SYSTEMY KLASY BI PLATFORMĄ EFEKTYWNEGO WSPÓŁDZIAŁANIA WSPÓŁCZESNYCH ORGANIZACJI. Piotr Zaskórski

Wielkość: px
Rozpocząć pokaz od strony:

Download "SYSTEMY KLASY BI PLATFORMĄ EFEKTYWNEGO WSPÓŁDZIAŁANIA WSPÓŁCZESNYCH ORGANIZACJI. Piotr Zaskórski"

Transkrypt

1 SYSTEMY KLASY BI PLATFORMĄ EFEKTYWNEGO WSPÓŁDZIAŁANIA WSPÓŁCZESNYCH ORGANIZACJI Piotr Zaskórski

2 1. MIEJSCE I ROLA SYSTEMÓW KLASY BI W KSZTAŁTOWANIU STRUKTUR I STRATEGII ZARZĄDZANIA WSPÓŁCZESNYCH ORGANIZACJI. 2. IDENTYFIKACJA CECH WSPÓŁCZESNEJ ORGANIZACJI BIZNESOWEJ. 3. MODEL FUNKCJONOWANIA ORGANIZACJI W ŚRODOWISKU SYSTEMÓW KLASY OLTP - OLAP 4. MODELE TWORZENIA ORGANIZACJI WIRTUALNYCH I SIECIOWYCH 5. WARTOŚCIOWANIE ORGANIZACJI Z UWZGLĘDNIENIEM KRYTERIUM JEJ EFEKTYWNOŚCI I SKUTECZNOŚCI W ASPEKCIE WSPÓŁDZIAŁANIA Z OTOCZENIEM PRZY WYKORZYSTANIU SYSTEMÓW KLASY BI.

3 CECHY ARCHITEKTURY XXI WIEKU HISTORIA: FUNKCJONALNOŚD HIERARCHIA LOKALNOŚD WERTYKALNOŚD TECHNOLOGIA AKCJONARIAT SZTYWNOŚD PRODUKT JAKOŚD PRODUKTU MIERNIK FINANSOWY STABILNOŚD TERAŹNIEJSZOŚD I PRZYSZŁOŚD: INTEGRACJA PŁASKOŚD GLOBALIZACJA SIECIOWOŚD INFORMACJA PARTNERSTWO ADAPTACYJNOŚD KLIENT JAKOŚD CAŁOŚCI CZAS INNOWACYJNOŚD

4 INTEGRACJA INFORMACYJNA SYSTEMÓW DZIAŁANIA CEL WEJŚCIE/X: -KAPITAŁ -LUDZIE -MATERIAŁY -NARZĘDZIA -TECHNOLOGIE -INFRASTRUKTURA SYSTEM DZIAŁANIA = ORGANIZACJA= PROCES{WE, WY, ZSIZ} ZSIZ= {OLTP, OLAP} WYJŚCIE/Y: -PRODUKT -WYRÓB -USŁUGA -PROJEKT -BRAKI -INFORMACJA INFORMACJA O POTENCJALE FIRMY I OTOCZENIU KRYTERIA/CECHY SYSTEMOWE EFEKTYWNOŚĆ SKUTECZNOŚĆ INFORMACJA O WYNIKACH DZIAŁANIA

5 ZSIZ = EWOLUCJA PLATFORMY INTEGRACJI INFORMACYJNEJ IC = INVENTORY CONTROL MRP I = PLANOWANIE I INTEGRACJA POTRZEB MATERIAŁOWYCH MRP II = PLANOWANIE I INTEGRACJA ZASOBÓW PRODUKCYJNYCH/SYSTEMY JIT ERP I = PLANOWANIE I INTEGRACJA WSZYSTKICH ZASOBÓW PRZEDSIĘBIORSTWA (SIED) ERP II = PLANOWANIE I INTEGRACJA RELACJI Z OTOCZENIEM (FINANSE, CRM) DEM = integracja funkcji i struktur = Dynamic Enterprise Modelling = SYSTEM BAAN IV SYSTEMY CAD/CASE/CIM/CAQ/INTEGRACJA PROJEKT- WYTWARZANIE BI = {OLAP, SE, DSS, AI}

