

ĆWICZENIE 15 WYZNACZANIE (K IC ) POLITECHNIKA WROCŁAWSKA Imię i Nazwisko... WYDZIAŁ MECHANICZNY Wydzia ł... Wydziałowy Zakład Wytrzymałości Materiałów Rok... Grupa... Laboratorium Wytrzymałości Materiałów Data ćwiczenia... ĆWICZENIE 15

Bardziej szczegółowo

Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM

Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM Ćw. 4 BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM WYBRANA METODA BADAŃ. Badania hydrodynamicznego łoŝyska ślizgowego, realizowane na stanowisku

Bardziej szczegółowo

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. 1 Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE. Celem ćwiczenia jest doświadczalne określenie wskaźników charakteryzujących właściwości dynamiczne hydraulicznych układów sterujących

Bardziej szczegółowo

WYKŁAD 3 OBLICZANIE I SPRAWDZANIE NOŚNOŚCI NIEZBROJONYCH ŚCIAN MUROWYCH OBCIĄŻNYCH PIONOWO

WYKŁAD 3 OBLICZANIE I SPRAWDZANIE NOŚNOŚCI NIEZBROJONYCH ŚCIAN MUROWYCH OBCIĄŻNYCH PIONOWO WYKŁAD 3 OBLICZANIE I SPRAWDZANIE NOŚNOŚCI NIEZBROJONYCH ŚCIAN MUROWYCH OBCIĄŻNYCH PIONOWO Ściany obciążone pionowo to konstrukcje w których o zniszczeniu decyduje wytrzymałość muru na ściskanie oraz tzw.

Bardziej szczegółowo

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 166562 (13) B1

RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 166562 (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 166562 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 292871 (22) Data zgłoszenia: 19.12.1991 (51) IntCl6: B65D 1/16 B21D

Bardziej szczegółowo

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA

DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA 71 DYNAMIKA ŁUKU ZWARCIOWEGO PRZEMIESZCZAJĄCEGO SIĘ WZDŁUŻ SZYN ROZDZIELNIC WYSOKIEGO NAPIĘCIA dr hab. inż. Roman Partyka / Politechnika Gdańska mgr inż. Daniel Kowalak / Politechnika Gdańska 1. WSTĘP

Bardziej szczegółowo

ul. 28 Czerwca 1956 r., 398, Poznań tel. (61) , fax (061) ,

ul. 28 Czerwca 1956 r., 398, Poznań tel. (61) , fax (061) , Poznań, dn. 22 lipca 2013r. Charakterystyka wydajności cieplnej gruntu dla inwestycji w Szarocinie k. Kamiennej Góry na podstawie danych literaturowych oraz wykonanych robót geologicznych. Wykonawca: MDW

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

BADANIE ODPORNOŚCI NA PRZENIKANIE SUBSTANCJI CHEMICZNYCH PODCZAS DYNAMICZNYCH ODKSZTAŁCEŃ MATERIAŁÓW

BADANIE ODPORNOŚCI NA PRZENIKANIE SUBSTANCJI CHEMICZNYCH PODCZAS DYNAMICZNYCH ODKSZTAŁCEŃ MATERIAŁÓW Metoda badania odporności na przenikanie ciekłych substancji chemicznych przez materiały barierowe odkształcane w warunkach wymuszonych zmian dynamicznych BADANIE ODPORNOŚCI NA PRZENIKANIE SUBSTANCJI CHEMICZNYCH

Bardziej szczegółowo

pętla nastrzykowa gaz nośny

pętla nastrzykowa gaz nośny METODA POPRAWY PRECYZJI ANALIZ CHROMATOGRAFICZNYCH GAZÓW ZIEMNYCH POPRZEZ KONTROLOWANY SPOSÓB WPROWADZANIA PRÓBKI NA ANALIZATOR W WARUNKACH BAROSTATYCZNYCH Pracownia Pomiarów Fizykochemicznych (PFC), Centralne

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU

POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI. Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 5 POMIAR WZGLĘDNEJ LEPKOŚCI CIECZY PRZY UŻYCIU WISKOZYMETRU KAPILARNEGO I. WSTĘP TEORETYCZNY Ciecze pod względem struktury

Bardziej szczegółowo

Borealis AB Serwis Techniczny i Rozwój Rynku Reinhold Gard SE Stenungsund Szwecja

Borealis AB Serwis Techniczny i Rozwój Rynku Reinhold Gard SE Stenungsund Szwecja Borealis AB Serwis Techniczny i Rozwój Rynku Reinhold Gard SE-444 86 Stenungsund Szwecja Odporność na ciśnienie hydrostatyczne oraz wymiarowanie dla PP-RCT, nowej klasy materiałów z polipropylenu do zastosowań

Bardziej szczegółowo

Analiza porównawcza dwóch metod wyznaczania wskaźnika wytrzymałości na przebicie kulką dla dzianin

Analiza porównawcza dwóch metod wyznaczania wskaźnika wytrzymałości na przebicie kulką dla dzianin Analiza porównawcza dwóch metod wyznaczania wskaźnika wytrzymałości na przebicie kulką dla dzianin B. Wilbik-Hałgas, E. Ledwoń Instytut Technologii Bezpieczeństwa MORATEX Wprowadzenie Wytrzymałość na działanie

Bardziej szczegółowo

Szczegóły budowy kolektora próżniowego typu HeatPipe. Część 1.

Szczegóły budowy kolektora próżniowego typu HeatPipe. Część 1. Szczegóły budowy kolektora próżniowego typu HeatPipe. Część 1. Popularność kolektorów próżniowych w Polsce jest na tle Europy zjawiskiem dość wyjątkowym w zasadzie wiele przemawia za wyborem kolektora

Bardziej szczegółowo

Kompaktowanie drobnoziarnistych frakcji węglowych jako metoda przygotowania części wsadu dla zasypowego systemu obsadzania komór koksowniczych

Kompaktowanie drobnoziarnistych frakcji węglowych jako metoda przygotowania części wsadu dla zasypowego systemu obsadzania komór koksowniczych 27-29 września 2018 r., Beskid Śląski Kompaktowanie drobnoziarnistych frakcji węglowych jako metoda przygotowania części wsadu dla zasypowego systemu obsadzania komór koksowniczych Autorzy: Helt-Zielony

Bardziej szczegółowo