LABORATORIUM PRZEKŁADNIKÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "LABORATORIUM PRZEKŁADNIKÓW"

Transkrypt

1 Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Instytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki... LABORATORIUM PRZEKŁADNIKÓW ĆWICZENIE Wyznaczanie błędów napięciowego i kątowego podczas transformacji harmonicznych napięcia odkształconego przez indukcyjne przekładnik napięciowe Nazwisko i imię Numer albumu Ocena kolokwium Ocena sprawozdania

2 . Cel ćwiczenia Poznanie metody wyznaczania błędów napięciowego i kątowego transformacji harmonicznych napięcia odkształcanego przez indukcyjny przekładnik napięciowy. Określenie głównych czynników warunkujących przebieg charakterystyk błędów napięciowego i kątowego wykreślonych w funkcji częstotliwości transformowanej harmonicznej odkształconego napięcia pierwotnego. 2. Podstawy teoretyczne Przekładniki napięciowe i prądowe należą do systemu elektroenergetycznego i stanowią podstawowy element łączący obwód pierwotny linii elektroenergetycznej z obwodem wtórnym wykorzystywanym do pomiarów lub zabezpieczeń. W niektórych punktach sieci, jakość energii elektrycznej ulega obecnie znacznemu pogorszeniu. Z tego względu konieczna jest dokładna transformacja napięć i prądów odkształconych. Istotne są wówczas nie tylko błędy napięciowy i kątowy badanego przekładnika wyznaczone dla transformacji sygnałów sinusoidalnych o częstotliwości 0 Hz zgodnie z normą PN-EN :, ale także jego dokładność transformacji napięć odkształconych, w tym wyższych harmonicznych co najmniej w zakresie częstotliwości do 00 Hz (zgodnie z normą PN-EN 060:0). W przypadku, gdy w układzie pośrednim z wykorzystaniem indukcyjnego przekładnika napięciowego, oceniany jest poziom zaburzeń przewodzonych występujących w napięciu sieci elektroenergetycznej, konieczne jest dla zachowania niezbędnej dokładności pomiaru, aby przekładnik napięciowy charakteryzował się odpowiednio wysokimi właściwościami metrologicznymi także dla wyższych harmonicznych o częstotliwościach do 9 khz (normy PN-EN \4:03). Ze względu na nieliniowy przebieg charakterystyki magnesowania rdzeni indukcyjnych przekładników błąd transformacji harmonicznej jest inny niż napięcia \ prądu sinusoidalnego o tej samej częstotliwości. Dlatego amplitudowe i fazowe charakterystyki transformacji tych przekładników wyznaczone względem częstotliwości sinusoidalnego przebiegu pierwotnego mogą stanowić jedynie etap wstępny oceny ich dokładności podczas transformacji napięć odkształconych lub zaburzeń przewodzonych. Natomiast nie mogą definiować ich właściwościach metrologicznych w tych warunkach pomiarowych. Schemat zastępczy indukcyjnego przekładnika napięciowego dla częstotliwości sinusoidalnego napięcia pierwotnego i harmonicznych odkształconego napięcia pierwotnego do 0 khz przedstawiono na rysunku. Rys.. Schemat zastępczy indukcyjnego przekładnika napięciowego dla częstotliwości do 0 khz

3 Na schemacie tym zastosowano następujące oznaczenia (symbole z dwiema kreskami (bis) oznaczają wielkości sprowadzone do obwodu wtórnego): U napięcie pierwotne przeliczone na stronę wtórną, I - prąd pierwotny przeliczony na stronę wtórną, R rezystancja uzwojenia pierwotnego przeliczona na stronę wtórną, X r reaktancja rozproszenia uzwojenia pierwotnego przeliczona na stronę wtórną, R Fe rezystancja odwzorowująca straty w rdzeniu przeliczona na stronę wtórną, I Fe - prąd odwzorowujący straty w rdzeniu przeliczony na stronę wtórną, X - reaktancja główna przeliczona na stronę wtórną, I prąd magnesujący przeliczony na stronę wtórną, X2r reaktancja rozproszenia uzwojenia wtórnego, R2 rezystancja uzwojenia wtórnego, U2 napięcie wtórne, I 2 - prąd wtórny, Z0 impedancja obciążenia. W stosunku do klasycznego schematu zastępczego indukcyjnego przekładnika napięciowego schemat zastępczy przedstawiony na rysunku został rozszerzony o pojemności uzwojenia pierwotnego C, uzwojenia wtórnego C2 i pojemność międzyuzwojeniową C2. Analogicznie jak dla transformacji napięcia sinusoidalnego o częstotliwości 0 Hz błąd napięciowy wynika z różnicy między przekładnią znamionową przekładnika napięciowego obliczoną dla transformacji napięcia sinusoidalnego o częstotliwości 0 Hz, a przekładnią rzeczywistą wyznaczoną dla danej harmonicznej napięcia odkształconego. Błąd ten obliczany jest jako procentowa różnica, odniesiona do wartości skutecznej danej harmonicznej w napięciu pierwotnym, wartości skutecznych danej harmonicznej w napięciu wtórnym po pomnożeniu przez znamionową przekładnię przekładnika i w napięciu pierwotnym. KUnU 2kh U kh U kh 00% () U kh Ukh - błąd napięciowy transformacji k-tej wyższej harmonicznej przez przekładnik napięciowy, U2kh - wartość skuteczna k-tej wyższej harmonicznej w odkształconym napięciu wtórnym, Ukh - wartość skuteczna k-tej wyższej harmonicznej w odkształconym napięciu pierwotnym, Un - przekładnia znamionowa przekładnika napięciowego. Błąd kątowy jest to kąt między wektorem danej harmonicznej w odkształconym napięciu pierwotnym i odwróconym o 80 wektorem danej harmonicznej w odkształconym napięciu wtórnym, wyrażony w minutach lub centyradianach. Błąd kątowy jest dodatni, jeśli odwrócony o 80 wektor danej harmonicznej w odkształconym napięciu wtórnym wyprzedza wektor danej harmonicznej w odkształconym napięciu pierwotnym. 2 (2) Ukh kh kh Ukh - błąd kątowy transformacji k-tej wyższej harmonicznej przez przekładnik napięciowy, kh - przesuniecie fazowego k-tej wyższej harmonicznej w odkształconym napięciu pierwotnym względem podstawowej harmonicznej napięcia pierwotnego, 2kh - przesuniecie fazowego k-tej wyższej harmonicznej w odkształconym napięciu wtórnym względem podstawowej harmonicznej napięcia pierwotnego. Błąd całkowity dla danej harmonicznej napięcia odkształconego może zostać zdefiniowany w oparciu o wykres wskazowy przedstawiony na rysunku 2. 2