6 Podstawowe cechy współczesnych ZSIZ Wielodziedzinowośd /wieloaspektowośd Integracja rozproszonych organizacji i usług informacyjno-zadaniowych Wielodostępowośd/rozproszenie użytkowników Uniwersalnośd/parametryzacja Skalowalnośd/globalnośd/złożonośd Otwartośd/rozwojowośd Modularnośd/parametryzowane komponenty Aktywnośd/planowanie/prognozowanie/wnioskowanie Jednolity interfejs użytkownika

7 GŁÓWNE KOMPONENTY ZSIZ INTERFEJS UŻYTKOWNIKA/WARSTWA BIZNESOWA WSPOM AGANIE W PEŁNYM CYKLU ZARZĄDZ ANIA APLIKACJE UŻYTKOWE ZOBRAZOWANIE GRAFICZNE/ RAPORTY/ZESTAWIENIA WYMIANA DOKUMENTÓW ELEKTRONICZNYCH BAZA DANYCH = EWIDENCJA INFRASTRUKTURA TELEKOMUNIKACYJNA /TELEINFORMATYCZNA

8 GŁÓWNE KOMPONENTY ORGANIZACYJNE BI PAKIET = DZIEDZINA/OBSZAR ZASTOSOWAO MODUŁ = ZESTAW POWIĄZANYCH SESJI OBIEKT FUNKCJONALNY = OBIEKT INFORMACYJNY TABLICA = FIZYCZNY PLIK SESJA = WYKONANIE FUNKCJI JEDNOLITY JĘZYK UŻYTKOWNIKA = INTERFEJS MIĘDZY SESJĄ a UŻYTKOWNIKIEM ZOOM = OKNO DIALOGOWE

9 PLATFORMA PRACY GRUPOWO-SIECIOWEJ DANE OPERACYJNE/ TRANSAKCYJNE OLTP DANE ANALITYCZNE OLAP OLAP DM {AGREGACJE, ANALIZY} wg kryterium CZASU MIEJSCA PRZEDMIOTU STOPNIA AGREGACJI OBSZAR U PROCESÓW ZADAŃ FUNKCJI POSTAĆI INNE

10 WARTOŚCIOWANIE DZIAŁAO BIZNESOWYCH Koszty, Efekty/efektywnośd i wartości wskaźnikowe, Wskaźniki ekonomiczne i techniczne działao produkcyjno-biznesowych, Graniczny Punkt Rentowności, Margines bezpieczeostwa, Finanse i Budżetowanie.

11 Funkcje rachunku kosztów FUNKCJA DOWODOWA FUNKCJA ANALITYCZNA FUNKCJA EWIDENCYJNA FUNKCJA INFORMACYJNO- STATYSTYCZNA, Organizacja ucząca się FUNKCJE RACHUNKU KOSZTÓW FUNKCJA PLANISTYCZNA FUNKCJA CENOWA FUNKCJA KONTROLNA FUNKCJA OPTYMALIZACYJNA

12 PLN STEROWANIE WIELKOŚCIĄ PRODUKCJI = ILE? PRZYCHÓD/EFEKT BRUTTO KOSZTY STRATA EFEKT-NETTO/ZYSK WIELKOŚĆ PRODUKCJI

13 ZARZĄDZANIE MARGINESEM BEZPIECZEOSTWA PRZYCHÓD K ZYSK 0 WIELKOŚĆ PRODUKCJI/ WIELKOŚĆ PROJEKTU L MARGINES BEZPIECZEŃSTWA STRATA M F

14 OBIEKTYWIZACJA I KREOWANIE STRATEGII KONKURENCJI STRATEGIA KONKURENCJI ŹRÓDŁA PRZEWAGI KONKUREN CYJNEJ BI PRZEWAGA KONKURE NCYJNA OBSZAR KONKURE NCJI POZYCJA KONKUREN CYJNA = dźwignia zasobów

15 ANALIZA WARTOