Opracowanie technologii i stanowiska do optymalizacji zintegrowanego systemu awionicznego na pokłady statków powietrznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Opracowanie technologii i stanowiska do optymalizacji zintegrowanego systemu awionicznego na pokłady statków powietrznych"

Transkrypt

1 INSTYTUT TECHNICZNY WOJSK LOTNICZYCH Sprawozdanie merytoryczne z wykonania projektu rozwojowego R00-O0066/3 Opracowanie technologii i stanowiska do optymalizacji zintegrowanego systemu awionicznego na pokłady statków powietrznych Warszawa 2009 ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3

2 SPIS TREŚCI 1. Planowane zadania badawczo-rozwojowe Opis uzyskanych wyników Wprowadzenie Realizacja zadań badawczych...4 Zadanie 1: Analiza zadań realizowanych przez statki powietrzne na przykładzie samolotu szkolno-bojowego...4 Zadanie 2: Opracowanie architektury i organizacji zintegrowanego systemu awionicznego.7 Zadanie 3: Opracowanie założeń na stanowisko do optymalizacji zintegrowanego systemu awionicznego...14 Zadanie 4: Opracowanie badawczego stanowiska integracyjnego awioniki statku powietrznego...16 Zadanie 5: Wykonanie i próby badawczego stanowiska integracyjnego awioniki statku powietrznego...19 Zadanie 6: Badania testowej grupy użytkowników statków powietrznych...25 Zadanie 7: Opracowanie metod optymalizacji tworzenia zintegrowanego systemu awionicznego dla wybranego statku powietrznego Wykaz opracowań naukowych wykonanych w trakcie realizacji projektu...36 ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 2/37

3 1. Planowane zadania badawczo-rozwojowe W ramach pracy pt. Opracowanie technologii i stanowiska do optymalizacji zintegrowanego systemu awionicznego na pokłady statków powietrznych należało rozwiązać szereg problemów związanych z integracją systemów awionicznych, do których zaliczyć można m.in.: analizę sposobów łączenia systemów awionicznych na bazie cyfrowej szyny danych; analizę rozwiązań sterowania współpracą między systemami nawigacyjnymi, uzbrojenia, komunikacji, monitoringu i rejestracji oraz diagnostyki; analizę elektronicznego przetwarzania danych i sposobów zwiększania redundancji poprzez wykorzystanie możliwości cyfrowej szyny danych np. MIL-STD-1553B. Pierwszym krokiem w realizacji pracy była analiza przepisów NATO/ICAO oraz stosowanych architektur systemów awionicznych i sposobów kodowania (protokołów) informacji dla cyfrowych szyn wymiany danych, stanowiących trzon współczesnych systemów awionicznych. Wykonano analizę protokołów dla typowych standardów szyn wymiany danych takich, jak MIL-STD-1553B i ARINC-429. Drugi krok dotyczył określenia na bazie powyższej analizy wymagań dla stanowiska badawczego umożliwiającego integrację urządzeń systemów awionicznych. Założono, że będzie to system o architekturze otwartej, umożliwiającej rozbudowę o nowe standardy szyn wymiany danych i nowe urządzenia awioniczne. System ten został zbudowany na bazie komputera misji KM-1 (o strukturze pakietowej) z interfejsami w postaci kart obsługujących wybrane typy szyn wymiany danych m.in. MIL-STD-1553B. Podstawą działania takiego stanowiska jest odpowiednie oprogramowanie, które musi zapewniać obsługę przyłączonych do stanowiska urządzeń integrowanych systemów awionicznych oraz zarządzanie przetwarzaniem i zobrazowaniem informacji wyjściowej dla pilota i innych pokładowych układów wykonawczych m.in. pilota automatycznego. Opracowanie i testowanie takiego oprogramowania stanowiło trzeci krok w realizacji pracy. Jednocześnie był to najbardziej pracochłonny i zamykający etap w przygotowaniu stanowiska badawczego do integracji systemów awionicznych. Przyjęto, że oprogramowanie to powinno bazować na języku C++, umożliwiającym kompilację protokołów obsługi (swoistych sterowników) urządzeń systemów awionicznych. 2. Opis uzyskanych wyników 2.1 Wprowadzenie W ramach pracy zbudowano stanowisko badawcze do integracji urządzeń systemów awionicznych na bazie komputera misji KM-1 pracującego z wykorzystaniem standardowych szyn danych MIL-STD-1553B i ARINC-429. Wykonane oprogramowanie komputera umożliwia obsługę, testowanie i symulację wyposażenia awionicznego, w tym urządzeń podsystemu nawigacyjnego, komunikacyjnego oraz walki elektronicznej. Stanowi rdzeń procesu integracji systemów awionicznych, który po optymalizacji opracowanego oprogramowania zastępowany jest profesjonalnym komputerem pokładowym wykorzystującym to oprogramowanie. Stanowisko umożliwiło także badania różnych funkcji i formatów wymiany, przetwarzania i zobrazowania informacji, a także symulacji urządzeń systemów awionicznych dla ich wybranej architektury. Opracowane stanowisko stanowi aktualnie trzon wyposażenia laboratoryjnego ITWL, skład którego będzie sukcesywnie (w następnych latach) rozwijany o kolejne elementy, takie jak: dodatkowe stacje robocze (umożliwiające komunikację ze stanowiskiem integracyjnym), bloki zasilania urządzeń integrowanych systemów w napięcia (m.in. 28 VDC, 115 VAC / 400 Hz), dodatkowe karty WE/WY analogowe i synchroniczne (400 Hz) oraz profesjonalne oprogramowanie środowiska pracy (np. Linux RT, Vx Works). Stanowisko integracyjne oraz zdobyte doświadczenia umożliwiają również opracowanie metod i procedur integracji urządzeń systemów awionicznych oraz ich analizę pod kątem zakresu i możliwości modernizacji. Pozwala to na przygotowanie stanowiska oraz personelu naukowo- ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 3/37

4 technicznego do integracji urządzeń systemów awionicznych takich jak systemy orientacji przestrzennej AHRS, systemy nawigacji inercjalnej INS, systemy globalnego pozycjonowania GPS, systemy nawigacji bliższej VOR/DME, centrale danych aerodynamicznych ADU, radiokompasy ADF, radiowysokościomierze i inne. Wyniki pracy były wykorzystane przy integracji systemów awionicznych śmigłowców W-3W i Mi-24 oraz w ramach tzw. upgrade u wyposażenia innych statków powietrznych (np. TS-11F). Zbudowane stanowisko stanowi zasadniczy i konieczny element w przygotowaniu bazy laboratoryjnej i kadry naukowo-badawczej. Pozwala na analizę metod i środków wykorzystywanych do integracji urządzeń systemów awionicznych, jak również sformułowanie wniosków do opracowania narzędzi badawczych i metodyk dla pracowników Zakładu Awioniki ITWL. Zastosowanie komputerów klasy PC i związanych z nimi standardowych nośników informacji pozwala na modyfikację stanowiska odpowiednio do potrzeb integracji urządzeń systemów awionicznych. Ponadto umożliwia realizację celu szkoleniowego do edukacji pracowników przygotowujących się do integracji systemów awionicznych oraz celu demonstracyjnego pokazów możliwości Zakładu Awioniki (oraz omówienia skali trudności) w zakresie integracji urządzeń systemów awionicznych dla gości i decydentów przy zawieraniu ewentualnych umów. 2.2 Realizacja zadań badawczych Zadanie 1: Analiza zadań realizowanych przez statki powietrzne na przykładzie samolotu szkolno-bojowego Proces szkolenia współczesnych pilotów wojskowych trwa długo i jest bardzo kosztowny. Kolejnym czynnikiem wpływającym na kształt szkolenia lotniczego jest tendencja do redukowania liczebności sił powietrznych. W jej wyniku niektóre kraje ograniczyły narodowy zakres szkolenia lub całkowicie z niego zrezygnowały. Także i istniejący w Polsce system szkolenia lotniczego przechodził przeobrażenia. Od początku lat 90 znacznie ograniczono liczbę szkolonych oraz liczbę użytkowanych samolotów szkolnych. Wycofano ze szkolenia zaawansowanego samoloty Lim-5/6, a planowana do wprowadzenia w ich miejsce Iryda nie pojawiła się. W konsekwencji część zakresu szkolenia przeniesiono na TS-11, część bezpośrednio na samoloty bojowe. Wraz z decyzją o zakupie nowego samolotu bojowego (F-16) piloci muszą poznać nowe wyposażenie i zadania do realizacji. Do tego celu mógłby być wykorzystany odpowiednio przygotowany samolot szkolny. Samolot TS-11 Iskra od prawie 40 lat nierozerwalnie kojarzy się w Polsce ze szkoleniem pilotów wojskowych. Nie ma chyba obecnie w Polsce takiego pilota wojskowego samolotu odrzutowego, który nie spędziłby, choć kilkudziesięciu godzin za sterami tego samolotu. Do realizacji współczesnych zadań szkoleniowych brakuje jej dokładnie tego samego co innym samolotom szkolnym z lat 60/70/80 - nowoczesnej awioniki. Praca pilota bojowego przypomina dziś pracę z komputerem, bo dzisiejszy samolot bojowy to ogromna liczba latających komputerów. TS-11 Iskra z nowym wyposażeniem mogłaby pozwolić na szkolenie pilotów w Polsce. Podobną drogą, modernizacji starszych samolotów szkolnych poszli Francuzi, Belgowie, czy Niemcy gdzie do potrzeb szkolenia na nowych samolotach zmodernizowano Alpha Jet. Podobnie inne kraje postąpiły z samolotami MB-339, A-4, czy T-38/F-5. Przy czym konieczność szkolenia na samolocie naddźwiękowym jest przez wielu kwestionowana. Włosi ze zdania nie ma sensu płacić drogo za rzeczy, które nie są potrzebne uczynili hasło reklamowe promujące M-346, a uderzające w T-50. Proces szkolenia pilotów dla współczesnych statków powietrznych to zupełnie nowe wyzwanie. Piloci przesiadający się ze starszych typów statków powietrznych szybko nauczą się latać samolotem z aktywnym układem sterowania, jednak, aby można było wykonywać zadania bojowe, należy sprawnie posługiwać się zintegrowanym systemem pokładowym i przygotowywać dane do lotu dla tego ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 4/37

5 systemu. Szczególnie trudne jest to dla doświadczonych pilotów, którzy najpierw muszą się pozbyć nawyków, czasem szkodliwych na nowym samolocie. Przykładem tego jest pilotowanie klasycznego samolotu według zakrętomierza z chyłomierzem w połączeniu z innymi przyrządami pilotażowo-nawigacyjnymi, co ma swoiste właściwości i jest utrudnione; przy najmniejszym błędzie interpretacyjnym, może skończyć się katastrofą. Tłumaczy się to tym, że przy pilotowaniu samolotu według sztucznego horyzontu pilot ma możliwość określenia oraz utrzymania położenia samolotu w przestrzeni w płaszczyźnie poziomej i pionowej wokół osi podłużnej i poprzecznej. Natomiast przy pilotowaniu samolotu tylko według zakrętomierza z chyłomierzem pilot ma możliwość określenia położenia samolotu w przestrzeni tylko w płaszczyźnie poziomej wokół osi podłużnej i pionowej, to znaczy może utrzymywać równowagę poprzeczną i kierunkową. Zmusza to pilota do określenia położenia samolotu wokół osi poprzecznej i do utrzymania równowagi podłużnej w locie według innych przyrządów takich jak: wariometr i prędkościomierz. Tak więc przy niesprawności lub wyłączeniu sztucznego horyzontu pilot powinien w celu utrzymania warunków lotu prowadzić samolot według zakrętomierza z chyłomierzem w połączeniu z przyrządami pilotażowo-nawigacyjnymi. Znajomość zasad pilotowania samolotu według przyrządów w przypadku niesprawności sztucznego horyzontu jest potrzebna każdemu pilotowi przystępującemu do wykonywania lotów według przyrządów. Zakrętomierz w połączeniu z innymi przyrządami pilotażowo-nawigacyjnymi umożliwia kontrolę prawidłowości wskazań sztucznego horyzontu i określenie jego sprawności, wyprowadzenie samolotu ze skomplikowanego położenia i pilotowanie w trudnych warunkach atmosferycznych. Jeszcze dzisiaj można spotkać się z opinią starszej generacji ludzi lotnictwa, że dla wielu samolotów (np. klasy General Aviation ) cyfrowe systemy awioniczne są zbędnym, luksusowym wyposażeniem. Jest to teza błędna. Współczesne cyfrowe systemy zobrazowania przyrządów pokładowych w każdym przypadku podnoszą w sposób niekwestionowany bezpieczeństwo lotów. Podnoszą komfort pracy załogi, przez przejrzyste i logiczne zobrazowanie informacji o stanie statku powietrznego, sytuacji nawigacyjnej, monitorują natężeniu ruchu lotniczego w najbliższym otoczeniu samolotu zapobiegając m.in. kolizjom w powietrzu. Bez tych, czasami drogich i skomplikowanych systemów, żaden samolot czy to wojskowy czy cywilny nie może wykorzystać wszystkich swoich możliwości, do jakich został skonstruowany i przeznaczony, a jakie są dostępne w zakresie jego możliwości technicznych i operacyjnych. Znamienny wzrost zastosowań operacyjnych różnych typów statków powietrznych ujawnia się w przypadku dokonania modernizacji starszych konstrukcji i wyposażenia ich we współczesną awionikę cyfrową. Wynika z tego, że każdy samolot, nawet starszej generacji, po zabudowie współczesnego systemu awionicznego poszerza swoje możliwości użytkowe (operacyjne) o zastosowania dotychczas dla niego nieosiągalne. W ostatnim dziesięcioleciu takich operacji lifting u dokonano na świecie w stosunku do wielu starszych konstrukcji lotniczych, m.in. modernizację przeszedł amerykański F-5 Tiger do wersji T-38, brytyjski Hawk czy francuski Alpha Jet. Wyposażenie samolotów w cyfrowe systemy awioniczne, zwane popularnie glass cockpit jest standardem we współczesnym lotnictwie szeroko rozumianym, a wskaźniki przezierne Head Up Display (HUD) przestają być domeną tylko wojskowego lotnictwa myśliwskiego - w ostatnich kilku latach stosowane są również w samolotach komunikacyjnych, dyspozycyjnych (jet-business), a nawet w lekkich samolotach klasy General Aviation. Cyfrowe systemy awioniczne w sposób rewolucyjny zmieniają sposób odbioru informacji: ze wskazań licznych, rozproszonych po całej tablicy pojedynczych przyrządów analogowych (wskazówkowych) na skoncentrowany strumień informacji przedstawiony na ekranie (z reguły ciekłokrystalicznym) w postaci symboli, piktogramów, ruchomych elementów opisanych konkretnymi wartościami liczbowymi. Złożone, zaawansowane systemy awioniczne do czytelnego zobrazowania wszystkich informacji wykorzystują dwa, a nawet trzy ekrany monitorów. Na ogół, z racji ograniczania kosztów lub braku miejsca, szczególnie w kabinie samolotu szkolno-bojowego, stosuje się ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 5/37

6 EFIS (Electronic Flight Instrument System) z jednym wyświetlaczem ekranowym o wielorakim zastosowaniu tzw. Multi Function Display (MFD). Uzupełnieniem MFD na samolotach wojskowych jest umieszczony na wysokości oczu pilota wskaźnik przezierny HUD, na którym wyświetlone są istotne parametry lotu, sygnały ostrzegawcze i alarmowe, stan układów sterowania uzbrojeniem oraz dane z systemu celowniczego. HUD pozwala pilotowi na pełną kontrolę pilotażową samolotu i jego położenia w przestrzeni, sterowanie wyposażeniem (uzbrojeniem) w warunkach deficytu czasu i fizycznego obciążenia podczas prowadzonej walki powietrznej. Na podstawie powyższych analiz można określić wymagania w odniesieniu do możliwości systemu awionicznego, które determinowane są przez rodzaje przydzielonych samolotowi i jego załodze zadań. Wymagania w zakresie optymalizacji samolotu szkolno-bojowego pod kątem realizowanych przez niego zadań: zdolność do działania w nocy i w trudnych warunkach atmosferycznych; dostosowanie kabiny do współpracy z NVG III generacji; dokładne systemy nawigacji inercjalnej (INS/GPS) z goglami noktowizyjnymi oraz mapą cyfrową; odciążenie załogi i poprawa warunków pracy; nowoczesny system prezentacji (monitory wielofunkcyjne, mapa ruchoma, wspomaganie w realizacji zadania); zintegrowany system awioniczny; nowoczesny system łączności: integracja i automatyzacja systemu łączności, prostota użytkowania - z jednego pulpitu); nowoczesny system zarządzania uzbrojeniem; integracja i automatyzacja systemu (MIL-STD 1553/1760): prostota użytkowania (z jednego pulpitu), możliwość podwieszenia systemów treningowych (AACMI), możliwość symulacji zawansowanych systemów uzbrojenia; nowoczesny system rejestracji: przygotowanie zadania, zapis parametrów lotu i czynności załogi, rejestracja obrazu z HUD; oprogramowanie deszyfrujące i zobrazowujące realizację zadania. W stosunku do bazowego TS-11, zmodernizowany samolot (roboczo zwany TS-11F) miałby możliwość wykonywania lotów z widzialnością ziemi i według przyrządów w oparciu o systemy radionawigacyjne i nawigację autonomiczną. Zmianie uległoby wyposażenie nawigacyjne samolotu. Zostałoby ono podporządkowane współpracy z mapą ruchomą i dostosowane do wymogów dla samolotów poruszających się w cywilnej przestrzeni powietrznej. Głównym źródłem danych o położeniu przestrzennym samolotu może być centrala nawigacji inercjalnej (INS) i sprzężony z nią odbiornik GPS. Dane powietrzne zapewni komputerowa centrala danych aerodynamicznych (tzw. ADU lub ADC). System taki pozwoli na precyzyjną lokalizację geograficzną samolotu i dane o parametrach jego ruchu. To z kolei zapewni możliwość poprawnego wykorzystania wyposażenia symulującego cele i środki bojowe. Na pokładzie Iskry znajdą się odbiorniki systemu VOR/ILS/MRK/DME/TACAN użytkowane aktualnie na części statków powietrznych Sił Zbrojnych RP, stanowiące drugi zestaw wyposażenia nawigacyjnego. Do zobrazowania danych z systemu nawigacyjnego wykorzystane zostaną monitory wielofunkcyjne. W zależności od trybu pracy makrosystemu będą na nich prezentowane odpowiednie zestawy wskaźników nawigacyjnych, mapa ruchoma lub elementy wymagane dla realizacji zadania szkoleniowego. Wyświetlanie części danych nawigacyjnych będzie dublowane na wskaźniku przeziernym (HUD). System łączności nowej Iskry ma pozwolić na wykorzystanie radiostacji szerokopasmowej, zgodnej z zastosowaną na polskich F-16. Uzupełniać ją będzie polska radiostacja stosowana na ostatnich Iskrach - RS System może być uzupełniony o elementy transmisji danych. ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 6/37

7 System uzbrojenia samolotu zachowa działko i niekierowane pociski rakietowe (NPR) oraz zostanie wzbogacony o elementy symulowanych środków bojowych. W tym celu całość systemu będzie zarządzana przez cyfrowy system zarządzania uzbrojeniem. Dane celownicze opracowywane przez komputer będą wyświetlane na HUD oraz w określonych trybach pracy na monitorze wielofunkcyjnym. Na docelowych (seryjnych) samolotach można wprowadzić dodatkowo elementy HOTAS, dedykowane dla konkretnych rozwiązań (np. wybór broni, sterowanie WRE, itp.). Całość realizowanego zadania może być rejestrowana przez standardowy system rejestracji cyfrowej oraz w komputerze misji. Dostęp do zarejestrowanych parametrów możliwy będzie bezpośrednio po locie. Dane z pokładu samolotu będą przenoszone do stanowiska naziemnego i praktycznie od ręki dostępne do analizy lotu. Możliwe jest też adoptowanie opracowanego w ITWL dla samolotu PZL-130 systemu zdalnego nadzoru (z transmisją on-line wybranych parametrów lotu na ziemię). Wszystkie te systemy będą zarządzane poprzez modułowy komputer misji i zintegrowane w oparciu o szynę MIL-STD-1553B. Docelowy sposób zobrazowania i obsługi zostanie dostosowany do wymagań Sił Powietrznych. Dzięki posiadaniu dostępu do kodów integracyjnych możliwe będzie (prawie dowolne) dopasowanie systemu do wymagań lotników. Dzięki modernizacji wyposażenia i opracowaniu elementów towarzyszących docelowy TS-11F pozwoli na szkolenie i trening załóg (odpowiednio w dzień i w nocy) w realizacji zadań typu: szkolenie podstawowe na samolocie odrzutowym, szkolenie w pilotażu zaawansowanym na samolocie odrzutowym, loty według przyrządów, loty profilowe na małej wysokości, walka powietrzna na małych i średnich odległościach (z symulacją celu i pocisku), obrona powietrzna, uderzenie na cele naziemne i nawodne (w tym z symulacją celu i środka bojowego), przełamanie obrony powietrznej, rozpoznanie lotnicze (w tym na małej wysokości), na ziemi -przygotowanie planu misji na stanowisku planowania misji. Dokładny zakres szkolenia zależeć będzie od potrzeb Sił Powietrznych i wybranego dla ich realizacji wariantu modernizacji. Szczegółowe dane i wyniki przeprowadzonych prac zawarto w następujących opracowaniach: 1. Sprawozdanie z pracy nr 157/43/2007 pt.: Analiza zadań realizowanych przez statki powietrzne na przykładzie samolotu szkolno-bojowego. Opracowania wewnętrzne, nr BT ITWL 3681/ Sprawozdanie z pracy nr 168/43/2007 pt.: Analiza zadań realizowanych przez statki powietrzne na przykładzie samolotu szkolno-bojowego. Opracowania zewnętrzne, nr BT ITWL 3706/ Sprawozdanie z pracy nr 176/43/2007 pt.: Tłumaczenie z języka angielskiego wybranych materiałów z opracowania TIGER-PAWS F-5 AVIONICS MECHANIZATION w zakresie integracji systemów awionicznych, nr BT ITWL 3705/50. Zadanie 2: Opracowanie architektury i organizacji zintegrowanego systemu awionicznego Wykonane w ramach pracy analizy oraz zgromadzone w trakcie badań doświadczenia pozwoliły na opracowanie i budowę w ITWL stanowiska badawczego do integracji systemów awionicznych na bazie komputera misji KM-1, wyposażonego w ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 7/37

8 odpowiednie interfejsy stanowiące karty szyny wymiany danych wg przyjętego standardu np. MIL-STD-1553B. Stanowisko takie jest konieczne do opracowywania i testowania programów obsługi urządzeń systemów awionicznych, a poprzez to do ich integracji w jeden spójny system pokładowy. Dodatkową zaletą zbudowanego stanowiska jest możliwość testowania oprogramowania służącego do integracji i diagnozowania urządzeń systemów awionicznych. Ważną cechą tak zbudowanego stanowiska jest też możliwość symulacji wybranych urządzeń systemów awionicznych, koniecznej przy braku danego urządzenia w czasie opracowywania oprogramowania integrującego system awioniczny. Wyniki pracy będą również wykorzystane przy tworzeniu laboratoryjnego systemu diagnostycznego dla urządzeń integrowanych systemów. Większość statków powietrznych w polskim lotnictwie wojskowym posiada wyposażenie awioniczne bazujące na opracowaniach rosyjskich, charakteryzujących się wykorzystaniem układów elektromechanicznych i elektronicznych. Współczesne, zachodnie rozwiązania bazują na rozwiązaniach informatycznych, a typowy system awioniczny stanowi analogię systemu komputerowego pracującego na cyfrowej szynie wymiany danych wg przyjętego standardu m.in. MIL-STD-1553B (w lotnictwie wojskowym) i ARINC-429 (w lotnictwie cywilnym). Przy wysokiej informatyzacji systemów awionicznych nie wystarczy już znajomość zasady działania danego urządzenia, ale decydującą rolę odgrywa wiedza o sposobie współdziałania tych urządzeń w systemie informatycznym (m.in. protokoły przesyłania informacji cyfrowej, formaty zobrazowania, sposoby zarządzania informacją w trybach roboczych i awaryjnych). W takich systemach mierzone wielkości fizyczne (np. parametry lotu) zamieniane są w sygnały elektryczne już w nadajnikach, a następnie kodowane do postaci cyfrowej wg przyjętego standardu i przesyłane za pomocą szyny wymiany danych do komputerów zarządzających zobrazowaniem odpowiednich danych na wielofunkcyjnych monitorach i wskaźnikach. Stąd integracja systemów awionicznych wymaga odpowiedniego przygotowania zarówno bazy laboratoryjnej, jak i kadry naukowo-technicznej. W tym celu konieczne jest szczegółowe zapoznanie się z funkcjonowaniem współczesnych systemów awionicznych, a w tym protokołów obsługi urządzeń pokładowych, architektury systemów awionicznych, standardów przesyłania informacji w szynach wymiany danych, algorytmów przetwarzania tych informacji w komputerach pokładowych oraz formatów zobrazowania informacji. Zintegrowany system awioniczny (ZSA) przeznaczony jest do automatyzacji zarządzania statkiem powietrznym poprzez integrację następujących systemów makrosystemu: 1. Systemu nawigacyjnego. 2. Systemu łączności. 3. Systemu ochrony. 4. Systemu obserwacyjno-celowniczego. 5. Systemu uzbrojenia. 6. Systemu prezentacji danych i komunikacji załogi ze statkiem powietrznym. 7. Systemu monitorowania i rejestracji stanu i działania statku powietrznego oraz załogi. Rolę elementu integrującego (zarządzającego systemami składowymi statku powietrznego) spełniać powinien system zarządzania statkiem powietrznym. Wymiana informacji powinna być realizowana w oparciu o szynę danych wg standardu MIL-STD-1553B, a pomiędzy wybranymi systemami z wykorzystaniem szyny ETHERNET 10/100. ZSA powinno umożliwić sterowanie pracą środków rażenia dostępnych na statku powietrznym. Dzięki wstępnej obróbce informacji z systemów pokładowych i prezentacji jej załodze w sposób skompilowany (np. pozycja i plan lotu na tle mapy) uzyskuje się odciążenie załogi oraz zwiększenie jej świadomości sytuacji taktycznej. Dzięki wykorzystaniu do zarządzania systemami pokładowymi klawiatury monitora wielofunkcyjnego oraz odpowiednim elementom zobrazowania informacji uproszcza się komunikację załogi ze statkiem powietrznym. ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 8/37

9 Wymiana informacji pomiędzy urządzeniami tego samego systemu powinna odbywać się poprzez interfejsy: a) MIL-STD-1553B, b) ARINC-429, c) RS-232, RS-422, RS-485; RS-170, d) LVDS, e) ETHERNET 10/100, f) USB. Zestawienie łączy zależne jest od urządzeń zastosowanych w ramach systemu. System nawigacyjny przeznaczony jest do określenia położenia przestrzennego statku powietrznego, jego ruchu oraz wypracowania danych dla innych systemów pokładowych. System nawigacyjny powinien zapewnić: a) określenie pozycji z błędem nie większym niż 0,8 NM/h lotu bez GPS i z GPS, nie większym niż możliwości GPS, b) określenie kątów pochylenia, przechylenia i kursu z błędem nie większym niż 0,2, c) określenie prędkości lotu statku powietrznego względem 3 osi współrzędnych z błędem nie większym niż 0,2 m/s. System GPS powinien posiadać dokładność odpowiadającą oficjalnie przyjętej dokładności takich systemów w SZ RP. W skład systemu nawigacji powinny wchodzić: a) platforma INS ze zintegrowanym odbiornikiem GPS, b) radiowysokościomierz, c) radiokompas, d) centrala danych aerodynamicznych, e) odbiornik VOR/MRK/ILS, f) odbiornik systemu TACAN. Wymiana danych z innymi systemami powinna być realizowana z wykorzystaniem szyn MIL-STD-1553B i ARINC 429. Zamontowane na pokładzie statku powietrznego odbiorniki systemów VOR/MKR/ILS i TACAN przekazują dane dla innych systemów z wykorzystaniem interfejsu ARINC 429. Odbiornik ADF zazwyczaj integruje się z wykorzystaniem interfejsu ARINC 407. Radiowysokościomierz współpracuje z systemem nawigacyjnym zazwyczaj z wykorzystaniem interfejsu ARINC 429. Centrala danych aerodynamicznych współpracuje z systemem pokładowym wg interfejsu ARINC 429. System łączności powinien zapewnić realizację następujących zadań: 1. utrzymanie łączności w systemie kontroli przestrzeni powietrznej na częstotliwości i trybach określonych przez ICAO, 2. utrzymanie łączności w systemie kierowania lotami z opcją rozwojową do wykorzystania łączności niejawnej, 3. wymianę informacji cyfrowej z wykorzystaniem systemu kodowania, 4. utrzymanie łączności ze stanowiskami dowodzenia w trybie pracy jawnym, hoppingowym, dookólnym, selektywnego wywołania oraz radiodostępu, 5. odbiór i przekazanie do załogi sygnałów specjalnych, 6. łączność wewnętrzną członków załogi, 7. umożliwienie rejestracji korespondencji prowadzonej przez członków załogi, 8. komunikację w systemie CSAR. W skład systemu łączności powinny wchodzić: 1. Radiostacja VHF/UHF ( MHz), 2. Radiostacja VHF (30 88 MHz), tzw. TAC-VHF - opcjonalnie, 3. Radiostacja HF (1,6 59,9 MHz)- opcjonalnie, 4. Radiostacja VHF/FM ( MHz), 5. Serwer komunikacyjny tylko na pokładzie śmigłowca lub samolotu transportowego. ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 9/37

10 Ponadto na pokładzie współczesnego śmigłowca bojowego powinny znajdować się stanowiska łączności: a) pilota b) pilota-operatora c) technika pokładowego d) dowódcy desantu (grupy / lekarza)- opcjonalnie, e) strzelców pokładowych lub zamiennie ratowników opcjonalnie. Każde stanowisko powinno być wyposażone w: a) gniazdo słuchawkowo-mikrofonowe, b) przycisk nadawania, c) monitory wielofunkcyjne (stanowiska: pilota, pilota-operatora, dowódcy desantu), d) tabliczki abonenckie (technik, strzelcy / ratownicy) - opcjonalnie. System prezentacji danych i komunikacji załogi ze statkiem powietrznym powinien dostarczać załodze w sposób ciągły informacje niezbędne na danym etapie lotu. W ramach systemu prezentacji danych i komunikacji załogi ze statkiem powietrznym powinien funkcjonować system zobrazowania informacji wykorzystujący maksymalnie 3 wielofunkcyjne kolorowe monitory ciekłokrystaliczne. Monitory powinny być przystosowane do współpracy z goglami NVG III generacji. Powinny też być wyposażone w klawiaturę umożliwiającą sterowanie pracą systemu awionicznego (w sposób odpowiadający tzw. CDU). Rys. 1 Projekt przedniej kabiny samolotu szkolno-bojowego ze zintegrowaną awioniką. Na stanowisku pracy pilota powinny znajdować się: a) wielofunkcyjny ciekłokrystaliczny monitor pilota wyświetlający parametry pilotażowe, w trybach z wykorzystaniem mapy pełniący funkcję monitora mapowego, b) wskaźnik przezierny (tzw. S-HUD), c) wskaźniki stanu systemów pokładowych, d) przyrządy zapasowe. ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 10/37

11 Na stanowisku pilota - operatora powinny znajdować się: a) wielofunkcyjny ciekłokrystaliczny monitor pilota-operatora wyświetlający parametry pilotażowe, w trybach z wykorzystaniem mapy pełniący funkcję monitora mapowego, b) przyrządy zapasowe. Na trzecim stanowisku (instruktora) tylko w układzie stanowiska do optymalizacji zintegrowanego systemu awionicznego: a) wielofunkcyjny ciekłokrystaliczny monitor instruktora wyświetlający dane o locie (w tym z radiowysokościomierza), a w trybach z wykorzystaniem mapy pełniący funkcję monitora mapowego, b) wysokościomierza barometrycznego i prędkościomierza powietrznego. Znajdujący się na stanowisku pilota podsystem zobrazowania S-HUD powinien zapewnić: a) zobrazowanie informacji w układzie wektorowym, b) współpracę z ZSA z wykorzystaniem szyny MIL-STD-1553B, c) możliwość współpracy z systemem NVG III generacji. Rolę pokładowego pulpitu zarządzania i wprowadzania danych (CDU) powinien pełnić monitor wielofunkcyjny, zapewniający: a) bezpośrednią komunikację załogi z ZSA, b) wprowadzanie danych do systemu przez załogę, c) wybieranie trybu pracy systemu, d) wybór wcześniej zaprogramowanych zadań. System zobrazowania mogą uzupełniać wskaźniki autonomiczne nie wchodzące w skład ZSA. Wyświetlają one stan systemów pokładowych nie integrowanych z ZSA, dotyczy to: a) pracy systemu paliwowego, b) pracy zespołu napędowego, c) instalacji powietrznej, d) instalacji hydraulicznej, e) instalacji ppoż., f) instalacji przeciwoblodzeniowej, g) instalacji elektroenergetycznej. Na stanowisku pracy załogi mogą znajdować się też przyrządy zapasowe (nie wchodzące w skład ZSA): a) sztuczny horyzont, b) busola, c) wysokościomierz barometryczny, d) prędkościomierz powietrzny, e) wariometr. Na monitorach wielofunkcyjnych (MW-1) umieszczone są: a) przyciski do sterowania funkcjami systemu; b) przyciski do sterowania funkcjami MENU; c) przyciski do wprowadzania i akceptacji danych, Funkcje przycisków są programowane odpowiednio do trybu pracy ZSA i opisu na ekranie. Na dźwigni skoku ogólnego/drążku sterowym umieszczono przełącznik rodzaju uzbrojenia. W oparciu o przedstawioną architekturę o organizację, pilot steruje pracą ZSA poprzez: a) przyciski na monitorze wielofunkcyjnym (tryby pracy, łączność, itp.), b) przyciski na drążku sterowym, c) pulpit sterowania IFF, d) pulpit sterowania VOR / ILS / TACAN e) pulpit sterowania radiowysokościomierzem (na monitorze wielofunkcyjnym), f) pulpit sterowania ADF, g) pulpit sterowania uzbrojenia. ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 11/37

12 Do sterowania pracą ZSA pilot-operator ma do dyspozycji: a) przyciski na monitorach wielofunkcyjnych; b) drążek sterujący (joystick) do sterowania pracą głowicy obserwacyjnej (opcjonalnie); c) przyciski na pulpicie uzbrojenia. Oprogramowanie monitorów wielofunkcyjnych MW-1 powinno zapewnić: a) zobrazowanie parametrów pilotażowo-nawigacyjnych; b) zobrazowanie parametrów systemów radiowych i radiokomunikacyjnych; c) zobrazowanie parametrów atmosfery; d) zobrazowanie danych dotyczących misji, w tym: użycia środków rażenia; e) zobrazowanie stanu wybranych systemów pokładowych; f) zobrazowanie parametrów dotyczących sterowania statkiem powietrznym, w tym: lotu po trasie, lotu wg kursu dyrektywnego, (zawisu w przypadku śmigłowca); g) zobrazowanie i lokalizację obiektów wykrytych i rozpoznanych w czasie misji; h) przywołanie na dowolnym monitorze zobrazowania stanu wybranych systemów pokładowych, zapasu środków bojowych, danych o wykonywanych zadaniach w trakcie realizowanej misji. Schemat ideowy organizacji zintegrowanego systemu awionicznego przedstawia rysunek 2. Szczegółowe dane i wyniki przeprowadzonych prac zawarto w następującym opracowaniu: - Sprawozdanie z pracy nr 158/43/2007 pt.: Opracowanie architektury i organizacji zintegrowanego systemu awionicznego, nr BT ITWL 3707/50. ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 12/37

13 INSTYTUT TECHNICZNY WOJSK LOTNICZYCH SYSTEM NAWIGACJI ADF ARINC 407 Koncentrator Sygnałów (KS-1) PŁATOWIEC I JEGO INSTALACJE ETH RA ARINC 429 ARINC 429 AUTOPILOT TACAN VOR/ILS/MRK ARINC 429 (KTU 709) INS/GPS (TOTEM-3000) ADC (ADU3000) ARINC 429 RST-TKT RST-HF ) ETH SZYNA NAWIGACYJNA (1553B) ZINTEGROWANY SYSTEM ŁĄCZNOŚCI SYSTEM DIALOGOWY HUD Monitor gł. obs. Pulpit ster. głowicy obs. CMFD / PP (MW-1) CMFD / PO (MW-1) CMFD / DD (MW-1) Komputer głowicy obserwacyjnej Komputer Misji (KM-1) SZYNA ŁĄCZNOŚCI (1553B) RST-ZAS RST-REZ SYSTEM ŁĄCZNOŚCI STANOWISKO PLANOWANIA MISJI PLAN MISJI SYSTEM OBSERWACYJNY Głowica obserwacyjna REJESTRATOR KATASTROFICZNO-EKSLPOATACYJNY SZYNA UZBROJENIA (1553B) SYSTEM ZARZĄDZANIA SYSTEM OCHRONY IFF (SC10) IRCM (ADROS) STANOWISKO RUCHOME Lewy INT. PODW. (IP-1) Prawy INT. PODW. (IP-1) Lewy CFD (ASO-2W-ME) Prawy CFD (ASO-2W-ME) SYSTEM UZBROJENIA Rys. 2 Schemat ideowy zintegrowanego systemu awionicznego. ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3

14 INSTYTUT TECHNICZNY WOJSK LOTNICZYCH Zadanie 3: Opracowanie założeń na stanowisko do optymalizacji zintegrowanego systemu awionicznego W różnorodnych zagadnieniach technicznych dotyczących integracji systemu awionicznego różne punkty widzenia konstruktorów wyraża się za pomocą zadania optymalizacji wielokryterialnej. Stosuje się wtedy pewną liczbę kryteriów jakości Q 1,..., Q k zależnych od zmiennych sterujących a 1 a 2,...,a r : Q i = Q i (a 1, a 2,, a r ), gdzie i=1,2,...,k (1) Wymagane jest np. osiągnięcie maksymalnego efektu działania określonego elementu makrosystemu przy minimalnych nakładach (kosztach) lub też, aby wiele wielkości charakterystycznych osiągnęło wartości optymalne możliwie równocześnie dla całego makrosystemu. Przy dużej liczbie wymagań w odniesieniu do wybranego elementu stanowiska integracyjnego (np. platformy nawigacji inercjalnej TOTEM- 3000) mogą występować sprzeczności, które prowadzą do tego, że odpowiednie kryteria jakości nie będą mogły być jednocześnie zoptymalizowane przez określone sterowanie (wybór wielkości sterujących). Przy realizacji inżynierskiej takiego zadania, obok obliczeń teoretycznych występuje przy tym prawie zawsze zagadnienie znalezienia odpowiedniego rozwiązania kompromisowego. Każdy system awioniczny można scharakteryzować pewnym zbiorem aspektów S 1,..., S k, które objawiają się w różny sposób i niezależnie od siebie. Każdy aspekt jest odzwierciedleniem modelowym obiektywnie istniejącego elementu składowego systemu. Jakość tego odzwierciedlenia można w ogólności ocenić za pomocą funkcji jakości Q 1,..., Q k Z doświadczenia praktycznego jasno wynika, że te funkcje jakości tylko w niezwykle rzadkich przypadkach mogą jednocześnie osiągnąć wartości optymalne. Ogólnie rzecz biorąc, występują przy tym sprzeczności. W każdej chwili różne aspekty S i, są w stosunku do siebie w odpowiednich relacjach, które można opisać jako kompromis miedzy funkcjami jakości Q i. Ten kompromis odpowiada określonej relacji występującej miedzy wszystkimi wielkościami decyzyjnymi (zmiennymi sterującymi a i ). Może on występować w postaci równowagi trwałej (stabilnej). W miarę upływu czasu kompromis zmienia się ze względu na zmienność w czasie wielkości wejściowych (np. błędy nawigacji). Postęp oznacza w tym sensie wywieranie określonego wpływu na kompromis miedzy kryteriami jakości lub odpowiednimi aspektami zjawiska leżącymi u podstaw tych kryteriów jakości. Podstawowy problem przy optymalizacji polega na wyborze kryteriów jakości, które możliwie dobrze oceniają różne aspekty działania systemu awionicznego. I tak np. centrala danych aerodynamicznych zawiera czujniki, układy przetwarzające i poprzez interfejsy wyjściowe zasila wskaźniki: wysokości, prędkości, liczby Ma i prędkości pionowej oraz inne odbiorniki (systemy) wykorzystujące wyliczane informacje m.in. system poprawy stabilności i sterowności oraz automatycznego sterowania, system sterowania zespołem napędowym, system celowniczo - nawigacyjny. Zintegrowanie funkcji wielu przyrządów w jeden układ pomiarowo - obliczeniowy umożliwia skuteczniejszą kompensację błędów, wynikających z deformacji opływu w różnych stanach lotu, oraz zmniejszenie ilości oddzielnych przyrządów. Do pomiaru parametrów opływu stosowane są najczęściej tradycyjne odbiorniki ciśnień powietrza. Ciśnienia całkowite i statyczne przetwarzane są na sygnał elektryczny z wykorzystaniem półprzewodnikowych czujników ciśnienia. W rozwiązaniach starszych (najczęściej analogowych) stosowane są jeszcze przetworniki przesunięciowe (membrany, mieszki) oraz przetworniki oparte o równowagę sił (siła wytworzona przez sprężysty element pomiarowy jest równoważona przez siłę wyskalowanej sprężyny). Temperatura mierzona jest za pomocą termometrów rezystancyjnych. Do pomiaru kąta natarcia i ślizgu stosowane są przetworniki skrzydełkowe i ciśnieniowe. ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3

15 Bezpośrednio sygnałami wejściowymi (zmienne sterujące) do centrali danych aerodynamicznych są: - ciśnienie całkowite Pt; - ciśnienie statyczne Ps; - temperatura spiętrzenia TTAT; - kąt natarcia α i czasami kąt ślizgu β. Dodatkowo wprowadzane jest ciśnienie odniesienia oraz konfiguracja SP. Sygnałami wyjściowymi z centrali danych aerodynamicznych są: - wysokość barometryczna; - prędkość przyrządowa; - prędkość rzeczywista; - liczba Macha; - prędkość pionowa; - temperatura statyczna; - kąt natarcia (ślizgu); - stosunek gęstości powietrza do gęstości odniesienia w warunkach standardowych na poziomie morza; - prędkość zmian wysokości, prędkości względem powietrza i liczby Ma; - funkcje "zapamiętaj", "odchyłka od wysokości", "odchyłka od prędkości względem ośrodka", "odchyłka od liczby Ma" wykorzystywane w autopilocie. W trakcie optymalizacji rozpatruje się tylko te kryteria jakości centrali (również innych elementów integrowanej awioniki), którym można przyporządkować wartości liczbowe w całym zakresie zmienności zmiennych sterujących. W najprostszym przypadku można wybrać jedno kryterium jakości jako istotne i zadanie ograniczyć do optymalizacji tego kryterium. W takim przypadku mówimy o postawieniu zadania np. w kategoriach ceny urządzenia. W wielu przypadkach cel ten można także osiągnąć w taki sposób, że na podstawie heurystycznego wyobrażenia o zjawisku lub procesie tworzy się pewne zastępcze kryterium jakości z różnych, częściowo przeciwstawnych kryteriów jakości. Przez optymalizacje tej zastępczej funkcji jakości otrzymuje się rozwiązanie kompromisowe dla całego problemu. Jest zupełnie oczywiste, że przez różne kombinacje kryteriów jakości Q w zastępczym kryterium jakości Q otrzymuje się, ogólnie rzecz biorąc, wiele różnych rozwiązań kompromisowych. Teoria kompromisu musi zatem przede wszystkim najpierw pozwolić na określenie zbiorów wszystkich rozwiązań kompromisowych, a dopiero potem wybrać jedno lub więcej rozwiązań kompromisowych dla danego problemu. Ten sposób myślenia zbliża się do idei polioptymalizacji. Poszczególne kryteria jakości są przy tym uważane a priori za niezależne od siebie. Celem optymalizacji jest wykorzystanie wszystkich relacji między kryteriami jakości i zmiennymi sterującymi do określenia pewnego optymalnego zbioru w obszarze wartości zmiennych sterujących lub kryteriów jakości, który stanowi podstawę dla późniejszego określenia docelowego (kompromisowego) rozwiązania zintegrowanego systemu awionicznego.przy wyznaczaniu zbioru kompromisów w polioptymalizacji wszystkie kryteria jakości bada się co prawda w zależności od zmiennych sterujących, jednak nie przeprowadza się oceny kryteriów jakości między sobą. Przez wybór kryteriów jakości decyduje się, jakie aspekty systemu awionicznego w jaki sposób powinny być oceniane. W wyniku polioptymalizacji otrzymuje się zatem, przez podanie zbioru kompromisów, tylko pewne stwierdzenia dotyczące sytuacji kompromisowych w ramach budowanego modelu systemu awionicznego. To, na ile te wyniki są istotne dla odpowiedniego systemu ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 15/37

16 rzeczywistego (tworzonego przez statek powietrzny i jego załogę), zależy od jakości modelu. Przy konkretnej realizacji technicznej trzeba się jednak w końcu zdecydować na wybór parametrów technicznych i technologicznych. Celem ostatecznym podejmowania decyzji musi być bowiem w końcu zawsze wybór określonego, w podanych warunkach możliwie wszechstronnie optymalnego, rozwiązania kompromisowego. Można np. wyróżnić podstawowe sposoby optymalizacji oprogramowania dla zintegrowanego systemu awionicznego: Optymalizacja algorytmu programu, czyli zmniejszenie jego długości, ilości porównań, uproszczenie działań matematycznych, usunięcie zbędnych pętli itp. Zmiana funkcji użytych w programie na bardziej dopasowane do danego zadania. Ostateczne kryteria dla stanowiska do optymalizacji zintegrowanego systemu awionicznego uzyskuje się poprzez wybór wartości wag o jednakowych wartościach lub wartościach zadanych oraz określeniu tzw. warunków brzegowych (wartości koniecznych). Przyjęcie wartości współczynnika jakości (zmiennej sterującej) i współczynnika wagi z przedziału 0 1 jako wartości maksymalnej zapewnia, że obliczona wartość funkcji optymalizacji dla danego parametru będzie znormalizowana tj. przyjmie też wartość w przedziale 0 1. Ostatecznym kryterium wyboru jest przyjęcie rozwiązania (np. wyboru centrali danych) gwarantującego uzyskanie wybranych zmiennych sterujących o wartościach z zakresu 0,9 1. I tak np. w trakcie realizacji projektu określono, że parametry centrali danych aerodynamicznych ADU-3008 są najbardziej zbliżone do wartości koniecznych, wymaganych przez stanowisko do optymalizacji awioniki. Wartości zadane (wartości zmiennych sterujących) określone są przez wybrane jako rdzeń dla systemu awionicznego rozwiązanie centrali danych aerodynamicznych. W stosunku do tego rozwiązania mogą być oceniane kryteria jakości (np. parametry techniczne) innych wybranych urządzeń dostępnych na rynku. Szczegółowe dane i wyniki przeprowadzonych prac zawarto w następującym opracowaniu: Sprawozdanie z pracy nr 159/43/2007 pt.: Opracowanie założeń na stanowisko do optymalizacji zintegrowanego systemu awionicznego, nr BT ITWL 3682/50. Zadanie 4: Opracowanie badawczego stanowiska integracyjnego awioniki statku powietrznego Platformę inercyjną zabudowano na specjalnym stoliku umieszczonym obok pulpitu sterowniczego, antenę GPS zabudowano za oknem laboratorium, przedwzmacniacz w górnym rogu okna, pozostałe urządzenia systemu zabudowano w specjalnie do tego celu przeznaczonym pulpicie sterowniczym PSL typ I, który dostosowano do potrzeb montażu (rys. nr 3 i 4). Podstawowe charakterystyki badawczego stanowiska integracyjnego awioniki statku powietrznego: 1. Wszystkie urządzenia zabudowane na stanowisku badawczym posiadają swoje zabezpieczenia i wyłączniki zamontowane na pulpicie zasilania II. Można je autonomicznie włączać i wyłączać w zależności od potrzeb. 2. Interfejs obsługowy (zapewniający sterowanie i zobrazowanie) jest zintegrowany z wyświetlaczem S-HUD oraz pulpitem sterowania z przyciskami o zmiennej konfiguracji. ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 16/37

17 3. Dokładny autonomiczny system nawigacyjny oparty jest na technologii z żyroskopowym pierścieniem laserowym, a jego wskazania korygowane są przez odbiornik GPS. 4. Ocena wykonanej misji przez drugiego użytkownika odbywa się za pośrednictwem wielofunkcyjnego wyświetlacza (MW-1), pulpitu sterowania i magnetowidu. S-HUD zapewnia pilotowi dane potrzebne do nawigacji i ataku zarówno w dzień jak też w nocy. Rys.3 Widok na stanowisko badawcze do optymalizacji zintegrowanego systemu awionicznego. 5. Misje bojowe i system zarządzania jak również obliczenia zarówno w trybie powietrze - ziemia jak też powietrze - powietrze dla konwencjonalnego uzbrojenia (działko, rakiety, bomby i pociski) realizowane są za pośrednictwem komputera misji KM-1, dzięki procesorowi danych o wysokiej mocy. 6. Dane i obliczenia nawigacyjne realizowane są przez platformę inercjalną TOTEM i oparte są na całkowicie zintegrowanych czujnikach z systemem zabezpieczeń obejmując platformę laserową o wysokiej dokładności i wbudowanym odbiorniku GPS o dużej dokładności. 7. Inercjalny system nawigacyjny oparty na technologii RLG zapewnia bardzo wysoką niezawodność, pięć - dziesięć razy wyższą niż mechaniczne żyroskopowe systemy odniesienia. 8. Wbudowany odbiornik GPS jest odbiornikiem 8 kanałowym, który umożliwia ciągłą informację o położeniu, prędkości i czasie niezależnie od położenia platformy mocowania i dynamiki. 9. Możliwości szkoleniowe (treningowe) stanowiska są również udoskonalone poprzez zamontowanie systemu wideo, obejmującego kamerę TV na S-HUD, monitor TV (SMD54) i magnetowid umożliwiający odtworzenie misji. Po zabudowie ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 17/37

18 analogicznego ZSA na pokładzie statku powietrznego te dodatkowe funkcje zapewnią: Ocenę misji bojowej przez instruktora poprzez pokazanie kompletnego widoku działań wykonywanych przez szkolącego się pilota. Przegląd (przeszkolenie) na ziemi odczytując zapis wideo wykonany podczas lotu Pulpit zasilania I 2. Pulpit zasilania II 3. Pulpit sterowania I 4. Pulpit sterownia II 5. Zaślepki pod docelowy monitor wielofunkcyjny MW-1 6. Zaślepki pod docelowy monitor wielofunkcyjny MW-1 7. S-HUD 8. Pulpit UFCP 9. Monitor TV 10. Magnetowid. Rys.4 Widok na panel górny stanowiska integracyjnego z wyszczególnieniem niektórych elementów wyposażenia. 10. Do przesyłania danych pomiędzy urządzeniami stanowiska wykorzystano standard MIL-STD-1553B. Na pulpicie sterowania II zabudowano dwa dodatkowe złącza z wyprowadzonym sygnałem MIL-STD-1553B (oznaczone oraz ). 11. Na stanowisku nie zabudowano systemu radiokompasu, jednak przewidziano taką możliwość w przyszłości. Dla wykorzystania funkcji symulacji uszkodzenia radiokompasu (sygnał BF ADF z platformy inercjalnej) na stanowisku w instalacji ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 18/37

19 systemu przewidziano możliwość symulowania uszkodzenia ADF za pomocą zabudowanych elementów dyskretnych). 12. Na stanowisku nie zabudowano systemu radiowysokościomierza RW, jednak przewidziano taką możliwość w przyszłości. Dla wykorzystania funkcji symulacji uszkodzenia radiowysokościomierza (sygnał BF RA z platformy inercjalnej) na stanowisku w instalacji systemu przewidziano możliwość symulowania uszkodzenia RW za pomocą zabudowanych elementów dyskretnych). 13. System w czasie rzeczywistym umożliwia pilotowi-instruktorowi ocenę wykonywanego zadania za pośrednictwem monitora wielofunkcyjnego MW-1, pulpitu sterowania PS, a po locie wykorzystanie zapisu magnetowidowego. Szczegółowe dane i wyniki przeprowadzonych prac zawarto w następujących opracowaniach: 1. Sprawozdanie z pracy nr 160/43/2007 pt.: Opracowanie stanowiska integracyjnego do potrzeb realizacji wyposażenia statków powietrznych, nr BT ITWL 3632/ Sprawozdanie z pracy nr 183/43/2007 pt.: Opracowanie dokumentacji elementów i zespołów mechanicznych stanowiska laboratoryjnego awioniki, nr BT ITWL 3747/ Sprawozdanie z pracy nr 12/43/2008 pt.: Opracowanie stanowiska integracyjnego do potrzeb realizacji optymalizacji wyposażenia statków powietrznych, nr BT ITWL 3832/ Sprawozdanie z pracy nr 45/43/2008 pt.: Opracowanie badawczego stanowiska integracyjnego awioniki statku powietrznego dla systemu awionicznego w zakresie podstawowym, nr BT ITWL 3945/ Sprawozdanie z pracy nr 107/43/2008 pt.: Opracowanie badawczego stanowiska integracyjnego awioniki statku powietrznego dla systemu awionicznego w zakresie rozszerzonym, nr BT ITWL 4042/50. Zadanie 5: Wykonanie i próby badawczego stanowiska integracyjnego awioniki statku powietrznego Wybrane elementy badań stanowiska integracyjnego awioniki: W celu zapewnienia zasilania urządzeń awionicznych zabudowanych na badawczym stanowisku integracyjnym energią prądu stałego o napięciu 28V zastosowano zasilacz prądu stałego ZR Podstawowym źródłem prądu stałego w zasilaczu jest pełnookresowy mostek tyrystorowo-diodowy. Mostek ten zasilany jest z transformatora trójfazowego głównego transformującego napięcie sieci przemysłowej trójfazowej 230/400V, 50Hz. Po wyprostowaniu przez blok tyrystorowodiodowy prąd (pulsujący) podawany jest przez filtr na zaciski wyjściowe zasilacza. Ponadto, w celu usztywnienia charakterystyki zastosowano rezystor wstępnego obciążenia. W ramach adaptacji istniejącej sieci prądu stałego wykonano niezbędne modernizacje, między innymi poprowadzono nową sieć kablową. Sieć tą tworzą przewodu siłowe (wydawcze) 28V oraz sterujące. Przewody siłowe umożliwiają doprowadzenie napięcia stałego 28V od zasilacza prądu stałego ZR-1500 poprzez elementy komutacyjne do tablicy zasilającej prądu stałego DC na stanowisku integracyjnym. Przewody sterujące umożliwiają zdalne sterowanie tj. podawanie napięcia prądu stałego z zasilacza na tablicę poprzez włączenie włącznika umieszczonego na tablicy. Na tablicy umieszczono również analogowe mierniki ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 19/37

20 napięcia i prądu stałego, które służą do bieżącej obserwacji i kontroli łącznego poboru prądu i wartości napięcia na zaciskach wydawczych. Do zasilania obwodów zewnętrznych służą zaciski prądowe umieszczone na listwie w dolnej części tablicy, dwie pary zacisków wysoko-prądowych i osiem niskoprądowych. Każdy z obwodów niskoprądowych jest włączany i zabezpieczony bezpiecznikiem nadmiarowoprądowym. Każdy obwód ma również kontrolkę świetlną informującą, że jest pod napięciem. Wszystkie obwody prądu stałego mają możliwość awaryjnego odłączania ich od napięcia wyłącznikiem, który zdalnie steruje pracą stycznika siłowego umieszczonego w torze prądu stałego na wyjściu zasilacza ZR-1500 umożliwiając jego wyłączenie. Ponadto tor prądu stałego zapewnia poprzez swoją strukturę sterowania odcięcie napięcia z chwilą zaniku napięcia sieci przemysłowej 230/400V 50Hz i umożliwia jego ponowne załączenie. W celu wykonania sprawdzenia funkcjonowania sterowania i kontroli tablicy zasilającej napięcia przemiennego 3x36V, 400Hz wykorzystuje się włącznik zasilania na tablicy zasilającej napięcia przemiennego 400Hz stanowiska integracyjnego. W tym celu wykorzystuje się włącznik główny oznaczony WŁG-B a następnie włącznik oznaczony LUZES umieszczony na tablicy sterującej. Bezpośredni rozruch kontenera LUZES następuje po wciśnięciu zielonego przycisku na tablicy sterującej znajdującego się po prawej stronie włącznika LUZES. W celu podania napięcia 3x36V, 400Hz bezpośrednio na zaciski wyjściowe oznaczone 3x36V należy włączyć zespolony włącznik 2 opisany 3x36V 400Hz Zdjęcie nr 1 Wygląd ogólny stanowiska do optymalizacji zintegrowanego systemu awionicznego wraz z tablicami zasilania. ZAŁĄCZNIK DO RAPORTU KOŃCOWEGO Z PROJEKTU ROZWOJOWEGO R00-O0066/3 20/37

Wyposażenie Samolotu

Wyposażenie Samolotu P O L I T E C H N I K A R Z E S Z O W S K A im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Awioniki i Sterowania Wyposażenie Samolotu Instrukcja do laboratorium nr 2 Przyrządy żyroskopowe

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: II stopnia (magisterskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: II stopnia (magisterskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Układ sterowania płaszczyzną sterową o podwyższonej niezawodności 1. Analiza literatury. 2. Uruchomienie

Bardziej szczegółowo

EPPL 1-1. KOMUNIKACJA - Interfejs komunikacyjny RS 232 - Sieciowa Karta Zarządzająca SNMP/HTTP

EPPL 1-1. KOMUNIKACJA - Interfejs komunikacyjny RS 232 - Sieciowa Karta Zarządzająca SNMP/HTTP EPPL 1-1 Najnowsza seria zaawansowanych technologicznie zasilaczy klasy On-Line (VFI), przeznaczonych do współpracy z urządzeniami zasilanymi z jednofazowej sieci energetycznej ~230V: serwery, sieci komputerowe

Bardziej szczegółowo

Modem radiowy MR10-GATEWAY-S

Modem radiowy MR10-GATEWAY-S Modem radiowy MR10-GATEWAY-S - instrukcja obsługi - (dokumentacja techniczno-ruchowa) Spis treści 1. Wstęp 2. Budowa modemu 3. Parametry techniczne 4. Parametry konfigurowalne 5. Antena 6. Dioda sygnalizacyjna

Bardziej szczegółowo

Przyjazny układ sterowania dla samolotów w lekkich

Przyjazny układ sterowania dla samolotów w lekkich POLITECHNIKA RZESZOWSKA im. I. ŁUKASIEWICZA Katedra Awioniki i Sterowania Stan obecny i perspektywy zastosowania: Przyjazny układ sterowania dla samolotów w lekkich Katedra Awioniki i Sterowania PRz Projektowanie

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Analiza właściwości pilotażowych samolotu Specjalność: Pilotaż lub Awionika 1. Analiza stosowanych kryteriów

Bardziej szczegółowo

Biomonitoring system kontroli jakości wody

Biomonitoring system kontroli jakości wody FIRMA INNOWACYJNO -WDROŻENIOWA ul. Źródlana 8, Koszyce Małe 33-111 Koszyce Wielkie tel.: 0146210029, 0146360117, 608465631 faks: 0146210029, 0146360117 mail: biuro@elbit.edu.pl www.elbit.edu.pl Biomonitoring

Bardziej szczegółowo

EPPL , 15-31, 20-31

EPPL , 15-31, 20-31 Najnowsza seria zaawansowanych technologicznie zasilaczy klasy On-Line (VFI), przeznaczonych do współpracy z urządzeniami zasilanymi z jednofazowej sieci energetycznej ~230V: serwery, sieci komputerowe

Bardziej szczegółowo

rh-ao3 LR Moduł wyjść analogowych 0 10 V systemu F&Home RADIO. Wersja LR powiększony zasięg.

rh-ao3 LR Moduł wyjść analogowych 0 10 V systemu F&Home RADIO. Wersja LR powiększony zasięg. 95-00 Pabianice, ul. Konstantynowska 79/81 tel. +48 4 15 3 83 www.fif.com.pl KARTA KATALOGOWA rh-ao3 LR Moduł wyjść analogowych 0 10 V systemu F&Home RADIO. Wersja LR powiększony zasięg. 95-00 Pabianice,

Bardziej szczegółowo

rh-r3s3 Przekaźnik trzykanałowy z trzema wejściami systemu F&Home RADIO.

rh-r3s3 Przekaźnik trzykanałowy z trzema wejściami systemu F&Home RADIO. 95-00 Pabianice, ul. Konstantynowska 79/81 tel. +48 4 15 3 83 www.fif.com.pl KARTA KATALOGOWA rh-r3s3 Przekaźnik trzykanałowy z trzema wejściami systemu F&Home RADIO. 95-00 Pabianice, ul. Konstantynowska

Bardziej szczegółowo

Przełącznik KVM USB. Przełącznik KVM USB z obsługą sygnału audio i 2 portami. Przełącznik KVM USB z obsługą sygnału audio i 4 portami

Przełącznik KVM USB. Przełącznik KVM USB z obsługą sygnału audio i 2 portami. Przełącznik KVM USB z obsługą sygnału audio i 4 portami Przełącznik KVM USB Przełącznik KVM USB z obsługą sygnału audio i 2 portami Przełącznik KVM USB z obsługą sygnału audio i 4 portami Instrukcja obsługi DS-11403 (2 porty) DS-12402 (4 porty) 1 UWAGA Urządzenie

Bardziej szczegółowo

Modem radiowy MR10-NODE-S

Modem radiowy MR10-NODE-S Modem radiowy MR10-NODE-S - instrukcja obsługi - (dokumentacja techniczno-ruchowa) Spis treści 1. Wstęp 2. Wygląd urządzenia 3. Parametry techniczne 4. Parametry konfigurowalne 5. Antena 6. Dioda sygnalizacyjna

Bardziej szczegółowo

Międzynarodowe Targi Spawalnicze ExpoWELDING 2012 16-18 października 2012 NOWOŚCI TARGOWE

Międzynarodowe Targi Spawalnicze ExpoWELDING 2012 16-18 października 2012 NOWOŚCI TARGOWE Międzynarodowe Targi Spawalnicze ExpoWELDING 2012 16-18 października 2012 NOWOŚCI TARGOWE FIRMA: SOMAR S.A. ul. Karoliny 4 40-186 Katowice tel. 32 359 71 00 fax. 32 359 71 11 e-mail: biuro@somar.com.pl

Bardziej szczegółowo

rh-pwm3 Trzykanałowy sterownik PWM niskiego napięcia systemu F&Home RADIO.

rh-pwm3 Trzykanałowy sterownik PWM niskiego napięcia systemu F&Home RADIO. KARTA KATALOGOWA rh-pwm3 Trzykanałowy sterownik PWM niskiego napięcia systemu F&Home RADIO. rh-pwm3 służy do sterowania trzema odbiornikami niskiego napięcia zasilanymi z zewnętrznego zasilacza. Regulacja

Bardziej szczegółowo

1. Zasilacz mocy AC/ DC programowany 1 sztuka. 2. Oscyloskop cyfrowy z pomiarem - 2 sztuki 3. Oscyloskop cyfrowy profesjonalny 1 sztuka

1. Zasilacz mocy AC/ DC programowany 1 sztuka. 2. Oscyloskop cyfrowy z pomiarem - 2 sztuki 3. Oscyloskop cyfrowy profesjonalny 1 sztuka WYMAGANIA TECHNICZNE Laboratoryjne wyposażenie pomiarowe w zestawie : 1. Zasilacz mocy AC/ DC programowany 1 sztuka 2. Oscyloskop cyfrowy z pomiarem - 2 sztuki 3. Oscyloskop cyfrowy profesjonalny 1 sztuka

Bardziej szczegółowo

F&F Filipowski Sp. J Pabianice, ul. Konstantynowska 79/81 tel KARTA KATALOGOWA

F&F Filipowski Sp. J Pabianice, ul. Konstantynowska 79/81 tel KARTA KATALOGOWA KARTA KATALOGOWA rh-r1s1t1 LR Nadajnik jednokanałowy, pojedynczy przekaźnik z zewnętrznym czujnikiem do pomiaru temperatury systemu F&Home RADIO. Wersja LR powiększony zasięg. rh-r1s1t1 LR jest odmianą

Bardziej szczegółowo

ZASILACZE AWARYJNEUPS

ZASILACZE AWARYJNEUPS AWARYJNE ZASILACZE Uninterruptible Power Supply Dbamy o stabilną pracę www.east.pl ZASILACZE AWARYJNE TECHNOLOGIA Zasilacze awaryjne marki EAST wyposażone zostały w zaawansowane technologie zapewniające

Bardziej szczegółowo

Rejestratory Sił, Naprężeń.

Rejestratory Sił, Naprężeń. JAS Projektowanie Systemów Komputerowych Rejestratory Sił, Naprężeń. 2012-01-04 2 Zawartość Typy rejestratorów.... 4 Tryby pracy.... 4 Obsługa programu.... 5 Menu główne programu.... 7 Pliki.... 7 Typ

Bardziej szczegółowo

M28, M28B i M28B/PT,

M28, M28B i M28B/PT, POLSKIE ZAKŁADY LOTNICZE SP. Z O.O. MIELEC, POLAND ROZWÓJ TECHNIKI, TECHNOLOGII I TRANSPORTU W LOTNICTWIE Modyfikacje samolotów, B i B/PT, Sławomir Wójcik Zastępca Głównego Konstruktora Samolotów pasażerskich

Bardziej szczegółowo

Wyposażenie Samolotu

Wyposażenie Samolotu P O L I T E C H N I K A R Z E S Z O W S K A im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Awioniki i Sterowania Wyposażenie Samolotu Instrukcja do laboratorium nr 3 Lotniczy odbiornik

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Skalowanie czujników prędkości kątowej i orientacji przestrzennej 1. Analiza właściwości czujników i układów

Bardziej szczegółowo

Projektowanie systemów pomiarowych

Projektowanie systemów pomiarowych Projektowanie systemów pomiarowych 03 Konstrukcja mierników analogowych Zasada działania mierników cyfrowych Przetworniki pomiarowe wielkości elektrycznych 1 Analogowe przyrządy pomiarowe Podział ze względu

Bardziej szczegółowo

Samochodowe systemy kontrolno dyspozytorskie GPS

Samochodowe systemy kontrolno dyspozytorskie GPS Samochodowe systemy kontrolno dyspozytorskie GPS Podstawowa konfiguracja systemu Prezentowany system służy do nadzoru dyspozytorskiego w służbach wykorzystujących grupy pojazdów operujących w obszarze

Bardziej szczegółowo

Bezzałogowy samolot rozpoznawczy Mikro BSP

Bezzałogowy samolot rozpoznawczy Mikro BSP Bezzałogowy samolot rozpoznawczy Mikro BSP Konrad Warnicki Tomasz Wnuk Opiekun pracy: dr. Andrzej Ignaczak Kierownik pracy: dr. Ryszard Kossowski Projekt bezzałogowego samolotu rozpoznawczego Konsorcjum:

Bardziej szczegółowo

Automatyka przemysłowa na wybranych obiektach. mgr inż. Artur Jurneczko PROCOM SYSTEM S.A., ul. Stargardzka 8a, 54-156 Wrocław

Automatyka przemysłowa na wybranych obiektach. mgr inż. Artur Jurneczko PROCOM SYSTEM S.A., ul. Stargardzka 8a, 54-156 Wrocław Automatyka przemysłowa na wybranych obiektach mgr inż. Artur Jurneczko PROCOM SYSTEM S.A., ul. Stargardzka 8a, 54-156 Wrocław 2 Cele prezentacji Celem prezentacji jest przybliżenie automatyki przemysłowej

Bardziej szczegółowo

Urządzenia Elektroniki Morskiej Systemy Elektroniki Morskiej

Urządzenia Elektroniki Morskiej Systemy Elektroniki Morskiej Wydział Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej Katedra Systemów Elektroniki Morskiej Stacja Badań Hydroakustycznych Urządzenia Elektroniki Morskiej Systemy Elektroniki Morskiej

Bardziej szczegółowo

VIGOTOR VPT-13. Elektroniczny przetwornik ciśnienia 1. ZASTOSOWANIA. J+J AUTOMATYCY Janusz Mazan

VIGOTOR VPT-13. Elektroniczny przetwornik ciśnienia 1. ZASTOSOWANIA. J+J AUTOMATYCY Janusz Mazan Elektroniczny przetwornik ciśnienia W przetwornikach VPT 13 ciśnienie medium pomiarowego (gazu lub cieczy) o wielkości do 2.5 MPa mierzone w odniesieniu do ciśnienia atmosferycznego jest przetwarzane na

Bardziej szczegółowo

rh-r5 Przekaźnik pięciokanałowy systemu F&Home RADIO.

rh-r5 Przekaźnik pięciokanałowy systemu F&Home RADIO. 95-00 Pabianice, ul. Konstantynowska 79/81 tel. +48 4 15 3 83 www.fif.com.pl KARTA KATALOGOWA rh-r5 Przekaźnik pięciokanałowy systemu F&Home RADIO. 95-00 Pabianice, ul. Konstantynowska 79/81 tel. +48 4

Bardziej szczegółowo

INSTYTUT TECHNICZNY WOJSK LOTNICZYCH Air Force Institute of Technology

INSTYTUT TECHNICZNY WOJSK LOTNICZYCH Air Force Institute of Technology INSTYTUT TECHNICZNY WOJSK LOTNICZYCH Air Force Institute of Technology MISJA Naukowo-badawcze wspomaganie eksploatacji lotniczej techniki wojskowej 2 INSTYTUT TECHNICZNY WOJSK LOTNICZYCH Podstawowe informacje

Bardziej szczegółowo

Dane techniczne analizatora CAT 4S

Dane techniczne analizatora CAT 4S Model CAT 4S jest typowym analizatorem CAT-4 z sondą o specjalnym wykonaniu, przystosowaną do pracy w bardzo trudnych warunkach. Dane techniczne analizatora CAT 4S Cyrkonowy Analizator Tlenu CAT 4S przeznaczony

Bardziej szczegółowo

PRZENOŚNY MIERNIK MOCY RF-1000

PRZENOŚNY MIERNIK MOCY RF-1000 PRZENOŚNY MIERNIK MOCY RF-1000 1. Dane techniczne Zakresy pomiarowe: Dynamika: Rozdzielczość: Dokładność pomiaru mocy: 0.5 3000 MHz, gniazdo N 60 db (-50dBm do +10dBm) dla zakresu 0.5 3000 MHz 0.1 dbm

Bardziej szczegółowo

rh-t1x1es AC LR Moduł pomiaru temperatury i jasności z zewnętrznym czujnikiem temperatury i jasności systemu F&Home RADIO.

rh-t1x1es AC LR Moduł pomiaru temperatury i jasności z zewnętrznym czujnikiem temperatury i jasności systemu F&Home RADIO. 95-00 Pabianice, ul. Konstantynowska 79/81 tel. +48 4 15 3 83 www.fif.com.pl KARTA KATALOGOWA rh-t1x1es AC LR Moduł pomiaru temperatury i jasności z zewnętrznym czujnikiem temperatury i jasności systemu

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

Moduł rozszerzeń ATTO dla systemu monitorującego SMOK.

Moduł rozszerzeń ATTO dla systemu monitorującego SMOK. Moduł rozszerzeń ATTO dla systemu monitorującego SMOK. ATTO-UIO jest przeznaczony do systemów rozproszonych bazujących na magistrali RS485 obsługującej protokół MODBUS RTU. Sterownik może pracować jako

Bardziej szczegółowo

UKŁAD AUTOMATYCZNEJ REGULACJI STACJI TRANSFORMATOROWO - PRZESYŁOWYCH TYPU ARST

UKŁAD AUTOMATYCZNEJ REGULACJI STACJI TRANSFORMATOROWO - PRZESYŁOWYCH TYPU ARST Oddział Gdańsk JEDNOSTKA BADAWCZO-ROZWOJOWA ul. Mikołaja Reja 27, 80-870 Gdańsk tel. (48 58) 349 82 00, fax: (48 58) 349 76 85 e-mail: ien@ien.gda.pl http://www.ien.gda.pl ZAKŁAD TECHNIKI MIKROPROCESOROWEJ

Bardziej szczegółowo

Moduł Komunikacyjny MCU42 do systemu AFS42

Moduł Komunikacyjny MCU42 do systemu AFS42 Moduł Komunikacyjny MCU42 do systemu AFS42 IOT - Instrukcja Obsługi - Informacja Techniczna Aktualizacja 2015-05-05 13:04 www.lep.pl biuro@lep.pl 32-300 Olkusz, ul. Wspólna 9, tel/fax (32) 754 54 54, 754

Bardziej szczegółowo

Sterownik Spid Pant 8 i Ant 8. Podręcznik użytkowania

Sterownik Spid Pant 8 i Ant 8. Podręcznik użytkowania Sterownik Spid Pant 8 i Ant 8 Podręcznik użytkowania Spis treści Spis treści...2 Wprowadzenie...3 Komplet...3 Dane techniczne...3 Panel sterujący...4 Panel tylny...5 Obsługa sterownika...6 Zmiana trybu

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Systemy nawigacji satelitarnej. Przemysław Bartczak

Systemy nawigacji satelitarnej. Przemysław Bartczak Systemy nawigacji satelitarnej Przemysław Bartczak Systemy nawigacji satelitarnej powinny spełniać następujące wymagania: system umożliwia określenie pozycji naziemnego użytkownika w każdym momencie, w

Bardziej szczegółowo

Dotyczy: Specyfikacji Istotnych Warunków Zamówienia do przetargu nieograniczonego na dostawę symulatorów proceduralnych klasy PC numer Zp/pn/10/2015

Dotyczy: Specyfikacji Istotnych Warunków Zamówienia do przetargu nieograniczonego na dostawę symulatorów proceduralnych klasy PC numer Zp/pn/10/2015 Dęblin, dnia 23.02.2015 r. Do Wykonawców postepowania numer Zp/pn/10/2015 Dotyczy: Specyfikacji Istotnych Warunków Zamówienia do przetargu nieograniczonego na dostawę symulatorów proceduralnych klasy PC

Bardziej szczegółowo

Laboratoria badawcze

Laboratoria badawcze rok założenia: 1989 ZAKŁAD PRODUKCJI METALOWEJ ul. Martyniaka 14 10-763 Olsztyn tel./faks: (0-89) 524-43-88, 513-68-18 biuro@zpm.net.pl www.zpm.net.pl Laboratoria badawcze Spis treści 1. Wielokrotne otwieranie

Bardziej szczegółowo

rh-r2s2 Przekaźnik dwukanałowy z dwoma wejściami systemu F&Home RADIO.

rh-r2s2 Przekaźnik dwukanałowy z dwoma wejściami systemu F&Home RADIO. 95-00 Pabianice, ul. Konstantynowska 79/81 tel. +48 4 15 3 83 www.fif.com.pl KARTA KATALOGOWA rh-rs Przekaźnik dwukanałowy z dwoma wejściami systemu F&Home RADIO. 95-00 Pabianice, ul. Konstantynowska 79/81

Bardziej szczegółowo

LABORATORIUM ENERGOOSZCZĘDNEGO BUDYNKU

LABORATORIUM ENERGOOSZCZĘDNEGO BUDYNKU LABORATORIUM ENERGOOSZCZĘDNEGO BUDYNKU Ćwiczenie 9 STEROWANIE ROLETAMI POPRZEZ TEBIS TS. WYKORZYSTANIE FUNKCJI WIELOKROTNEGO ŁĄCZENIA. 2 1. Cel ćwiczenia. Celem ćwiczenia jest nauczenie przyszłego użytkownika

Bardziej szczegółowo

Laboratorium Komputerowe Systemy Pomiarowe

Laboratorium Komputerowe Systemy Pomiarowe Jarosław Gliwiński, Łukasz Rogacz Laboratorium Komputerowe Systemy Pomiarowe ćw. Programowanie wielofunkcyjnej karty pomiarowej w VEE Data wykonania: 15.05.08 Data oddania: 29.05.08 Celem ćwiczenia była

Bardziej szczegółowo

Komputerowe systemy pomiarowe. Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium

Komputerowe systemy pomiarowe. Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium Komputerowe systemy pomiarowe Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium 1 - Cel zajęć - Orientacyjny plan wykładu - Zasady zaliczania przedmiotu - Literatura Klasyfikacja systemów pomiarowych

Bardziej szczegółowo

PROGRAMOWALNE STEROWNIKI LOGICZNE

PROGRAMOWALNE STEROWNIKI LOGICZNE PROGRAMOWALNE STEROWNIKI LOGICZNE I. Wprowadzenie Klasyczna synteza kombinacyjnych i sekwencyjnych układów sterowania stosowana do automatyzacji dyskretnych procesów produkcyjnych polega na zaprojektowaniu

Bardziej szczegółowo

rh-t6 LR Sześciokanałowy moduł pomiaru temperatury systemu F&Home RADIO. Wersja LR powiększony zasięg.

rh-t6 LR Sześciokanałowy moduł pomiaru temperatury systemu F&Home RADIO. Wersja LR powiększony zasięg. KARTA KATALOGOWA rh-t6 LR Sześciokanałowy moduł pomiaru temperatury systemu F&Home RADIO. Wersja LR powiększony zasięg. rh-t6 LR jest sześciowejściowym modułem przystosowanym do podłączenia czujników temperatury

Bardziej szczegółowo

rh-r1s1 / rh-r1s1i Przekaźnik jednokanałowy z pojedynczym wejściem systemu F&Home RADIO.

rh-r1s1 / rh-r1s1i Przekaźnik jednokanałowy z pojedynczym wejściem systemu F&Home RADIO. 95-00 Pabianice, ul. Konstantynowska 79/81 tel. +48 4 15 3 83 www.fif.com.pl KARTA KATALOGOWA rh-r1s1 / rh-r1s1i Przekaźnik jednokanałowy z pojedynczym wejściem systemu F&Home RADIO. 95-00 Pabianice, ul.

Bardziej szczegółowo

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych ZP/UR/46/203 Zał. nr a do siwz Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych Przedmiot zamówienia obejmuje następujące elementy: L.p. Nazwa Ilość. Zestawienie komputera

Bardziej szczegółowo

2. Zawartość dokumentacji. 1. Strona tytułowa. 2. Zawartość dokumentacji. 3. Spis rysunków. 4. Opis instalacji kontroli dostępu. 3.

2. Zawartość dokumentacji. 1. Strona tytułowa. 2. Zawartość dokumentacji. 3. Spis rysunków. 4. Opis instalacji kontroli dostępu. 3. 2. Zawartość dokumentacji 1. Strona tytułowa. 2. Zawartość dokumentacji. 3. Spis rysunków. 4. Opis instalacji kontroli dostępu. 3. Spis rysunków Rys nr 1 schemat instalacji KD Piwnica Rys nr 2 schemat

Bardziej szczegółowo

METODY TESTOWANIA POPRAWNOŚCI PRZETWARZANIA INFORMACJI W SYSTEMACH AWIONICZNYCH ZINTEGROWANYCH NA BAZIE CYFROWEJ SZYNY DANYCH MIL-1553B

METODY TESTOWANIA POPRAWNOŚCI PRZETWARZANIA INFORMACJI W SYSTEMACH AWIONICZNYCH ZINTEGROWANYCH NA BAZIE CYFROWEJ SZYNY DANYCH MIL-1553B Sławomir MICHALAK Andrzej SZELMANOWSKI Grzegorz WUDEL Instytut Techniczny Wojsk Lotniczych PRACE NAUKOWE ITWL Zeszyt 22, s. 115 124, 2007 r. DOI 10.2478/v10041-008-0005-3 METODY TESTOWANIA POPRAWNOŚCI

Bardziej szczegółowo

I Konkurs NCBR z obszaru bezpieczeństwa i obronności

I Konkurs NCBR z obszaru bezpieczeństwa i obronności I Konkurs NCBR z obszaru bezpieczeństwa i obronności Projekt: Zwiększenie bezpieczeństwa pożarowego obiektów budowlanych poprzez opracowanie nowoczesnego systemu monitoringu pożarowego na terenie RP Autor:

Bardziej szczegółowo

POMIARY CIEPLNE KARTY ĆWICZEŃ LABORATORYJNYCH V. 2011

POMIARY CIEPLNE KARTY ĆWICZEŃ LABORATORYJNYCH V. 2011 ĆWICZENIE 1: Pomiary temperatury 1. Wymagane wiadomości 1.1. Podział metod pomiaru temperatury 1.2. Zasada działania czujników termorezystancyjnych 1.3. Zasada działania czujników termoelektrycznych 1.4.

Bardziej szczegółowo

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego 1. Cel ćwiczenia Poznanie typowych układów pracy przetworników pomiarowych o zunifikowanym wyjściu prądowym. Wyznaczenie i analiza charakterystyk

Bardziej szczegółowo

X-Meter. EnergyTeam PRZYKŁADOWE SCHEMATY SYSTEMU X-METER. 1 punkt pomiarowy. System nr 1. 2 punkty pomiarowe. System nr 2

X-Meter. EnergyTeam PRZYKŁADOWE SCHEMATY SYSTEMU X-METER. 1 punkt pomiarowy. System nr 1. 2 punkty pomiarowe. System nr 2 PRZYKŁADOWE SCHEMATY SYSTEMU X-METER System nr 1 1 punkt pomiarowy Schemat przedstawia najprostszy / najmniejszy z możliwych systemów z wykorzystaniem urządzenia X-Meter. W tym przypadku system monitoruje

Bardziej szczegółowo

strona 1 MULTIMETR CYFROWY M840D INSTRUKCJA OBSŁUGI

strona 1 MULTIMETR CYFROWY M840D INSTRUKCJA OBSŁUGI strona 1 MULTIMETR CYFROWY M840D INSTRUKCJA OBSŁUGI 1. WPROWADZENIE. Prezentowany multimetr cyfrowy jest zasilany bateryjnie. Wynik pomiaru wyświetlany jest w postaci 3 1 / 2 cyfry. Miernik może być stosowany

Bardziej szczegółowo

Xelee Mini IR / DMX512

Xelee Mini IR / DMX512 Xelee Mini IR / DMX512 Sterowniki LED do modułów napięciowych Xelee Mini IR to trzykanałowy sterownik przystosowany do pracy z napięciowymi modułami LED, takimi jak popularne taśmy LED. Wbudowany układ

Bardziej szczegółowo

PODSYSTEM RADIODOSTĘPU MOBILNEGO ZINTEGROWANEGO WĘZŁA ŁĄCZNOŚCI TURKUS

PODSYSTEM RADIODOSTĘPU MOBILNEGO ZINTEGROWANEGO WĘZŁA ŁĄCZNOŚCI TURKUS PODSYSTEM RADIODOSTĘPU MOBILNEGO ZINTEGROWANEGO WĘZŁA ŁĄCZNOŚCI TURKUS ppłk dr inż. Paweł KANIEWSKI mjr dr inż. Robert URBAN kpt. mgr inż. Kamil WILGUCKI mgr inż. Paweł SKARŻYŃSKI WOJSKOWY INSTYTUT ŁĄCZNOŚCI

Bardziej szczegółowo

Laboratorium Komputerowe Systemy Pomiarowe

Laboratorium Komputerowe Systemy Pomiarowe Jarosław Gliwiński, Łukasz Rogacz Laboratorium Komputerowe Systemy Pomiarowe ćw. Zastosowanie standardu VISA do obsługi interfejsu RS-232C Data wykonania: 03.04.08 Data oddania: 17.04.08 Celem ćwiczenia

Bardziej szczegółowo

rh-s6 Nadajnik sześciokanałowy systemu F&Home RADIO.

rh-s6 Nadajnik sześciokanałowy systemu F&Home RADIO. 95-00 Pabianice, ul. Konstantynowska 79/81 tel. +48 4 15 3 83 www.fif.com.pl KARTA KATALOGOWA rh-s6 Nadajnik sześciokanałowy systemu F&Home RADIO. 95-00 Pabianice, ul. Konstantynowska 79/81 tel. +48 4

Bardziej szczegółowo

Ćwicz. 4 Elementy wykonawcze EWA/PP

Ćwicz. 4 Elementy wykonawcze EWA/PP 1. Wprowadzenie Temat ćwiczenia: Przekaźniki półprzewodnikowe Istnieje kilka rodzajów przekaźników półprzewodnikowych. Zazwyczaj są one sterowane optoelektrycznie z pełną izolacja galwaniczną napięcia

Bardziej szczegółowo

STEROWNIK LAMP LED MS-1 Konwerter sygnału 0-10V. Agropian System

STEROWNIK LAMP LED MS-1 Konwerter sygnału 0-10V. Agropian System STEROWNIK LAMP LED MS-1 Konwerter sygnału 0-10V Agropian System Opis techniczny Instrukcja montażu i eksploatacji UWAGA! Przed przystąpieniem do pracy ze sterownikiem należy zapoznać się z instrukcją.

Bardziej szczegółowo

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH Badanie siłowników INSTRUKCJA DO ĆWICZENIA LABORATORYJNEGO ŁÓDŹ 2011

Bardziej szczegółowo

TELEMETRIA. [Kontrola ochrony oddychania wspierana systemem radiowym z serią alpha]

TELEMETRIA. [Kontrola ochrony oddychania wspierana systemem radiowym z serią alpha] TELEMETRIA [Kontrola ochrony oddychania wspierana systemem radiowym z serią alpha] Czym jest system telemetryczny? Telemetria: pomiar parametrów pracy na odległość Seria alpha - modułowy system kontroli

Bardziej szczegółowo

Konfiguracja i programowanie sterownika GE Fanuc VersaMax z modelem procesu przepływów i mieszania cieczy

Konfiguracja i programowanie sterownika GE Fanuc VersaMax z modelem procesu przepływów i mieszania cieczy Ćwiczenie V LABORATORIUM MECHATRONIKI IEPiM Konfiguracja i programowanie sterownika GE Fanuc VersaMax z modelem procesu przepływów i mieszania cieczy Zał.1 - Działanie i charakterystyka sterownika PLC

Bardziej szczegółowo

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu boost

Bardziej szczegółowo

F&F Filipowski Sp. J Pabianice, ul. Konstantynowska 79/81 tel KARTA KATALOGOWA

F&F Filipowski Sp. J Pabianice, ul. Konstantynowska 79/81 tel KARTA KATALOGOWA 95-00 Pabianice, ul. Konstantynowska 79/81 tel. +48 4 15 3 83 www.fif.com.pl KARTA KATALOGOWA rh-s4tes AC Nadajnik czterokanałowy z zewnętrznym czujnikiem do pomiaru temperatury systemu F&Home RADIO. 95-00

Bardziej szczegółowo

T 1000 PLUS Tester zabezpieczeń obwodów wtórnych

T 1000 PLUS Tester zabezpieczeń obwodów wtórnych T 1000 PLUS Tester zabezpieczeń obwodów wtórnych Przeznaczony do testowania przekaźników i przetworników Sterowany mikroprocesorem Wyposażony w przesuwnik fazowy Generator częstotliwości Wyniki badań i

Bardziej szczegółowo

rh-tsr1s2 DIN LR Przekaźnik roletowy z dwoma wejściami systemu F&Home RADIO. Wersja LR powiększony zasięg.

rh-tsr1s2 DIN LR Przekaźnik roletowy z dwoma wejściami systemu F&Home RADIO. Wersja LR powiększony zasięg. 95-00 Pabianice, ul. Konstantynowska 79/81 tel. +48 4 15 3 83 www.fif.com.pl KARTA KATALOGOWA rh-tsr1s DIN LR Przekaźnik roletowy z dwoma wejściami systemu F&Home RADIO. Wersja LR powiększony zasięg. 95-00

Bardziej szczegółowo

SZAFA ZASILAJĄCO-STERUJĄCA ZESTAWU DWUPOMPOWEGO DLA POMPOWNI ŚCIEKÓW P2 RUDZICZKA UL. SZKOLNA

SZAFA ZASILAJĄCO-STERUJĄCA ZESTAWU DWUPOMPOWEGO DLA POMPOWNI ŚCIEKÓW P2 RUDZICZKA UL. SZKOLNA SZAFA ZASILAJĄCO-STERUJĄCA ZESTAWU DWUPOMPOWEGO DLA POMPOWNI ŚCIEKÓW P2 RUDZICZKA UL. SZKOLNA Spis treści 1. OPIS TECHNICZNY STR. 3 2. ZASADA DZIAŁANIA STR. 5 3. ZDALNY MONITORING STR. 6 4. INTERFEJS UŻYTKOWNIKA

Bardziej szczegółowo

Karta produktu. EH-P/15/01.xx. Zintegrowany sterownik zabezpieczeń

Karta produktu. EH-P/15/01.xx. Zintegrowany sterownik zabezpieczeń Zintegrowany sterownik zabezpieczeń EH-P/15/01.xx Karta produktu CECHY CHARAKTERYSTYCZNE Zintegrowany sterownik zabezpieczeń typu EH-P/15/01.xx jest wielofunkcyjnym zabezpieczeniem służącym do ochrony

Bardziej szczegółowo

Modularny system I/O IP67

Modularny system I/O IP67 Modularny system I/O IP67 Tam gdzie kiedyś stosowano oprzewodowanie wielożyłowe, dziś dominują sieci obiektowe, zapewniające komunikację pomiędzy systemem sterowania, urządzeniami i maszynami. Systemy

Bardziej szczegółowo

Cel działania: redukcja ryzyka kolizji z ziemią. Opracowany w latach 70-tych pod wpływem dużej liczby wypadków typu CFIT.

Cel działania: redukcja ryzyka kolizji z ziemią. Opracowany w latach 70-tych pod wpływem dużej liczby wypadków typu CFIT. GPWS Ground Proximity Warning System Cel działania: redukcja ryzyka kolizji z ziemią. Opracowany w latach 70-tych pod wpływem dużej liczby wypadków typu CFIT. Zasada działania: GPWS wykorzystuje wskazania

Bardziej szczegółowo

I. DANE TECHNICZNE II. INSTRUKCJA UśYTKOWANIA... 4

I. DANE TECHNICZNE II. INSTRUKCJA UśYTKOWANIA... 4 Sterownik CU-210 I. DANE TECHNICZNE... 2 1 Opis elementów sterujących i kontrolnych...2 2 Budowa... 3 3 Dane znamionowe... 3 II. INSTRUKCJA UśYTKOWANIA... 4 1 Opis działania... 4 1.1 Załączenie i wyłączenie

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L1 BUDOWA TERMOSTATU ELEKTRONICZNEGO

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L1 BUDOWA TERMOSTATU ELEKTRONICZNEGO ĆWICZENIE LABORATORYJNE AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L1 BUDOWA TERMOSTATU ELEKTRONICZNEGO Wersja: 2013-07-27-1- 1.1. Cel ćwiczenia Celem ćwiczenia jest samodzielna

Bardziej szczegółowo

Aeroklub Kujawski SZD 48 1 Jantar Standard 2. ZAŁĄCZNIK nr 2 do Instrukcji Użytkowania w Locie szybowca SZD-48-1 Jantar St 2 ATR500

Aeroklub Kujawski SZD 48 1 Jantar Standard 2. ZAŁĄCZNIK nr 2 do Instrukcji Użytkowania w Locie szybowca SZD-48-1 Jantar St 2 ATR500 ZAŁĄCZNIK nr 2 do Instrukcji Użytkowania w Locie szybowca SZD-48-1 Jantar St 2 wyposażonego w radiostację ATR500 Uzgodniono: Nr rejestracyjny: XX-XXX Nr fabryczny: X-XXX ZAKŁAD SZYBOWCOWY JEŻÓW URZĄD LOTNICTWA

Bardziej szczegółowo

PROTOKÓŁ ODBIORU. Termin wykonania konserwacji: r. Konserwację przeprowadzono zgodnie z Normą Obronną NO-04-A004 wg następującego harmonogramu:

PROTOKÓŁ ODBIORU. Termin wykonania konserwacji: r. Konserwację przeprowadzono zgodnie z Normą Obronną NO-04-A004 wg następującego harmonogramu: Łask, dn.. r. PROTOKÓŁ ODBIORU z przeprowadzonej kwartalnej konserwacji systemu alarmowego, telewizji przemysłowej oraz systemu kontroli dostępu w Jednostce Wojskowej Nr dotyczy: umowy Nr. z dnia.. r.

Bardziej szczegółowo

Interfejs analogowy LDN-...-AN

Interfejs analogowy LDN-...-AN Batorego 18 sem@sem.pl 22 825 88 52 02-591 Warszawa www.sem.pl 22 825 84 51 Interfejs analogowy do wyświetlaczy cyfrowych LDN-...-AN zakresy pomiarowe: 0-10V; 0-20mA (4-20mA) Załącznik do instrukcji obsługi

Bardziej szczegółowo

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia

Bardziej szczegółowo

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo / analogowe W cyfrowych systemach pomiarowych często zachodzi konieczność zmiany sygnału cyfrowego na analogowy, np. w celu

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (../..) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

Regulator napięcia transformatora

Regulator napięcia transformatora Regulator napięcia transformatora Zastosowanie Regulator RNTr-1 Wykorzystywany jest do stabilizacji napięcia na stacjach elektroenergetycznych lub końcach energetycznych linii przesyłowych. Przeznaczony

Bardziej szczegółowo

Wysokowydajne falowniki wektorowe Micno KE300.

Wysokowydajne falowniki wektorowe Micno KE300. Wysokowydajne falowniki wektorowe Micno KE300. Firma Shenzhen Micno Electric Co. jest przedsiębiorstwem zajmującym się zaawansowanymi technologiami. Specjalizuje się w pracach badawczorozwojowych, produkcji,

Bardziej szczegółowo

Zintegrowany system wizualizacji parametrów nawigacyjnych w PNDS

Zintegrowany system wizualizacji parametrów nawigacyjnych w PNDS dr inż. kpt. ż.w. Andrzej Bąk Zintegrowany system wizualizacji parametrów nawigacyjnych w PNDS słowa kluczowe: PNDS, ENC, ECS, wizualizacja, sensory laserowe Artykuł opisuje sposób realizacji procesu wizualizacji

Bardziej szczegółowo

GAMMA_X_1Cw. 1. Dane techniczne. 2. Opis urządzenia Sterowanie: możliwość sterowania 1 napędem. 2. Pamięć: do 20 nadajników

GAMMA_X_1Cw. 1. Dane techniczne. 2. Opis urządzenia Sterowanie: możliwość sterowania 1 napędem. 2. Pamięć: do 20 nadajników www.sukcesgroup.pl GAMMA_X_1Cw W celu optymalnego wykorzystania możliwości odbiorników serii GAMMA prosimy o dokładne zapoznanie się z niniejszą instrukcją. Odbiorniki serii GAMMA są kompatybilne ze wszystkimi

Bardziej szczegółowo

Moduł CON014. Wersja na szynę 35mm. Przeznaczenie. Użyteczne właściwości modułu

Moduł CON014. Wersja na szynę 35mm. Przeznaczenie. Użyteczne właściwości modułu Moduł CON014 Wersja na szynę 35mm RS232 RS485 Pełna separacja galwaniczna 3.5kV. Zabezpiecza komputer przed napięciem 220V podłączonym od strony interfejsu RS485 Kontrolki LED stanu wejść i wyjść na

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik awionik 314[06]

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik awionik 314[06] Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik awionik 314[06] 1 2 3 4 5 6 7 8 Ocenie rozwiązania zadania egzaminacyjnego podlegały następujące elementy pracy: I. Tytuł pracy

Bardziej szczegółowo

1. Prace rozwojowe usługi informatyczne w zakresie opracowania prototypu oprogramowania serwisowo-instalatorskiego dla systemu testowego

1. Prace rozwojowe usługi informatyczne w zakresie opracowania prototypu oprogramowania serwisowo-instalatorskiego dla systemu testowego Projekt współfinansowany z Europejskiego Funduszu Rozwoju Regionalnego oraz Budżetu Państwa FUNDUSZE EUROPEJSKIE DLA ROZWOJU REGIONU ŁÓDZKIEGO Zamawiający: KAWU J. Kotus A. Woźniak Spółka Jawna 91-204

Bardziej szczegółowo

Obecnie na rynku przeważają dwa rodzaje zasilaczy awaryjnych. Noszą one nazwy według układu połączeń swoich elementów składowych.

Obecnie na rynku przeważają dwa rodzaje zasilaczy awaryjnych. Noszą one nazwy według układu połączeń swoich elementów składowych. chesia@paset te 74 873 54 63 ZASILACZE AWARYJNE Zasilacze awaryjne (UPS) są urządzeniami gwarantującymi pracę podłączonego do nich sprzętu w momentach zaniku prądu. Urządzenia podtrzymujące mają dosłownie

Bardziej szczegółowo

Innowacje wzmacniające system ochrony i bezpieczeństwa granic RP

Innowacje wzmacniające system ochrony i bezpieczeństwa granic RP Warszawa, 12.05.2016 r. gen. bryg. rez. pilot Dariusz WROŃSKI Innowacje wzmacniające system ochrony i bezpieczeństwa granic RP Zastosowanie głowic rodziny WH Obserwacja obiektów statycznych i dynamicznych

Bardziej szczegółowo

ZAKRES CZYNNOŚCI DO WYKONANIA PRZY PROWADZENIU KONSERWACJI SYSTEMÓW ALARMOWYCH

ZAKRES CZYNNOŚCI DO WYKONANIA PRZY PROWADZENIU KONSERWACJI SYSTEMÓW ALARMOWYCH Sprawa Nr 073/14 Załącznik nr 1 do umowy ZAKRES CZYNNOŚCI DO WYKONANIA PRZY PROWADZENIU KONSERWACJI SYSTEMÓW ALARMOWYCH Lp. 1. 2. Wewnętrzne systemy alarmowe Wysłuchanie uwag użytkownika dotyczących wewnętrznego

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS.

Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS. Planowanie inwestycji drogowych w Małopolsce w latach 2007-2013 Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS.

Bardziej szczegółowo

Model układu z diodami LED na potrzeby sygnalizacji świetlnej. Czujniki zasolenia przegląd dostepnych rozwiązań

Model układu z diodami LED na potrzeby sygnalizacji świetlnej. Czujniki zasolenia przegląd dostepnych rozwiązań Model układu z diodami LED na potrzeby sygnalizacji świetlnej Projekt i wykonanie modelu sygnalizacji świetlnej na bazie diod LED. Program sterujący układem diod LED na potrzeby sygnalizacji świetlnej

Bardziej szczegółowo

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

CVM-A1500. Analizator sieci z pomiarem jakości zasilania. Jakość pod każdym względem. Pomiar i kontrola

CVM-A1500. Analizator sieci z pomiarem jakości zasilania. Jakość pod każdym względem. Pomiar i kontrola Pomiar i kontrola CVM-A1500 Analizator sieci z pomiarem jakości zasilania Jakość pod każdym względem Technologia zapewniająca wydajność energetyczną Jakość Twojej sieci - jednym rzutem oka CVM-A1500 rejestruje

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Pomiar prędkości kątowych samolotu przy pomocy czujnika ziemskiego pola magnetycznego 1. Analiza właściwości

Bardziej szczegółowo

PL B1. INSTYTUT TECHNIKI GÓRNICZEJ KOMAG, Gliwice, PL BUP 07/14. DARIUSZ MICHALAK, Bytom, PL ŁUKASZ JASZCZYK, Pyskowice, PL

PL B1. INSTYTUT TECHNIKI GÓRNICZEJ KOMAG, Gliwice, PL BUP 07/14. DARIUSZ MICHALAK, Bytom, PL ŁUKASZ JASZCZYK, Pyskowice, PL PL 223534 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223534 (13) B1 (21) Numer zgłoszenia: 400834 (51) Int.Cl. E21C 35/24 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 05/13. PIOTR WOLSZCZAK, Lublin, PL WUP 05/16. rzecz. pat.

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 05/13. PIOTR WOLSZCZAK, Lublin, PL WUP 05/16. rzecz. pat. PL 221679 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221679 (13) B1 (21) Numer zgłoszenia: 396076 (51) Int.Cl. G08B 29/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo