32 bity jak najprościej STM32F0 (2) Pomiar napięcia i temperatury z uwzględnieniem danych kalibracyjnych
|
|
- Ludwika Lewandowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 32 bity jak najprościej STM32F0 (2) Pomiar napięcia i temperatury z uwzględnieniem danych kalibracyjnych Latem ubiegłego roku przedstawiliśmy serię artykułów poświęconych początkom tworzenia oprogramowania dla mikrokontrolerów 32-bitowych z rdzeniami Cortex na przykładzie prostych projektów działających na płytce STM32F0 Discovery. Pozytywny odzew Czytelników spowodował powstanie drugiej serii artykułów. Przykłady prezentowane w tej serii mogą być uruchamiane na mikrokontrolerach z rodziny STM32F05x oraz ekonomicznej STM32F030. Strukturę kodu źródłowego nowych przekładów tak zmodyfikowano, aby definicje używane we wszystkich przykładach były zgrupowane w plikach niezależnych od konkretnego projektu. Do kompilowania programów użyto nowej wersji środowiska Keil MDK-ARM Nowe projekty oraz przystosowane do nowej wersji MDK-ARM projekty z poprzedniej serii artykułów są zawarte w materiałach dodatkowych, w pliku F0tutorial2.zip. Przygotowanie środowiska Keil MDK-ARM 5.x W poprzedniej serii artykułów wprowadzających do programowania mikrokontrolerów STM32F0 korzystaliśmy ze środowiska Keil MDK-ARM w wersji 4.x. Obecnie jest dostępna wersja 5, dlatego kolejne przykłady zostały przygotowane przy jej użyciu. Instalowanie środowiska Keil w wersji 5.0 jest podobne do znanego z wersji 4.x, jednak została wprowadzona jedna istotna zmiana pakiet instalacyjny nie zawiera plików związanych z konkretnymi mikrokontrolerami, więc przed rozpoczęciem pracy należy je doinstalować korzystając z przycisku Pack Installer (rysunek 1) umieszczonego na końcu paska narzędzi. Jego naciśnięcie powoduje otwarcie połączenia z serwerem Keil i wyświetlenie listy dostępnych pakietów. Do podstawowej pracy z STM32F0 należy zainstalować pakiet ARM::CMSIS oraz Keil::STM32F0_DFP. Pliki wspólne dla wszystkich projektów W celu podniesienia czytelności programów i ułatwienia tworzenia kolejnych projektów definicje używane we wszystkich nowych projektach zgrupowano w nowych plikach nagłówkowych. W głównym folderze roboczym utworzono folder Common, zawierający wszystkie pliki nagłówkowe. Jedynym plikiem włączanym do wszystkich programów jest plik stm32f0discovery.h. Zawiera on definicje portów dla płytek STM32F0DISCOVERY i STM32F0308DISCO. Włącza on również dwa kolejne pliki: stm32f0yy.h, włączający plik stm32f0xx.h i zawierający definicje lokacji w przestrzeni adresowej oraz wartości pól rejestrów mikrokontrolera, które nie zostały zdefiniowane w dostarczonym przez producenta pliku stm32f0xx.h; stm32futil.h, zawierający użyteczne definicje do tworzenia pól bitowych oraz deklaracje struktury i procedury inline używanej do inicjowania peryferiali. Zawartość plików pokazano na listingach 1 3. Korzystanie z wymienionych plików nagłówkowych w projektach wymaga dodania w opcjach projektu do ścieżki poszukiwania plików nagłówkowych foldera Common (rysunek 2). Rysunek 1. Okno główne instalatora pakietów Rysunek 2. Okno opcji kompilatora 96 ELEKTRONIKA PRAKTYCZNA 1/2014
2 Przykłady 1. Pomiar napięcia i temperatury z uwzględnieniem danych kalibracyjnych Mikrokontrolery z serii STM32F0 są wyposażone w wewnętrzne źródło napięcia wzorcowego oraz czujnik temperatury. Oba te moduły charakteryzują się znacznym rozrzutem parametrów, dlatego producent podczas testów fabrycznych zapisuje w pamięci stałej mikrokontrolera ich dane kalibracyjne. Na podstawie danych kalibracyjnych można przeliczyć odczyty przetwornika analogowo cyfrowego na wartość napięcia i temperatury. Źródło napięcia wzorcowego jest dołączone do wejścia przetwornika o numerze 17, a czujnik temperatury do wejścia o numerze 16. Kalibrowanie pomiaru napięcia Pod adresem 0x1FFF F7BA jest zapisana 16-bitowa stała VREFINT_CAL, która odpowiada wartości odczytu A/C przy pomiarze napięcia wzorcowego, dla napięcia zasilania 3,3 V i temperatury 30ºC. Należy zauważyć, że napięciem odniesienia dla przetwornika A/C jest zawsze napięcie zasilania. Wartość VREFINT_CAL może posłużyć do obliczenia wartości napięcia zasilania, która może być następnie użyta do obliczenia wartości zewnętrznych napięć mierzonych przez przetwornik A/C. Zależność pomiędzy wartością stałej VREFINT_CAL i wartością napięcia wzorcowego V REF wyraża się wzorem: Listing 1. Plik stm32f0discovery.h STM32F0DISCOVERY & STM32F0308-DISCO board defs #include stm32f0yy.h #include stm32futil.h // STM32F0DISCOVERY board conections #define LED_PORT GPIOC #define BLUE_LED_BIT 8 #define GREEN_LED_BIT 9 #define BUTTON_PORT GPIOA #define BUTTON_BIT 0 #define BLUE_LED_PWM TIM3->CCR3 #define GREEN_LED_PWM TIM3->CCR4 W celu uniknięcia zbędnych operacji zmiennopozycyjnych, będziemy prowadzili obliczenia napięć w miliwoltach: Taka postać wzoru na napięcie zasilania została użyta w programie przykładowym. Kalibrowanie pomiaru temperatury Według dokumentacji producenta, czujnik temperatury zawarty w układzie mikrokontrolera wytwarza napięcie, którego zależność od temperatury jest niemal liniowa. Do kalibrowania czujnika służą dwie 16-bitowe stałe TS_CAL1 i TS_CAL2, zapisane w pamięci stałej, odpowiednio pod adresami 0x1FFF F7B8 i 0x1FFF F7C2. Ich wartości odpowiadają odczytom A/C z pomiaru napięcia Listing 2. Plik stm32f0yy.h STM32F0 series enhanced defs #ifndef STM32F0YY_H #define STM32F0YY_H #include stm32f0xx.h // STM32F0x register/bit defs not present in stm32f0xx.h file #define RCC_AHBENR_RSTVAL (RCC_AHBENR_FLITFEN RCC_AHBENR_SRAMEN) #define GPIO_MODER_OUT 1 #define GPIO_MODER_AF 2 #define GPIOA_MODER_SWD (GPIO_MODER_AF << (14 << 1) GPIO_MODER_AF << (13 << 1)) // keep SWD pins #define GPIO_PUPDR_PU 1 #define GPIO_PUPDR_PD 2 #define TIM_CCMR2_OC3M_PWM1 0x0060 // OC3M[2:0] - PWM mode 1 #define TIM_CCMR2_OC4M_PWM1 0x6000 // OC4M[2:0] - PWM mode 1 #define ADC_SMPR_71_5 6 #define ADC_SMPR_239_5 7 // MHz - for TS // Calibration values stored in ROM #define VREFINT_CAL (*(uint16_t *)0x1ffff7ba) #define TS_CAL1 (*(uint16_t *)0x1ffff7b8) #define TS_CAL2 (*(uint16_t *)0x1ffff7c2) #define T_CAL1 30 #define T_CAL2 110 #endif Wartość napięcia wzorcowego naszego egzemplarza mikrokontrolera wynosi: Jeżeli wartość odczytaną z ADC podczas pomiaru napięcia wzorcowego oznaczymy jako VREFINT_ADC, to bieżącą wartość napięcia zasilania wyznaczamy z wzoru: Stąd: Listing 3. Plik stm32futil.h some useful defs for STM32F0 #ifndef STM32FUTIL_H #define STM32FUTIL_H #define BF2(b,v) ((v) << ((b & 0xf) * 2)) #define BF4(b,v) ((v) << ((b & 7) * 4)) typedef IO uint32_t * IO32p; // short type name // register init structure and routine struct init_entry_ volatile uint32_t *loc; uint32_t value; ; static INLINE void writeregs(const struct init_entry_ *p) for (; p->loc; p ++) ->loc = p->value; #endif ELEKTRONIKA PRAKTYCZNA 1/
3 wytwarzanego przez czujnik temperatury przy napięciu zasilania 3,3 V i temperaturach 30ºC i 110ºC. Przyjmując, że zależność temperatury od wartości odczytanej z przetwornika analogowo-cyfrowego wyraża się wzorem: Do obliczenia temperatury są potrzebne wartości współczynników a i b, które można wyznaczyć z wartości kalibracyjnych poprzez rozwiązanie układu równań wiążących dwie wzorcowe temperatury z odpowiadającymi im odczytami ADC. Stąd: Ponieważ wartości odczytów A/C czujnika temperatury zależą od napięcia zasilania, zależność ta musi być odpowiednio uwzględniona podczas obliczeń. Można to uzyskać np. normalizując wartość odczytaną z ADC tak, aby przekształcić ją na wartość odpowiadającą odczytowi przy napięciu zasilania 3,3 V. Listing 4. Pomiar temperatury i przesłanie wyniku za pomocą UART STM32F0DISCOVERY & STM32F0308-DISCO tutorial ADC - calibrated voltage & temperature readout gbm, #include stm32f0discovery.h #define SYSCLK_FREQ HSI_VALUE #define BAUD_RATE // PWM constants #define PWM_FREQ 400 // Hz #define PWM_STEPS 80 #define PWM_CLK SYSCLK_FREQ #define PWM_PRE (PWM_CLK / PWM_FREQ / PWM_STEPS) #define LED_MAX (PWM_STEPS - 1) #define LED_DIM 1 #define LED_OFF 0 #define AVG_SHIFT 4 void SystemInit(void) FLASH->ACR = FLASH_ACR_PRFTBE; // enable prefetch static const struct init_entry_ init_table[] = // enable peripherals &RCC->APB1ENR, RCC_APB1ENR_TIM3EN, &RCC->APB2ENR, RCC_APB2ENR_USART1EN RCC_APB2ENR_ADC1EN, &RCC->AHBENR, RCC_AHBENR_GPIOCEN RCC_AHBENR_GPIOAEN RCC_AHBENR_FLITFEN RCC_AHBENR_SRAMEN RCC_AHBENR_DMA1EN, // port setup &GPIOA->AFR[1], BF4(10, 1) BF4(9, 1), // USART pins 10 - RX, 9 - TX &GPIOA->PUPDR, BF2(10, GPIO_PUPDR_PD), // pulldn on PA10 &GPIOA->MODER, GPIOA_MODER_SWD BF2(10, GPIO_MODER_AF) BF2(9, GPIO_MODER_AF), // UART pins as AF &LED_PORT->MODER, BF2(GREEN_LED_BIT, GPIO_MODER_AF) BF2(BLUE_LED_BIT, GPIO_MODER_AF), // set LED pins as AF // ADC setup &ADC1->CHSELR, ADC_CHSELR_CHSEL17 ADC_CHSELR_CHSEL16, // VREF, TS &ADC1->SMPR, ADC_SMPR_239_5, // ADC &ADC->CCR, ADC_CCR_TSEN ADC_CCR_VREFEN, // ADC &ADC1->CFGR1, ADC_CFGR1_WAIT ADC_CFGR1_CONT, // ADC // ADC cal &ADC1->CR, ADC_CR_ADCAL, // ADC // USART1 setup ( IO32p)&USART1->BRR, (SYSCLK_FREQ + BAUD_RATE / 2) / BAUD_RATE, &USART1->CR2, USART_CR2_TXINV USART_CR2_RXINV, // Invert TX & RX &USART1->CR3, USART_CR3_DMAT, // enable Tx DMA &USART1->CR1, USART_CR1_TE USART_CR1_RE USART_CR1_UE, // enable // DMA init moved to main() to avoid ANSI C warnings // PWM timer setup - TIM3 ( IO32p)&TIM3->PSC, PWM_PRE - 1, // prescaler ( IO32p)&TIM3->ARR, PWM_STEPS - 1, // period // blue - CH3, green - CH4 ( IO32p)&TIM3->CCMR2, TIM_CCMR2_OC4M_PWM1 TIM_CCMR2_OC4PE TIM_CCMR2_OC3M_PWM1 TIM_CCMR2_OC3PE, // PWM mode 1, buffered preload ( IO32p)&TIM3->CCER, TIM_CCER_CC4E TIM_CCER_CC3E, // enable CH3, 4 output ( IO32p)&TIM3->DIER, TIM_DIER_UIE, // enable update interrupt ( IO32p)&TIM3->CR1, TIM_CR1_ARPE TIM_CR1_CEN, // interrupts and sleep &NVIC->ISER[0], 1 << TIM3_IRQn, // enable interrupts &SCB->SCR, SCB_SCR_SLEEPONEXIT_Msk, // sleep while not in handler 0, 0 ; static uint8_t meas[] = Vdd = 0000 mv, T = deg C\r\n ; int main(void) writeregs(init_table); DMA1_Channel2->CMAR = (uint32_t)meas; DMA1_Channel2->CPAR = (uint32_t)&usart1->tdr; WFI(); // go to sleep void TIM3_IRQHandler(void) static uint8_t tdiv = 0; static uint8_t blue_target = LED_DIM, green_target = LED_MAX; static uint8_t sdiv = 0; static uint32_t adc_avg[2]; // auto reload, enable 98 ELEKTRONIKA PRAKTYCZNA 1/2014
4 Finalna wartość mierzonej temperatury będzie obliczana z wzoru: Po podstawieniu wartości współczynników a i b otrzymujemy postać: a po wstawieniu wzoru na znormalizowaną wartość odczytu ADC i po redukcji dzieleń: Program przykładowy Program demonstracyjny pokazany na listingu 4 mierzy napięcie zasilania i temperaturę procesora i wysyła je na terminal przez port szeregowy. W celu wyświetlenia wysyłanych danych na komputerze PC należy połączyć pojedynczym przewodem linię PA9 (TXD) mikrokontrolera ze stykiem 2 złącza DB9 interfejsu RS232C. Połączenie masy jest zapewnione przez kabel USB łączący płytkę DISCOVERY z PC, a programowe odwrócenie polaryzacji linii TXD skutecznie zastępuje nadajnik RS232C przy transmisji na małe odległości. Dane są transmitowane z szybkością b/s. Do komunikacji z płytką można Listing 4. c.d. uint32_t pwmval; TIM3->SR = ~TIM_SR_UIF; // clear interrupt flag if ((++ tdiv & 3) == 0) int i; static enum ADCH_TS, ADCH_VREF adch = ADCH_TS; if (ADC1->ISR & ADC_ISR_EOC) uint32_t val = ADC1->DR; // 0 before first conversion if (adc_avg[adch] == 0) // initial measure - set adc_avg[adch] = val << AVG_SHIFT; else // low-pass filters adc_avg[adch] = adc_avg[adch] + val - (adc_avg[adch] >> AVG_SHIFT); if (++ adch > ADCH_VREF) adch = ADCH_TS; else if (ADC1->ISR & ADC_ISR_ADRDY) // ready for conversion ADC1->CR = ADC_CR_ADSTART ADC_CR_ADEN; // start cont. conversion else if ((ADC1->CR & (ADC_CR_ADCAL ADC_CR_ADEN)) == 0) // calibrated but not enabled yet - enable ADC1->CR = ADC_CR_ADEN; if (++ sdiv == 100) uint32_t Vdd_mV; int32_t Temperature_x10, tsign; sdiv = 0; Vdd_mV = VREFINT_CAL * 3300 / (adc_avg[adch_vref] >> AVG_SHIFT); // show results for (i = 3; i >= 0; i --) meas[6 + i] = Vdd_mV % ; Vdd_mV /= 10; Temperature_x10 = (T_CAL2 - T_CAL1) * 10 * (((int32_t)adc_avg[adch_ts] >> AVG_SHIFT) * VREFINT_CAL - TS_CAL1 * (int32_t)(adc_avg[adch_vref] >> AVG_SHIFT)) / (((int32_t)ts_cal2 - (int32_t)ts_cal1) * (int32_t)(adc_avg[adch_vref] >> AVG_SHIFT)) + T_CAL1 * 10; tsign = + ; if (Temperature_x10 < 0) tsign = - ; Temperature_x10 = -Temperature_x10; meas[23] = Temperature_x10 % ; Temperature_x10 /= 10; i = 21; do meas[i --] = Temperature_x10 % ; Temperature_x10 /= 10; while (Temperature_x10); meas[i --] = tsign; while (i > 18) meas[i --] = ; // init DMA for string transfer DMA1_Channel2->CCR = 0; // disable DMA1_Channel2->CNDTR = sizeof(meas) - 1; // no. of items // increment memory adress, mem->periph, enable DMA1_Channel2->CCR = DMA_CCR_MINC DMA_CCR_DIR DMA_CCR_EN; blue_target ^= LED_MAX ^ LED_DIM; green_target ^= LED_MAX ^ LED_DIM; if ((pwmval = BLUE_LED_PWM)!= blue_target) BLUE_LED_PWM = pwmval < blue_target? pwmval + 1 : pwmval - 1; if ((pwmval = GREEN_LED_PWM)!= green_target) GREEN_LED_PWM = pwmval < green_target? pwmval + 1 : pwmval - 1; ELEKTRONIKA PRAKTYCZNA 1/
5 użyć dowolnego programu terminala skonfigurowanego na transmisję danych 8-bitowych bez kontroli parzystości z szybkością b/s, bez synchronizacji. Program powstał przez modyfikację wcześniejszego przykładu ilustrującego nadawanie danych przez UART z użyciem DMA. Zaprogramowanie przetwornika A/C Przetwornik jest skonfigurowany tak, by mierzył on wartości z kanałów 16 i 17. Kolejny pomiar jest wyzwalany przez odczyt wyników poprzedniego osiąga się to przez ustawienie bitów CONT i WAIT w rejestrze CFGR1. Dzięki temu nie ma potrzeby jawnego wyzwalania pomiarów poprzez zapisy do rejestrów sterujących przetwornika. Oprogramowanie przetwornika analogowo-cyfrowego stanowi również modyfikację przedstawionego wcześniej przykładu zostało ono zrealizowane w konwencji automatu zapewniającego zainicjowanie przetwornika i prowadzenie pomiarów bez konieczności oczekiwania programowego. Wszystkie akcje wykonywane są w obsłudze przerwania timera, zgłaszanego z częstotliwością 400 Hz, przy co czwartym wejściu w obsługę przerwania, a więc z częstotliwością 100 Hz. Po zainicjowaniu i początkowej kalibracji przetwornika następuje naprzemienne odczytywanie wyników z A/C i inicjowanie kolejnego pomiaru dla dwóch kanałów, odpowiadających czujnikowi temperatury i źródłu napięcia wzorcowego. Wyniki pomiarów są filtrowane zrealizowanym programowo filtrem dolnoprzepustowym, podobnie jak we wcześniejszym przykładzie dotyczącym przetwornika. Obliczenia w programie Zastosowany sposób realizacji obliczeń umożliwia wyeliminowanie operacji zmiennopozycyjnych oraz zmniejszenie liczby operacji dzielenia, które są najwolniejszymi operacjami arytmetycznymi w przypadku rdzenia Cortex-M0 są one wykonywane przez procedury programowe. Napięcie zasilania jest obliczane w miliwoltach, a temperatura w dziesiątych częściach stopnia. Przy zastosowanej w oprogramowaniu postaci wzorów, zarówno do obliczenia wartości napięcia zasilania, jak i temperatury niezbędne jest wykonanie tylko po jednym dzieleniu. Potrzebne do obliczeń napięcia wzorcowego i temperatury stałe i parametry z pamięci ROM mikrokontrolera zostały zdefiniowane jako symbole preprocesora w pliku stm32f0yy.h. Wartości napięcia zasilania i temperatury są obliczane i wysyłane do terminala co jedną sekundę. Moment transmisji wyników jest sygnalizowany zmianą stanu diod LED umieszczonych na płytce. Przygotowanie wyników Obliczone wartości napięcia i temperatury są zamieniane na postać znakową przy użyciu prostych fragmentów kodu cyfry są wstawiane na odpowiednie pozycje bufora przechowującego cały łańcuch znaków reprezentujący wyniki pomiarów. Następnie jest inicjowana transmisja DMA całego bufora do modułu UART. Grzegorz Mazur 100 ELEKTRONIKA PRAKTYCZNA 1/2014
32 bity jak najprościej (3)
32 bity jak najprościej (3) Pierwsze kroki z modułem STM32F0DISCOVERY Samouczek jest dedykowany szczególnie tym projektantom, którzy stają przed perspektywą zmiany mikrokontrolera z 8-bitowego na nowszy
32 bity jak najprościej (4)
32 bity jak najprościej (4) STM32F0 nieblokująca obsługa wyświetlacza LCD ze sterownikiem rodziny HD44780 W kolejnym odcinku serii przedstawimy całkiem nietypową realizację bardzo typowego składnika oprogramowania
32 bity jak najprościej (3)
32 bity jak najprościej (3) STM32F0 płytka eksperymentalna z mikrokontrolerem STM32F030F4 Latem 2013 roku pojawiła się na rynku nowa seria mikrokontrolerów STM32F030. Są one bardzo podobne do STM32F050,
Programowanie mikrokontrolerów 2.0
6.1 Programowanie mikrokontrolerów 2.0 Liczniki Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 31 października 2017 Liczniki Układy sprzętowe wyposażone w wewnętrzny rejestr
Implementacja algorytmów DSP w mikrokontrolerach STM32F3
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Podstawy Programowania Mikroprocesorów i Procesorów DSP Implementacja algorytmów
Timery w mikrokontrolerach STM32F3
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Podstawy Programowania Mikroprocesorów i Procesorów DSP Timery w mikrokontrolerach
32 bity jak najprościej (7)
32 bity jak najprościej (7) STM32F0 nieblokująca obsługa interfejsu 1-Wire Opracowany przez firmę Dallas Semiconductors (obecnie Maxim Integrated), popularny interfejs 1-Wire umożliwia dołączenie do mikrokontrolera
Szkolenia specjalistyczne
Szkolenia specjalistyczne AGENDA Programowanie mikrokontrolerów w języku C na przykładzie STM32F103ZE z rdzeniem Cortex-M3 GRYFTEC Embedded Systems ul. Niedziałkowskiego 24 71-410 Szczecin info@gryftec.com
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikrokontrolery i Mikroprocesory Przetwornik ADC laboratorium: 04 autor: mgr inż. Katarzyna Smelcerz Kraków, 2016
dokument DOK 02-05-12 wersja 1.0 www.arskam.com
ARS3-RA v.1.0 mikro kod sterownika 8 Linii I/O ze zdalną transmisją kanałem radiowym lub poprzez port UART. Kod przeznaczony dla sprzętu opartego o projekt referencyjny DOK 01-05-12. Opis programowania
Projektowanie urządzeń z modułami GSM (3)
Projektowanie urządzeń z modułami GSM (3) Oprogramowanie mikrokontrolera W trzeciej części cyklu poświęconego projektowaniu urządzeń z modułami GSM zajmiemy się zagadnieniem projektowania oprogramowania
1. Wprowadzenie Programowanie mikrokontrolerów Sprzęt i oprogramowanie... 33
Spis treści 3 1. Wprowadzenie...11 1.1. Wstęp...12 1.2. Mikrokontrolery rodziny ARM...13 1.3. Architektura rdzenia ARM Cortex-M3...15 1.3.1. Najważniejsze cechy architektury Cortex-M3... 15 1.3.2. Rejestry
Programowanie mikrokontrolerów 2.0
13.1 Programowanie mikrokontrolerów 2.0 Sterowanie fazowe Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 19 grudnia 2016 Triak Triak jest półprzewodnikowym elementem przełączającym
Poradnik programowania procesorów AVR na przykładzie ATMEGA8
Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Wersja 1.0 Tomasz Pachołek 2017-13-03 Opracowanie zawiera opis podstawowych procedur, funkcji, operatorów w języku C dla mikrokontrolerów AVR
Programowanie mikrokontrolerów 2.0
Programowanie mikrokontrolerów 2.0 DMA, przerwania Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 22 października 2018 DMA Akronim Direct Memory Access Przesyłanie danych
Projekt MARM. Dokumentacja projektu. Łukasz Wolniak. Stacja pogodowa
Projekt MARM Dokumentacja projektu Łukasz Wolniak Stacja pogodowa 1. Cel projektu Celem projektu było opracowanie urządzenia do pomiaru temperatury, ciśnienia oraz wilgotności w oparciu o mikrokontroler
METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02
METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się
Mikroprocesory i Mikrosterowniki Analog-Digital Converter Konwerter Analogowo-Cyfrowy
Mikroprocesory i Mikrosterowniki Analog-Digital Converter Konwerter Analogowo-Cyfrowy Wydział Elektroniki Mikrosystemów i Fotoniki dr inż. Piotr Markowski Na prawach rękopisu. Na podstawie dokumentacji
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikrokontrolery i Mikroprocesory DMA (Direct Memory Access) laboratorium: 05 autor: mgr inż. Katarzyna Smelcerz
Sprawozdanie z projektu MARM. Część druga Specyfikacja końcowa. Prowadzący: dr. Mariusz Suchenek. Autor: Dawid Kołcz. Data: r.
Sprawozdanie z projektu MARM Część druga Specyfikacja końcowa Prowadzący: dr. Mariusz Suchenek Autor: Dawid Kołcz Data: 01.02.16r. 1. Temat pracy: Układ diagnozujący układ tworzony jako praca magisterska.
Listing_ $crystal = deklaracja
------------------------------------------------- Listing_4 ---------------------------------------------------- $crystal = 8000000 deklaracja częstotliwości kwarcu $regfile "m8def.dat" biblioteka mikrokontrolera
Laboratorium Procesorów Sygnałowych
Laboratorium Procesorów Sygnałowych Moduł STM32F407 Discovery GPIO, C/A, akcelerometr I. Informacje wstępne Celem ćwiczenia jest zapoznanie z: Budową i programowaniem modułu STM32 F4 Discovery Korzystaniem
Kod produktu: MP01611
CZYTNIK RFID ZE ZINTEGROWANĄ ANTENĄ, WYJŚCIE RS232 (TTL) Moduł stanowi tani i prosty w zastosowaniu czytnik RFID dla transponderów UNIQUE 125kHz, umożliwiający szybkie konstruowanie urządzeń do bezstykowej
Mikrokontrolery z rdzeniami Cortex-M - STM32F401 w praktyce. Grzegorz Mazur Politechnika Warszawska Instytut Informatyki
Mikrokontrolery z rdzeniami Cortex-M - STM32F401 w praktyce Grzegorz Mazur Politechnika Warszawska Instytut Informatyki 1 Co to jest Cortex? Nowa generacja procesorów (rdzeni) ARM Zestaw instrukcji Thumb
Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej
Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza
4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD.
13 4 Transmisja szeregowa na przykładzie komunikacji dwukierunkowej z komputerem PC, obsługa wyświetlacza LCD. Zagadnienia do przygotowania: - budowa i działanie interfejsu szeregowego UART, - tryby pracy,
o Instalacja środowiska programistycznego (18) o Blink (18) o Zasilanie (21) o Złącza zasilania (22) o Wejścia analogowe (22) o Złącza cyfrowe (22)
O autorze (9) Podziękowania (10) Wstęp (11) Pobieranie przykładów (12) Czego będę potrzebował? (12) Korzystanie z tej książki (12) Rozdział 1. Programowanie Arduino (15) Czym jest Arduino (15) Instalacja
LITEcompLPC1114. Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Sponsorzy:
LITEcompLPC1114 Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Bezpłatny zestaw dla Czytelników książki Mikrokontrolery LPC1100. Pierwsze kroki LITEcompLPC1114 jest doskonałą platformą mikrokontrolerową
4 Transmisja szeregowa, obsługa wyświetlacza LCD.
1 4 Transmisja szeregowa, obsługa wyświetlacza LCD. Zagadnienia do przygotowania: - budowa i działanie interfejsu szeregowego UART, - tryby pracy, - ramka transmisyjna, - przeznaczenie buforów obsługi
Programowanie mikrokontrolerów 2.0
4.1 Programowanie mikrokontrolerów 2.0 Taktowanie Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 22 listopada 2016 4.2 Drzewo taktowania w STM32F411 Źródło: RM0383 Reference
DOKUMENTACJA PROJEKTU
Warszawa, dn. 16.12.2015r. Student: Artur Tynecki (E.EIM) atynecki@stud.elka.pw.edu.pl Prowadzący: dr inż. Mariusz Jarosław Suchenek DOKUMENTACJA PROJEKTU Projekt wykonany w ramach przedmiotu Mikrokontrolery
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i Mikrokontrolery Zastosowanie przetwornika analogowo-cyfrowego do odczytywania napięcia z potencjometru
Cwiczenie nr 1 Pierwszy program w języku C na mikrokontroler AVR
Cwiczenie nr 1 Pierwszy program w języku C na mikrokontroler AVR Zadanie polega na napisaniu pierwszego programu w języku C, jego poprawnej kompilacji i wgraniu na mikrokontroler. W tym celu należy zapoznać
start Program mikroprocesorowego miernika mocy generowanej $crystal = deklaracja
----------------------------start---------------------------- Program mikroprocesorowego miernika mocy generowanej $crystal = 8000000 deklaracja częstotliwości kwarcu taktującego uc $regfile "m8def.dat"
LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program
LabVIEW PLATFORMA EDUKACYJNA Lekcja 5 LabVIEW i Arduino konfiguracja środowiska i pierwszy program Przygotował: Jakub Wawrzeńczak 1. Wprowadzenie Lekcja przedstawia wykorzystanie środowiska LabVIEW 2016
Programowanie mikrokontrolerów. 8 listopada 2007
Programowanie mikrokontrolerów Marcin Engel Marcin Peczarski 8 listopada 2007 Alfanumeryczny wyświetlacz LCD umożliwia wyświetlanie znaków ze zbioru będącego rozszerzeniem ASCII posiada zintegrowany sterownik
Porty GPIO w mikrokontrolerach STM32F3
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM Podstawy Programowania Mikroprocesorów i Procesorów DSP Porty GPIO w mikrokontrolerach
Programowanie mikrokontrolerów 2.0
Programowanie mikrokontrolerów 2.0 Tryby uśpienia Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 19 grudnia 2016 Zarządzanie energią Często musimy zadbać o zminimalizowanie
1. Wstęp Różnice pomiędzy mikrokontrolerami ST7 a ST7LITE Rdzeń mikrokontrolerów ST7FLITE... 15
3 1. Wstęp... 9 2. Różnice pomiędzy mikrokontrolerami ST7 a ST7LITE... 11 3. Rdzeń mikrokontrolerów ST7FLITE... 15 3.1. Jednostka centralna...16 3.2. Organizacja i mapa pamięci...19 3.2.1. Pamięć RAM...20
ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC
ZL28ARM Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC Zestaw ZL28ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów AT91SAM7XC. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych
Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP
Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP ZL32ARM ZL32ARM z mikrokontrolerem LPC1114 (rdzeń Cotrex-M0) dzięki wbudowanemu programatorowi jest kompletnym zestawem uruchomieniowym.
Electronic Infosystems
Department of Optoelectronics and Electronic Systems Faculty of Electronics, Telecommunications and Informatics Gdansk University of Technology Electronic Infosystems Microserver TCP/IP with CS8900A Ethernet
Funkcje standardowej biblioteki wejść-wyjść do wyświetlania i pobierania danych
Funkcje standardowej biblioteki wejść-wyjść do wyświetlania i pobierania danych Przykłady wykorzystanie funkcji printf i scanf do wyświetlania danych na wyświetlaczu LCD oraz komunikacji sterownika mikroprocesorowego
/* dołączenie pliku nagłówkowego zawierającego deklaracje symboli dla wykorzystywanego mikrokontrolera */ #include <aduc834.h>
Szablon programu: /* dołączenie pliku nagłówkowego zawierającego deklaracje symboli dla wykorzystywanego mikrokontrolera */ #include /* opcjonalne: deklaracja typów o rozmiarze jednego i dwóch
Wprowadzenie do podstaw programowania AVR (na przykładzie mikrokontrolera ATmega 16 / 32)
Wprowadzenie do podstaw programowania AVR (na przykładzie mikrokontrolera ATmega 16 / 32) wersja 0.4 (20 kwietnia 2015) Filip A. Sala W niniejszym, bardzo krótkim opracowaniu, postaram się przedstawić
Arduino dla początkujących. Kolejny krok Autor: Simon Monk. Spis treści
Arduino dla początkujących. Kolejny krok Autor: Simon Monk Spis treści O autorze Podziękowania Wstęp o Pobieranie przykładów o Czego będę potrzebował? o Korzystanie z tej książki Rozdział 1. Programowanie
Obługa czujników do robota śledzącego linie. Michał Wendland 171628 15 czerwca 2011
Obługa czujników do robota śledzącego linie. Michał Wendland 171628 15 czerwca 2011 1 Spis treści 1 Charakterystyka projektu. 3 2 Schematy układów elektronicznych. 3 2.1 Moduł czujników.................................
MCAR Robot mobilny z procesorem AVR Atmega32
MCAR Robot mobilny z procesorem AVR Atmega32 Opis techniczny Jakub Kuryło kl. III Ti Zespół Szkół Zawodowych nr. 1 Ul. Tysiąclecia 3, 08-530 Dęblin e-mail: jkurylo92@gmail.com 1 Spis treści 1. Wstęp..
Parametryzacja przetworników analogowocyfrowych
Parametryzacja przetworników analogowocyfrowych wersja: 05.2015 1. Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie istoty działania przetworników analogowo-cyfrowych (ADC analog-to-digital converter),
Kod produktu: MP01611-ZK
ZAMEK BEZSTYKOWY RFID ZE ZINTEGROWANĄ ANTENĄ, WYJŚCIE RS232 (TTL) Moduł stanowi gotowy do zastosowania bezstykowy zamek pracujący w technologii RFID dla transponderów UNIQUE 125kHz, zastępujący z powodzeniem
Przetwornik analogowo-cyfrowy
Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy A/C (ang. A/D analog to digital; lub angielski akronim ADC - od słów: Analog to Digital Converter), to układ służący do zamiany sygnału analogowego
TECHNIKA MIKROPROCESOROWA II
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki TECHNIKA MIKROPROCESOROWA II PRE LAB Instalacja środowiska Keil i konfigurowanie zestawu FRDM-KL46Z Sebastian
Terminal TR01. Terminal jest przeznaczony do montażu naściennego w czystych i suchych pomieszczeniach.
Terminal TR01 Terminal jest m, umożliwiającym odczyt i zmianę nastaw parametrów, stanów wejść i wyjść współpracujących z nim urządzeń automatycznej regulacji wyposażonych w port komunikacyjny lub i obsługujących
Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści
Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów2 2. ISP..2 3. I/O Ports..3 4. External Interrupts..4 5. Analog Comparator5 6. Analog-to-Digital Converter.6 7.
Spis treści. Wykaz ważniejszych skrótów Wprowadzenie Rdzeń Cortex-M Rodzina mikrokontrolerów XMC
Wykaz ważniejszych skrótów... 8 1. Wprowadzenie... 9 1.1. Wstęp... 10 1.2. Opis zawartości książki... 12 1.3. Korzyści płynące dla Czytelnika... 13 1.4. Profil Czytelnika... 13 2. Rdzeń Cortex-M0...15
1.2. Architektura rdzenia ARM Cortex-M3...16
Od Autora... 10 1. Wprowadzenie... 11 1.1. Wstęp...12 1.1.1. Mikrokontrolery rodziny ARM... 14 1.2. Architektura rdzenia ARM Cortex-M3...16 1.2.1. Najważniejsze cechy architektury Cortex-M3... 16 1.2.2.
Uczeń/Uczennica po zestawieniu połączeń zgłasza nauczycielowi gotowość do sprawdzenia układu i wszystkich połączeń.
Nazwa implementacji: Termometr cyfrowy - pomiar temperatury z wizualizacją pomiaru na wyświetlaczu LCD Autor: Krzysztof Bytow Opis implementacji: Wizualizacja działania elementu zestawu modułu-interfejsu
ADVANCE ELECTRONIC. Instrukcja obsługi aplikacji. Modbus konfigurator. Modbus konfigurator. wersja 1.1
Instrukcja obsługi aplikacji 1 1./ instalacja aplikacji. Aplikacja służy do zarządzania, konfigurowania i testowania modułów firmy Advance Electronic wyposażonych w RS485 pracujących w trybie half-duplex.
LABORATORIUM UKŁADÓW PROGRAMOWALNYCH. PROCESORY OSADZONE kod kursu: ETD 7211 SEMESTR ZIMOWY 2017
Politechnika Wrocławska, Wydział Elektroniki Mikrosystemów i Fotoniki Wydziałowy Zakład Metrologii Mikro- i Nanostruktur LABORATORIUM UKŁADÓW PROGRAMOWALNYCH PROCESORY OSADZONE kod kursu: ETD 7211 SEMESTR
STM32Butterfly2. Zestaw uruchomieniowy dla mikrokontrolerów STM32F107
Zestaw uruchomieniowy dla mikrokontrolerów STM32F107 STM32Butterfly2 Zestaw STM32Butterfly2 jest platformą sprzętową pozwalającą poznać i przetestować możliwości mikrokontrolerów z rodziny STM32 Connectivity
Zastosowanie moduł Wi-Fi ESP-12 (1) Wirtualny interfejs szeregowy
Zastosowanie moduł Wi-Fi ESP-12 (1) Wirtualny interfejs szeregowy UART jest jednym z interfejsów używanych do komunikacji. Jest on łatwy w obsłudze programowej i użyciu, szczególnie w wypadku komunikacji
Grzegorz Cygan. Wstęp do programowania mikrosterowników w języku C
Grzegorz Cygan Wstęp do programowania mikrosterowników w języku C Mikrosterownik Inne nazwy: Microcontroler (z języka angielskiego) Ta nazwa jest powszechnie używana w Polsce. Mikrokomputer jednoukładowy
Typy złożone. Struktury, pola bitowe i unie. Programowanie Proceduralne 1
Typy złożone Struktury, pola bitowe i unie. Programowanie Proceduralne 1 Typy podstawowe Typy całkowite: char short int long Typy zmiennopozycyjne float double Modyfikatory : unsigned, signed Typ wskaźnikowy
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Systemy Czasu Rzeczywistego Zastosowanie interfejsów SPI i I2C do komunikacji laboratorium: 02 autor: mgr inż. Paweł
Termometr LB-471T INSTRUKCJA UśYTKOWANIA wersja instrukcji 1.1
ELEKTRONIKA LABORATORYJNA Sp.J. ul. Herbaciana 9, 05-816 Reguły tel. () 75 61 0 fax () 75 61 5 email: info@label.pl http://www.label.pl Termometr LB-71T INSTRUKCJA UśYTKOWANIA wersja instrukcji 1.1 Nieustanny
MARM. Laboratorium 1 system zegarów, porty wejścia/wyjścia. M. Suchenek
MARM M. Suchenek Laboratorium 1 system zegarów, porty wejścia/wyjścia Celem laboratorium jest zapoznanie się ze środowiskiem uruchomieniowym Keil µvision, w tym konfiguracja środowiska, systemu zegarów,
1. Tworzenie nowego projektu.
Załącznik do Instrukcji 1. Tworzenie nowego projektu. Wybieramy opcję z menu głównego New->QNX C Project. Wprowadzamy nazwę przechodzimy do następnego kroku NEXT. Wybieramy platformę docelową oraz warianty
ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x
ZL9ARM płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x ZL9ARM Płytka bazowa dla modułów diparm z mikrokontrolerami LPC213x/214x 1 ZL9ARM to uniwersalna płyta bazowa dla modułów diparm
Start Bity Bit Stop 1 Bit 0 1 2 3 4 5 6 7 Par. 1 2. Rys. 1
Temat: Obsługa portu komunikacji szeregowej RS232 w systemie STRC51. Ćwiczenie 2. (sd) 1.Wprowadzenie do komunikacji szeregowej RS232 Systemy bazujące na procesorach C51 mogą komunikować się za pomocą
Płytka ewaluacyjna z ATmega16/ATmega32 ARE0021/ARE0024
Płytka ewaluacyjna z ATmega16/ATmega32 ARE0021/ARE0024 Płytka idealna do nauki programowania mikrokontrolerów i szybkiego budowanie układów testowych. Posiada mikrokontroler ATmega16/ATmega32 i bogate
8 kanałowy przedłużacz analogowy z RS485
P R O J E K T Y 8 kanałowy przedłużacz analogowy z RS485 AVT 439 Przesyłanie sygnału analogowego na większe odległości narażone jest na powstanie dużych zakłóceń, a jeśli ma być przesyłanych kilka sygnałów,
2. Architektura mikrokontrolerów PIC16F8x... 13
Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator
ZL11ARM. Uniwersalna płytka bazowa dla modułów diparm
ZL11ARM Uniwersalna płytka bazowa dla modułów diparm ZL11ARM to uniwersalna płyta bazowa dla modułów diparm (np. ZL12ARM i ZL19ARM) z mikrokontrolerami wyposażonymi w rdzenie ARM produkowanymi przez różnych
Instrukcja dla: Icomsat v1.0 SIM900 GSM/GPRS shield for Arduino oraz dla GPRS Shield produkcji Seeedstudio.
Instrukcja dla: Icomsat v1.0 SIM900 GSM/GPRS shield for Arduino oraz dla GPRS Shield produkcji Seeedstudio. IComsat jest to shield GSM/GPRS współpracujący z Arduino oparty o moduł SIM900 firmy SIMCOM.
ĆWICZENIE. TEMAT: OBSŁUGA PRZETWORNIKA A/C W ukontrolerze 80C535 KEILuVISON
ĆWICZENIE TEMAT: OBSŁUGA PRZETWORNIKA A/C W ukontrolerze 80C535 KEILuVISON Wiadomości wstępne: Wszystkie sygnały analogowe, które mają być przetwarzane w systemach mikroprocesorowych są próbkowane, kwantowane
Inż. Kamil Kujawski Inż. Krzysztof Krefta. Wykład w ramach zajęć Akademia ETI
Inż. Kamil Kujawski Inż. Krzysztof Krefta Wykład w ramach zajęć Akademia ETI Metody programowania Assembler Język C BASCOM Assembler kod maszynowy Zalety: Najbardziej efektywny Intencje programisty są
INSTRUKCJA instalacji interfejsu USB-RS422/485
INSTRUKCJA instalacji interfejsu USB-RS422/485 Interfejs USB-RS422/485 jest urządzeniem pozwalającym na podłączenie poprzez port USB komputera (w wersji USB 1,2 lub 2.0) do urządzeń wyposażonych w złącze
Konfiguracja parametrów sondy cyfrowo analogowej typu CS-26/RS/U
Konfiguracja parametrów sondy cyfrowo analogowej typu CS-26/RS/U Ostrów Wielkopolski, 25.02.2011 1 Sonda typu CS-26/RS/U posiada wyjście analogowe napięciowe (0...10V, lub 0...5V, lub 0...4,5V, lub 0...2,5V)
Kod produktu: MP01611-ZK
ZAMEK BEZSTYKOWY RFID ZE ZINTEGROWANĄ ANTENĄ, WYJŚCIE RS232 (TTL) Moduł stanowi gotowy do zastosowania bezstykowy zamek pracujący w technologii RFID dla transponderów UNIQUE 125kHz, zastępujący z powodzeniem
INSTRUKCJA instalacji interfejsu USB-RS422/485
INSTRUKCJA instalacji interfejsu USB-RS422/485 Interfejs USB-RS422/485 jest urządzeniem pozwalającym na podłączenie poprzez port USB komputera (w wersji USB 1,2 lub 2.0) do urządzeń wyposażonych w złącze
UW-DAL-MAN v2 Dotyczy urządzeń z wersją firmware UW-DAL v5 lub nowszą.
Dokumentacja techniczna -MAN v2 Dotyczy urządzeń z wersją firmware v5 lub nowszą. Spis treści: 1 Wprowadzenie... 3 2 Dane techniczne... 3 3 Wyprowadzenia... 3 4 Interfejsy... 4 4.1 1-WIRE... 4 4.2 RS232
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikrokontrolery i Mikroprocesory Zapoznanie się ze środowiskiem CUBE, obsługa portów I/O laboratorium: 02 autor:
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i Mikrokontrolery Dostęp do portów mikrokontrolera ATmega32 język C laboratorium: 10 autorzy: dr
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikrokontrolery i Mikroprocesory Timery i przerwania laboratorium: 03 autor: mgr inż. Katarzyna Smelcerz Kraków,
Programowanie mikrokontrolerów AVR z rodziny ATmega.
Programowanie mikrokontrolerów AVR z rodziny ATmega. Materiały pomocnicze Jakub Malewicz jakub.malewicz@pwr.wroc.pl Wszelkie prawa zastrzeżone. Kopiowanie w całości lub w częściach bez zgody i wiedzy autora
WIZUALIZACJA DANYCH SENSORYCZNYCH Sprawozdanie z wykonanego projektu. Jakub Stanisz
WIZUALIZACJA DANYCH SENSORYCZNYCH Sprawozdanie z wykonanego projektu Jakub Stanisz 19 czerwca 2008 1 Wstęp Celem mojego projektu było stworzenie dalmierza, opierającego się na czujniku PSD. Zadaniem dalmierza
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Kod przedmiotu: TS1C 622 388 Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Elektronika samochodowa Temat: Programowanie
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikrokontrolery i Mikroprocesory Zapoznanie się ze środowiskiem IAR Embedded Workbench; kompilacja, debuggowanie,
Embedded Solutions Automaticon 2012. Efektywne pomiary i sterowanie przy użyciu systemu wbudowanego MicroDAQ
Embedded Solutions Automaticon 2012 Efektywne pomiary i sterowanie przy użyciu systemu wbudowanego MicroDAQ Grzegorz Skiba info@embedded-solutions.pl 1 Plan seminarium Budowa systemu MicroDAQ Zastosowanie
Programowanie mikrokontrolerów 2.0
Programowanie mikrokontrolerów 2.0 Propozycje dużego zadania zaliczeniowego Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 29 listopada 2016 Wymagania ogólne Wymagamy osobistego
Programowanie mikrokontrolerów 2.0
Programowanie mikrokontrolerów 2.0 Układy peryferyjne, wyjścia i wejścia binarne Marcin Engel Marcin Peczarski Instytut Informatyki Uniwersytetu Warszawskiego 31 marca 2015 Co możemy podłączyć do mikrokontrolera?
WIZUALIZACJA DANYCH SENSORYCZNYCH MINISTACJA METEOROLOGICZNA
WIZUALIZACJA DANYCH SENSORYCZNYCH MINISTACJA METEOROLOGICZNA Prowadzący: dr inż. Bogdan Kreczmer Autor: Jakub Malewicz Wrocław, 15 VI 2007 SPIS TREŚCI 1. WSTĘP 3 2. DANE STACJI 3 3. SCHEMAT IDEOWY 4 4.
Kod produktu: MP01105
MODUŁ INTERFEJSU KONTROLNO-POMIAROWEGO DLA MODUŁÓW Urządzenie stanowi bardzo łatwy do zastosowania gotowy interfejs kontrolno-pomiarowy do podłączenia modułów takich jak czujniki temperatury, moduły przekaźnikowe,
ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S)
ZL2ARM easyarm zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) ZL2ARM Zestaw uruchomieniowy dla mikrokontrolerów LPC2104/5/6 (rdzeń ARM7TDMI-S) 1 Zestaw ZL2ARM opracowano z myślą
Interfejsy komunikacyjne pomiary sygnałów losowych i pseudolosowych. Instrukcja do ćwiczenia laboratoryjnego
Interfejsy komunikacyjne pomiary sygnałów losowych i pseudolosowych Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 rev. 05.2018 1 1. Cel ćwiczenia Doskonalenie umiejętności obsługi
LOW ENERGY TIMER, BURTC
PROJEKTOWANIE ENERGOOSZCZĘDNYCH SYSTEMÓW WBUDOWANYCH ĆWICZENIE 4 LOW ENERGY TIMER, BURTC Katedra Elektroniki AGH 1. Low Energy Timer tryb PWM Modulacja szerokości impulsu (PWM) jest często stosowana przy
LB-471P, panel ciśnieniomierza z pętlą prądową 4..20mA INSTRUKCJA UśYTKOWANIA wersja instrukcji 1.1
ELEKTRONIKA LABORATORYJNA Sp.J. ul. Herbaciana 9, 05-816 Reguły tel. (22) 753 61 30 fax (22) 753 61 35 email: info@label.pl http://www.label.pl LB-471P, panel ciśnieniomierza z pętlą prądową 4..20mA INSTRUKCJA
Wizualizacja stanu czujników robota mobilnego. Sprawozdanie z wykonania projektu.
Wizualizacja stanu czujników robota mobilnego. Sprawozdanie z wykonania projektu. Maciek Słomka 4 czerwca 2006 1 Celprojektu. Celem projektu było zbudowanie modułu umożliwiającego wizualizację stanu czujników
1. Opis aplikacji. 2. Przeprowadzanie pomiarów. 3. Tworzenie sprawozdania
1. Opis aplikacji Interfejs programu podzielony jest na dwie zakładki. Wszystkie ustawienia znajdują się w drugiej zakładce, są przygotowane do ćwiczenia i nie można ich zmieniac bez pozwolenia prowadzącego
Instrukcja do ćwiczeń
Instrukcja do ćwiczeń SYSTEMY WBUDOWANE Lab. 3 Przetwornik ADC + potencjometr 1. Należy wejść na stronę Olimexu w celu znalezienia zestawu uruchomieniowego SAM7-EX256 (https://www.olimex.com/products/arm/atmel/sam7-ex256/).