4 Rys. 2. Wykres wskazowy dla transformacji k-tej harmonicznej napięcia odkształconego przez przekładnik napięciowy Na podstawie powyższego wykresu wskazowego można wykazać, że wartość błędu całkowitego Okh transformacji k-tej harmonicznej napięcia odkształconego przez przekładnik napięciowy jest równa sumie geometrycznej wyznaczonych dla transformacji tej harmonicznej błędów napięciowego i kątowego. 2 2 Okh U kh (sinukh 00) (3) Głównymi przyczynami wzrostu błędów napięciowego i kątowego dla transformacji wyższych harmonicznych napięcia odkształconego przez indukcyjny przekładnik napięciowy są wzrost reaktancja rozproszenia uzwojenia pierwotnego i spadek reaktancji pojemnościowej uzwojeń i międzyuzwojeniowej. Prowadzi to do występowania zjawisk rezonansowych między reaktancją główną i reaktancjami rozproszenia uzwojenia pierwotnego przekładnika, a pojemnościami uzwojeń oraz reaktancjami rozproszenia uzwojeń przekładnika i międzyuzwojeniową reaktancją pojemnościową. Dodatkowo, każdy zwój zastosowany do korekcji błędu napięciowego przekładnika dla wyższych harmonicznych odkształconego napięcia pierwotnego powoduje, zgodnie z zależnością (4), powstawanie dodatkowej siły elektromotorycznej Ez '' powodującej dodatkowy wzrost wartości błędów po transformacji przez indukcyjny przekładnik napięciowy ponad wartość wynikającą z przekładni znamionowej. E '' z,44 fh z 4 (4) m fh - częstotliwość wyższej harmonicznej w odkształconym napięciu transformowanym przez przekładnik, z - wartość poprawki zwojowej, m - amplituda głównego strumienia magnetycznego w rdzeniu przekładnika. Ze względu na nieliniową charakterystykę zmian błędów napięciowego i kątowego w funkcji częstotliwości transformowanej harmonicznej napięcia odkształconego w układach do sprawdzania dokładności przekładników napięciowych, w tych warunkach pomiarowych, nie mogą być stosowane indukcyjne wzorcowe przekładniki napięciowe. Natomiast mogą być stosowane dzielniki rezystancyjne, albo pojemnościowe lub pojemnościowo-rezystancyjne. Przekładnia znamionowa dzielnika wzorcowego musi być równa przekładni znamionowej badanego przekładnika napięciowego natomiast rezystancja wzrasta ze wzrostem wartości skutecznej napięcia wejściowego (ograniczenie wartości przepływającego prądu i wymaganej mocy rezystorów). Na rysunku 3 przedstawiona została charakterystyka częstotliwościowa 3

5 błędu napięciowego wzorcowego dzielnika napięciowego zastosowanego w układzie pomiarowym tego ćwiczenia. Podczas pomiarów uwzględniono wpływ przyłączenia sondy napięciowej zastosowanego analizatora jakości energii na błąd napięciowy i kątowy dzielnika. Rys. 3. Charakterystyka częstotliwościowa błędu napięciowego wzorcowego dzielnika napięciowego Podczas obliczeń błędu napięciowego transformacji k-tej wyższej harmonicznej przez przekładnik napięciowy należy przyjąć, że błąd napięciowy dzielnika wzorcowego jest pomijalnie mały. Na rysunku 4 przedstawiona została charakterystyka częstotliwościowa błędu kątowego wzorcowego dzielnika napięciowego zastosowanego w układzie pomiarowym tego ćwiczenia. Rys. 4. Charakterystyka częstotliwościowa błędu kątowego wzorcowego dzielnika napięciowego 4

6 Podczas obliczeń błędu kątowego transformacji k-tej wyższej harmonicznej przez przekładnik napięciowy należy przyjąć, że błąd kątowy dzielnika wzorcowego jest pomijalnie mały. Błąd całkowity w przypadku przekładnika napięciowego wyznaczany jest między punktami o wysokim potencjale napięcia wyjściowego dzielnika i napięcia wtórnego badanego przekładnika zgodnie ze schematem ideowym przedstawionym na rysunku : Rys.. Schemat ideowy układu pomiarowego do wyznaczania błędu całkowitego przekładnika napięciowego względem dzielnika wzorcowego Na schemacie z rysunku zastosowano następujące oznaczenia: PZN - programowalne źródło napięcia zmiennego, TWN - transformator podnoszący napięcie, WDN - wzorcowy dzielnik napięciowy, BPN - badany przekładnik napięciowy, obc. - impedancja obciążenia uzwojenia wtórnego badanego przekładnika napięciowego, V - woltomierz. Z uwagi na zbyt niską rezystancję woltomierzy (poniżej 0 MΩ) pomiar błędu całkowitego według schematu ideowego z rysunku prowadziłby do nieprawidłowej pracy wzorcowego dzielnika napięciowego o wysokiej rezystancji (powyżej 0 MΩ) ze względu na przepływ prądu przez woltomierz o wartości wpływającej znacząco na dokładność dzielnika. W rozpatrywanym przypadku, gdyby rezystancje dzielnika i woltomierza wynosiły po 0 MΩ prądy przepływające przez dzielnik wzorcowy i woltomierz byłyby równe (nie uwzględniając sumy impedancji uzwojenia wtórnego i obciążania badanego przekładnika), co spowodowałoby, że napięcie wyjściowe dzielnika dla znamionowego napięcia wejściowego wynosiłoby połowę znamionowej wartości uniemożliwiając dokładny pomiar różnicowy. W celu wyeliminowania wpływu na dokładność dzielnika napięciowego włączenia do układu pomiarowego z rysunku woltomierza lub innego urządzenia pomiarowego stosowany jest wysokoimpedancyjny układ różnicowy przez, który wykonywany jest pomiar błędu całkowitego. Schemat blokowy układu różnicowego stosowanego podczas wykonywania ćwiczenia jest przedstawiony na rysunku 6.

7 Rys. 6. Schemat blokowy układu różnicowego Na schemacie blokowym z rysunku 6 zastosowano następujące oznaczenia: IN\2 wejścia układu różnicowego, MR\2 przekaźnik, OUTOC\2 wyjścia optoizolatorów, Ref wejście dzielnika odniesienia, OA \2 wzmacniacze operacyjny o wysokiej impedancji wejściowej, OA3 precyzyjny, szerokopasmowy wzmacniacz operacyjny, OUT wyjście układu różnicowego. Wejścia urządzenia do pomiaru są załączane przez wewnętrzne przekaźniki sterowane przyciskami umieszczonymi na obudowie. Przez pozostały czas wejścia są rozłączone, ma to na celu zabezpieczenie wrażliwych na przepięcia wysokoimpedancyjnych wejściowych wzmacniaczy operacyjnych. Podczas pomiaru różnicowe napięcie wejściowe jest załączane wewnątrz układu różnicowego między wejścia nieodwracające dwóch wejściowych wzmacniaczy operacyjnych o rezystancji TΩ. W każdym z dwóch torów pomiarowych napięcie wynikające z różnicy potencjałów między wyjściem wzmacniacza a wewnętrznym potencjałem odniesienia układu różnicowego jest przetwarzane przez optoizolatory na napięcie wynikające z różnicy potencjałów między wyjściem optoizolatora a masy układu pomiarowego. Następnie napięcia obu torów pomiarowych są odejmowane przez wyjściowy wzmacniacz operacyjny, którego napięcie wyjściowe jest równe, co do wartości skutecznej różnicowemu napięciu wejściowemu układu różnicowego. Procentowa wartość k-tej harmonicznej błędu całkowitego jest równa wartości skutecznej k-tej harmonicznej napięcia wyjściowego układu różnicowego odniesionej do jej wartości skutecznej w napięciu pierwotnym po przeliczeniu na stronę wtórną: U rkh Ckh 00% () '' U kh Ckh - procentowa wartość k-tej harmonicznej błędu całkowitego, Urkh - wartości skutecznej k-tej harmonicznej napięcia wyjściowego układu różnicowego, U '' kh - wartości skuteczna k-tej harmonicznej w napięciu pierwotnym po przeliczeniu na stronę wtórną. Ze względu na dokładność pomiaru szczególnie istotna jest dokładność transformacji wejściowego napięcia różnicowego na napięcie wyjściowe. Błąd transformacji opracowanego układu różnicowego wynosi ±%. Dlatego błąd pośredniego pomiaru błędu całkowitego przez woltomierz wykorzystujący ten układ różnicowy jest sumą błędu pomiaru woltomierza i błędu transformacji układu różnicowego. Oznacza to, że przy założeniu błędu granicznego 6

8 pomiaru woltomierza o wartości ±0,% zmierzona wartość błędu całkowitego wynosząca % jest wyznaczona z rozszerzoną niepewnością pomiaru ±0,07% dla poziomu ufności 9%. Wartość ta w przypadku pomiaru błędu całkowitego jest pomijalnie mała i nie wpływa na ocenię dokładności transformacji przekładników napięciowych. Podczas obliczeń niepewności pomiaru przyjęto, że niepewność typu A jest pomijalnie mała w stosunku do wyznaczonej niepewności typu B oraz rozkład błędów aparatury jest jednostajny. Wartość błędu całkowitego zmierzona poprzez układ różnicowy ze względu na wysoką dokładności pomiaru pozwala wyznaczyć błąd wynikający z obliczenia zgodnie z zależnością (3) błędu całkowitego na podstawie zmierzonych wartości błędów napięciowego i kątowego. Obliczony błąd wyznaczania błędu całkowitego równy jest błędowi granicznemu pomiaru błędu napięciowego (przy założeniu, że błąd pomiaru błędu kątowego jest pomijalnie mały) lub błędu kątowego (przy założeniu, że błąd pomiaru błędu napięciowego jest pomijalnie mały) przez dany system pomiarowy. Okh Ckh Okh 00% (6) Ckh Okh błąd wyznaczania k-tej harmonicznej błędu całkowitego na podstawie zmierzonych wartości błędów napięciowego i kątowego [%], Ckh wartość k-tej harmonicznej błędu całkowitego zmierzona poprzez układ różnicowy [%], Ckh obliczona wartość k-tej harmonicznej błędu całkowitego na podstawie równania (3) dla zmierzonych wartości błędów napięciowego i kątowego dla k-tej harmonicznej [%]. Jeżeli wartość błędu wyznaczania k-tej harmonicznej błędu całkowitego na podstawie zmierzonych wartości błędów napięciowego i kątowego dla systemu pomiarowego, w którym zastosowano analizator jakości energii Fluke 760 nie przekracza ±%, oznacza to jego poprawne działanie z zadaną dokładnością. 3. Badania laboratoryjne Zanotować dane znamionowe badanego przekładnika napięciowego. Pomiary należy wykonać dla napięć odkształconych o częstotliwości podstawowej 0 Hz zawierających pojedynczą wyższą harmoniczną od 2 do o wartości % lub 0% wartości skutecznej harmonicznej podstawowej. Łączna wartość skuteczna zadanego napięcia pierwotnego podczas pomiarów wynosi 80% lub 00% lub % znamionowego napięcia pierwotnego badanego indukcyjnego przekładnika napięciowego. Badania należy wykonać bez obciążenia uzwojenia wtórnego lub przy obciążeniu uzwojenia wtórnego o wartości 00% lub 2% obciążenia znamionowego. Dla każdego badanego przekładnika napięciowego i zadanego obciążenia uzwojenia wtórnego pomiary należy wykonać dwukrotnie, podczas drugiej próby pomiarowej zamieniając wzajemnie przyłączone sondy napięciowe między uzwojeniem wtórnym przekładnika i wyjściem dzielnika wzorcowego. 7

9 AJE - analizator jakości energii elektrycznej, PZN - programowalne źródło napięcia zmiennego, TWN - transformator podnoszący napięcie, UR - układ różnicowy, WDN - wzorcowy dzielnik napięciowy, BPN - badany przekładnik napięciowy, obc. - impedancja obciążenia uzwojenia wtórnego badanego przekładnika napięciowego. W celu wykonania pomiaru błędu transformacji harmonicznej odkształconego napięcia pierwotnego przez badany przekładnik napięciowy należy: ustawić zadaną wartość obciążenia uzwojenia wtórnego badanego przekładnika napięciowego na skrzynce obciążeniowej przyłączonej do uzwojenia wtórnego, ustawić zadaną procentową wartość wyższej harmonicznej, ustawić zadaną wartość skuteczną napięcia pierwotnego, ustawić dzielnik dodatkowy stanowiący potencjał odniesienia dla układu różnicowego, wcisnąć oba przyciski umieszczone na bokach obudowy układu różnicowego, pobrać dane pomiarowe do komputera, dla harmonicznej podstawowej obliczyć błąd napięciowy Uh względem dzielnika wzorcowego i zanotować pod tabelą z wynikami pomiarów dla harmonicznych, odczytać i zanotować w tabeli wartości skuteczne i przesunięcia fazowe zadanej harmonicznej w napięciach wtórnych badanych przekładników, napięciu wyjściowym dzielnika wzorcowego oraz wartość skuteczną tej harmonicznej w napięciu różnicowym. Regulację dzielnika odniesienia układu różnicowego należy wykonywać po ustawieniu obciążenia i napięcia pierwotnego badanego przekładnika napięciowego, przy załączonym napięciu zasilania. Potencjometr dzielnika odniesieni ustawić w pozycji, przy której po naciśnięciu jednego z przycisków układu różnicowego (lewego lub prawego) wskazywane przez przyłączony układ pomiarowy napięcia są takie same. Dla każdej próby pomiarowej należy nad tabelą z wynikami pomiarów zanotować miejsce przyłączenia sond pomiarowych 8

10 Tabela h. V Lkh V L2kh Lkh L2kh V L3kh VL\2\3kh - wartość skuteczna k-tej harmonicznej zmierzona w kanale \2\3. L\2\3kh - przesunięcie fazowe k-tej harmonicznej zmierzone w kanale \2\3. Tabela 2 h. V Lkh V L2kh Lkh L2kh V L3kh

11 Tabela 3 h. V Lkh V L2kh V L3kh V L4kh Lkh L2kh L3kh L4kh Tabela 4 h. V Lkh V L2kh V L3kh V L4kh Lkh L2kh L3kh L4kh

12 Dla danych z tabeli pomiarowych obliczyć i zanotować średnie arytmetyczne zmierzonych wartości skutecznych i przesunięć fazowych danej harmonicznej w napięciu wtórnym I badanego przekładnika napięciowego bez obciążenia uzwojenia wtórnego i napięciu wyjściowym dzielnika wzorcowego oraz napięciu różnicowym. Tabela h. U 2PNkh U WDkh 2PNkh WDkh U rkh U2PNkh - wyznaczona wartość skuteczna k-tej harmonicznej w napięciu wtórnym I badanego przekładnika napięciowego, UWDkh - wyznaczona wartość skuteczna k-tej harmonicznej w napięciu wyjściowym dzielnika wzorcowego, 2PNkh - wyznaczona wartość przesunięcia fazowego k-tej harmonicznej w napięciu wtórnym I badanego przekładnika napięciowego, WDkh - wyznaczona wartość przesunięcia fazowego k-tej harmonicznej w napięciu wtórnym dzielnika wzorcowego, Urkh - wyznaczona wartość k-tej harmonicznej błędu całkowitego. Dla danych z tabeli pomiarowych obliczyć i zanotować średnie arytmetyczne zmierzonych wartości skutecznych i przesunięć fazowych danej harmonicznej w napięciu wtórnym I badanego przekładnika napięciowego z obciążeniem uzwojenia wtórnego i napięciu wyjściowym dzielnika wzorcowego: Tabela 6 h. U 2PNkh U WDkh 2PNkh WDkh 0 2 3

13 Dla danych pomiarowych obliczyć i zanotować średnie arytmetyczne zmierzonych wartości skutecznych i przesunięć fazowych danej harmonicznej w napięciu wtórnym II badanego przekładnika napięciowego i napięciu wyjściowym dzielnika wzorcowego : Tabela 7 h. U 2PN2kh * U 2PNkh 2PN2kh 2PNkh U2PN2kh - wyznaczona wartość skuteczna k-tej harmonicznej w napięciu wtórnym II badanego przekładnika napięciowego, 2PN2kh - wyznaczona wartość przesunięcia fazowego k-tej harmonicznej w napięciu wtórnym II badanego przekładnika napięciowego, * U2PNkh - wyznaczona powtórnie wartość skuteczna k-tej harmonicznej w napięciu wtórnym I badanego przekładnika napięciowego, 2PNkh - wyznaczona powtórnie wartość przesunięcia fazowego k-tej harmonicznej w napięciu wtórnym I badanego przekładnika napięciowego. Na podstawie danych zamieszczonych w tabelach -7 obliczyć wartości błędów napięciowego i kątowego badanych przekładników napięciowych. Tabela 8 h. U PNkh PNkh U PNkh(obc) PNkh(obc) U PN2kh PN2kh Dla powyższej tabeli przedstawić obliczenia dla dwóch wybranych pozycji z każdej kolumny. UPNkh, UPNkh - błąd napięciowy i kątowy I badanego przekładnika napięciowego obliczone zgodnie z zależnościami: U 2PNkh UWDkh U PNkh 00% (7) U WDkh 2

14 (8) PNkh WDkh 2 PNkh UPNkh(obc), UPNkh(obc) - błąd napięciowy i kątowy I badanego przekładnika napięciowego z obciążeniem uzwojenia wtórnego o wartości 2 VA i współczynniku mocy cos=0,8 obliczone zgodnie z zależnościami (7) i (8). UPN2kh, UPN2kh - błąd napięciowy i kątowy II badanego przekładnika napięciowego obliczone zgodnie z zależnościami: * U 2PN 2kh U 2PNkh U PN 2kh U PNkh 00% (9) * U 2PNkh * PN 2kh PNkh 2PNkh 2PN 2kh (0) Wyniki pomiarów i obliczeń harmonicznych błędu całkowitego przedstawić w tabeli: Tabela 9 h. CPNkh OPNkh Okh Dla powyższej tabeli przedstawić obliczenia dla dwóch wybranych pozycji z każdej kolumny. CPNkh - wartość skuteczna k-tej harmonicznej błędu całkowitego wyznaczona dla I badanego przekładnika napięciowego zgodnie z zależnością (), jeżeli U '' kh = UWDkh dla danych przedstawionych w tabeli, OPNkh - wartość skuteczna k-tej harmonicznej błędu całkowitego obliczona dla I badanego przekładnika napięciowego zgodnie z zależnością (3) dla UPNkh, UPNkh, Okh błąd wyznaczania k-tej harmonicznej błędu całkowitego na podstawie zmierzonych wartości błędów napięciowego i kątowego dla I badanego przekładnika napięciowego zgodnie z zależnością (6). 4. Opracowanie wyników pomiarowych W sprawozdaniu przedstawić na dwóch wspólnych wykresach dla obu badanych przekładników napięciowych charakterystyki błędów napięciowego i kątowego wykreślone w funkcji częstotliwości transformowanej harmonicznej odkształconego napięcia pierwotnego oraz uzasadnić ich przebieg. Porównać charakterystyki wyznaczone dla dwóch indukcyjnych przekładników napięciowych i określić możliwe przyczyny występowania różnic w ich przebiegu. Scharakteryzować wpływ obciążenia uzwojenia wtórnego na wartości błędów napięciowego i kątowego transformacji harmonicznych napięcia odkształcanego przez indukcyjny przekładnik napięciowy. 3

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Instytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

PL B1. Sposób oceny dokładności transformacji indukcyjnych przekładników prądowych dla prądów odkształconych. POLITECHNIKA ŁÓDZKA, Łódź, PL

PL B1. Sposób oceny dokładności transformacji indukcyjnych przekładników prądowych dla prądów odkształconych. POLITECHNIKA ŁÓDZKA, Łódź, PL PL 223692 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223692 (13) B1 (21) Numer zgłoszenia: 399602 (51) Int.Cl. G01R 35/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych PL 216925 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216925 (13) B1 (21) Numer zgłoszenia: 389198 (51) Int.Cl. G01R 35/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

BADANIE PRZEKŁADNIKÓW PRĄDOWYCH

BADANIE PRZEKŁADNIKÓW PRĄDOWYCH 1. Podstawy teoretyczne ĆWCENE NR 4 BADANE PREKŁADNKÓW PRĄDOWYCH Przekładnik prądowy jest to urządzenie elektryczne transformujące sinusoidalny prąd pierwotny na prąd wtórny o wartości dogodnej do zasilania

Bardziej szczegółowo

Laboratorium Elektroenergetycznej Automatyki Zabezpieczeniowej Instrukcja laboratoryjna LABORATORIUM ELEKTROENERGETYCZNEJ AUTOMATYKI ZABEZPIECZENIOWEJ

Laboratorium Elektroenergetycznej Automatyki Zabezpieczeniowej Instrukcja laboratoryjna LABORATORIUM ELEKTROENERGETYCZNEJ AUTOMATYKI ZABEZPIECZENIOWEJ nstrukcja laboratoryjna - 1 - LABORATORUM ELEKTROENERGETYCZNEJ AUTOMATYK ZABEZPECZENOWEJ BADANE PRZEKŁADNKA PRĄDOWEGO TYPU ASK10 1. Cel ćwiczenia Poznanie budowy, zasady działania, danych znamionowych

Bardziej szczegółowo

Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"

Ćwiczenie: Obwody ze sprzężeniami magnetycznymi Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11 NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu

Bardziej szczegółowo

Wydział Elektryczny Katedra Elektroenergetyki. Instrukcja do zajęć laboratoryjnych. Ćwiczenie nr 1

Wydział Elektryczny Katedra Elektroenergetyki. Instrukcja do zajęć laboratoryjnych. Ćwiczenie nr 1 Politechnika Białostocka Wydział Elektryczny Katedra Elektroenergetyki nstrukcja do zajęć laboratoryjnych Ćwiczenie nr 1 Temat: Badanie przekładników prądowych konwencjonalnych przeznaczonych do zabezpieczeń

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.

Bardziej szczegółowo

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń

Bardziej szczegółowo

Pomiary dużych prądów o f = 50Hz

Pomiary dużych prądów o f = 50Hz Pomiary dużych prądów o f = 50Hz 1. Wstęp Pomiary prądów przemiennych o częstotliwości 50 Hz i wartościach od kilkudziesięciu do kilku tysięcy amperów są możliwe za pomocą przetworników pomiarowych. W

Bardziej szczegółowo

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania

Bardziej szczegółowo

Laboratorium Elektroniczna aparatura Medyczna

Laboratorium Elektroniczna aparatura Medyczna EAM - laboratorium Laboratorium Elektroniczna aparatura Medyczna Ćwiczenie REOMETR IMPEDANCYJY Opracował: dr inŝ. Piotr Tulik Zakład InŜynierii Biomedycznej Instytut Metrologii i InŜynierii Biomedycznej

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora POLITECHIKA ŚLĄSKA WYDIAŁ IŻYIERII ŚRODOWISKA I EERGETYKI ISTYTUT MASY I URĄDEŃ EERGETYCYCH LABORATORIUM ELEKTRYCE Badanie transformatora (E 3) Opracował: Dr inż. Włodzimierz OGULEWIC 3. Cel ćwiczenia

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

14. PARAMETRY PRZEKŁADNIKÓW PRĄDOWYCH

14. PARAMETRY PRZEKŁADNIKÓW PRĄDOWYCH 14. PARAMETRY PRZEKŁADNKÓW PRĄDOWYCH 14.1. Cel i zakres ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów indukcyjnych przekładników prądowych stosowanych w układach elektroenergetycznych,

Bardziej szczegółowo

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego

Generator. R a. 2. Wyznaczenie reaktancji pojemnościowej kondensatora C. 2.1 Schemat układu pomiarowego. Rys Schemat ideowy układu pomiarowego PROTOKÓŁ POMAROWY LABORATORUM OBWODÓW SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 3 Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat BADANA

Bardziej szczegółowo

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym

ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych Studia... Kierunek... Grupa dziekańska... Zespół... Nazwisko i Imię 1.... 2.... 3.... 4.... Laboratorium...... Ćwiczenie

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Ćwiczenie EA9 Czujniki położenia

Ćwiczenie EA9 Czujniki położenia Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA9 Program ćwiczenia I. Transformator położenia kątowego 1. Wyznaczenie przekładni napięciowych 2. Pomiar napięć

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTROTECHNIKI

LABORATORIUM PODSTAWY ELEKTROTECHNIKI LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk

Bardziej szczegółowo

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W UKŁADY PROSTOWNICZE. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie budowy i właściwości transformatora jednofazowego.

I. Cel ćwiczenia: Poznanie budowy i właściwości transformatora jednofazowego. Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PACOWNA ELEKTYCZNA ELEKTONCZNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE TANSFOMATOA JEDNOFAZOWEGO rok szkolny klasa grupa data

Bardziej szczegółowo

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO

PROTOKÓŁ POMIARY W OBWODACH PRĄDU PRZEMIENNEGO PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia 4 Lp. Nazwisko i imię Data wykonania ćwiczenia Prowadzący ćwiczenie Podpis Data oddania sprawozdania Temat

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH 15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych

Bardziej szczegółowo

ĆWICZENIE NR 7. Badanie i pomiary transformatora

ĆWICZENIE NR 7. Badanie i pomiary transformatora ĆWICZENIE NR 7 Badanie i pomiary transformatora Cel ćwiczenia: Zapoznanie się z pracą i budową transformatorów Wyznaczenie początków i końców uzwojeń pomiar charakterystyk biegu jałowego pomiar charakterystyk

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

Przetwornik prądowo-napięciowy ze zmodyfikowanym rdzeniem amorficznym do pomiarów prądowych przebiegów odkształconych

Przetwornik prądowo-napięciowy ze zmodyfikowanym rdzeniem amorficznym do pomiarów prądowych przebiegów odkształconych dr inż. MARCIN HABRYCH Instytut Energoelektryki Politechnika Wrocławska mgr inż. JAN LUBRYKA mgr inż. DARIUSZ MACIERZYŃSKI Kopex Electric Systems S.A. dr inż. ARTUR KOZŁOWSKI Instytut Technik Innowacyjnych

Bardziej szczegółowo

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej P. OTOMAŃSKI Politechnika Poznańska P. ZAZULA Okręgowy Urząd Miar w Poznaniu Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej Seminarium SMART GRID 08 marca

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) (13) B1

(12) OPIS PATENTOWY (19) PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 171065 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 299277 (22) Data zgłoszenia: 11.06.1993 (51) IntCl6: G01R 35/02 (54)

Bardziej szczegółowo

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1) 1 Ćwiczenie nr.14 Pomiar mocy biernej prądu trójfazowego 1. Zasada pomiaru Przy prądzie jednofazowym moc bierna wyraża się wzorem: Q=UIsinϕ (1) Do pomiaru tej mocy stosuje się waromierze jednofazowe typu

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi

Bardziej szczegółowo

Badanie silnika indukcyjnego jednofazowego i transformatora

Badanie silnika indukcyjnego jednofazowego i transformatora Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M3 - protokół Badanie silnika indukcyjnego jednofazowego i transformatora Data

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO

Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO CEL ĆWICZENIA: poznanie zasady działania, budowy, właściwości i metod badania transformatora. PROGRAM ĆWICZENIA. Wiadomości ogólne.. Budowa i

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego V 1 X

Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego V 1 X 4 Laboratorium elektrotechniki Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego Wykonanie ćwiczenia Prowadzący ćwiczenie określa obiekt naszych badań jeden z dwu,

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C.

I. Cel ćwiczenia: Poznanie własności obwodu szeregowego zawierającego elementy R, L, C. espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:

Bardziej szczegółowo

Ćwiczenie 15. Sprawdzanie watomierza i licznika energii

Ćwiczenie 15. Sprawdzanie watomierza i licznika energii Ćwiczenie 15 Sprawdzanie watomierza i licznika energii Program ćwiczenia: 1. Sprawdzenie błędów podstawowych watomierza analogowego 2. Sprawdzanie jednofazowego licznika indukcyjnego 2.1. Sprawdzenie prądu

Bardziej szczegółowo

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko Klasa Imię i nazwisko Nr w dzienniku espół Szkół Łączności w Krakowie Pracownia elektroniczna Nr ćw. Temat ćwiczenia Data Ocena Podpis Badanie parametrów wzmacniacza mocy 1. apoznać się ze schematem aplikacyjnym

Bardziej szczegółowo

transformatora jednofazowego.

transformatora jednofazowego. Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia

Bardziej szczegółowo

Wyznaczenie parametrów schematu zastępczego transformatora

Wyznaczenie parametrów schematu zastępczego transformatora Wyznaczenie parametrów schematu zastępczego transformatora Wprowadzenie Transformator jest statycznym urządzeniem elektrycznym działającym na zasadzie indukcji elektromagnetycznej. adaniem transformatora

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

Badanie przekładnika prądowego

Badanie przekładnika prądowego Katedra Elektryfikacji i Automatyzacji Górnictwa Ćwiczenia laboratoryjne nstrukcja do ćwiczenia Badanie przekładnika prądowego Autor: dr inż. Sergiusz Boron Gliwice, czerwiec 2009 -2- Celem ćwiczenia jest

Bardziej szczegółowo

Prostowniki. 1. Cel ćwiczenia. 2. Budowa układu.

Prostowniki. 1. Cel ćwiczenia. 2. Budowa układu. Prostowniki. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem transformatora

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH W UKŁADACH

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE Klasa: 2Tc Technik mechatronik Program: 311410 (KOWEZIU ) Wymiar: 4h tygodniowo Na ocenę dopuszczającą uczeń: Zna

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji

ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 5 Pomiary rezystancji, pojemności, indukcyjności, impedancji

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA

SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA Rys.1. Podział metod sterowania częstotliwościowego silników indukcyjnych klatkowych Instrukcja 1. Układ pomiarowy. Dane maszyn: Silnik asynchroniczny:

Bardziej szczegółowo

Badanie właściwości multipleksera analogowego

Badanie właściwości multipleksera analogowego Ćwiczenie 3 Badanie właściwości multipleksera analogowego Program ćwiczenia 1. Sprawdzenie poprawności działania multipleksera 2. Badanie wpływu częstotliwości przełączania kanałów na pracę multipleksera

Bardziej szczegółowo

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Ocena poprawności pomiarów, wpływ zakłóceń i środowiska na niepewność

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki 1 Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Temat ćwiczenia: POMIARY PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH W OBWODACH PRĄDU STAŁEGO (obwód 3 oczkowy) 2 1. POMIARY PRĄDÓW I NAPIĘĆ

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h)

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h) ĆWICZENIE LABORATORYJNE TEMAT: Badanie liniowych układów ze wzmacniaczem operacyjnym (2h) 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego

Bardziej szczegółowo

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena Metody mostkowe Mostek Wheatstone a, Maxwella, Sauty ego-wiena Rodzaje przewodników Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności cewek, pojemności i stratności kondensatorów stosuje się

Bardziej szczegółowo

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...

Bardziej szczegółowo

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC Celem ćwiczenia jest poznanie zasad symulacji prostych obwodów jednofazowych składających się z elementów RLC. I. Zamodelować jednofazowy szeregowy układ RLC (rys.1a)

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego 1 Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego A. Zasada pomiaru mocy za pomocą jednego i trzech watomierzy Moc czynna układu trójfazowego jest sumą mocy czynnej wszystkich jego faz. W zależności

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W ELBLAGU

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W ELBLAGU PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W ELBLAGU INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI Dla studentów II roku kierunku MECHANIKI I BUDOWY MASZYN Spis treści. POMIAR PRĄDÓW I NAPIĘĆ W OBWODZIE PRĄDU STAŁEGO....

Bardziej szczegółowo

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego

ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego ĆWICZENIE LABORATORYJNE TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się ze wzmacniaczem różnicowym, który

Bardziej szczegółowo

ZASADY DOKUMENTACJI procesu pomiarowego

ZASADY DOKUMENTACJI procesu pomiarowego Laboratorium Podstaw Miernictwa Laboratorium Podstaw Elektrotechniki i Pomiarów ZASADY DOKUMENTACJI procesu pomiarowego Przykład PROTOKÓŁU POMIAROWEGO Opracowali : dr inż. Jacek Dusza mgr inż. Sławomir

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

Ćwiczenie 4: Pomiar parametrów i charakterystyk wzmacniacza mocy małej częstotliwości REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 4: Pomiar parametrów i charakterystyk wzmacniacza mocy małej częstotliwości REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie : Pomiar parametrów i charakterystyk wzmacniacza mocy małej

Bardziej szczegółowo

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Mostek Wheatstone a, Maxwella, Sauty ego-wiena. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Mostek Wheatstone a, Maxwella, Sauty ego-wiena Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 2 Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności

Bardziej szczegółowo

Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1

Ćwiczenie nr 8. Podstawowe czwórniki aktywne i ich zastosowanie cz. 1 Ćwiczenie nr Podstawowe czwórniki aktywne i ich zastosowanie cz.. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobem realizacji czwórników aktywnych opartym na wzmacniaczu operacyjnym µa, ich

Bardziej szczegółowo

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000 SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁ AD ELEKTROENERGETYKI Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW WIROWYCH Opracował: mgr inż. Edward SKIEPKO Warszawa 000 Wersja 1.0 www.labenergetyki.prv.pl

Bardziej szczegółowo

TRANZYSTOROWY UKŁAD RÓŻNICOWY (DN 031A)

TRANZYSTOROWY UKŁAD RÓŻNICOWY (DN 031A) TRANZYSTOROWY UKŁAD RÓŻNICOWY (DN 031A) obciąże nie dynamiczne +1 +1 + 1 R 47k z erowanie R 8 3k R 9 6, 8 k R 11 6,8 k R 12 3k + T 6 BC17 T 7 BC17 + R c 20k zespół sterowania WY 1 R 2k R 23 9 R c dyn R

Bardziej szczegółowo

Instytut Energetyki Warszawa ul Mory 8 Tel.022/ 8368924 Fax 022/8368113

Instytut Energetyki Warszawa ul Mory 8 Tel.022/ 8368924 Fax 022/8368113 Instytut Energetyki Warszawa ul Mory 8 Tel.022/ 8368924 Fax 022/8368113 Urządzenie typu DOK-PP do pomiaru błędów przekładników prądowych w miejscu ich zainstalowania Błędy przekładników prądowych w bardzo

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI FAZY SKONDENSOWANEJ Ćwiczenie 9 Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n Cel ćwiczenia Celem ćwiczenia jest poznanie

Bardziej szczegółowo

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie

Bardziej szczegółowo

Pomiar wysokich napięć

Pomiar wysokich napięć Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

ĆWICZENIE NR 5 BADANIE ZABEZPIECZEŃ ZIEMNOZWARCIOWYCH ZEROWO-PRĄDOWYCH

ĆWICZENIE NR 5 BADANIE ZABEZPIECZEŃ ZIEMNOZWARCIOWYCH ZEROWO-PRĄDOWYCH ĆWCZENE N 5 BADANE ZABEZPECZEŃ ZEMNOZWACOWYCH. WPOWADZENE ZEOWO-PĄDOWYCH Metoda składowych symetrycznych, która rozwinęła się na początku 0 wieku, stanowi praktyczne narzędzie wykorzystywane do wyjaśniania

Bardziej szczegółowo

Elektronika. Wzmacniacz operacyjny

Elektronika. Wzmacniacz operacyjny LABORATORIUM Elektronika Wzmacniacz operacyjny Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych wzmacniaczy operacyjnych. 2. Układów pracy wzmacniacza

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

Ćwiczenia tablicowe nr 1

Ćwiczenia tablicowe nr 1 Ćwiczenia tablicowe nr 1 Temat Pomiary mocy i energii Wymagane wiadomości teoretyczne 1. Pomiar mocy w sieciach 3 fazowych 3 przewodowych: przy obciążeniu symetrycznym i niesymetrycznym 2. Pomiar mocy

Bardziej szczegółowo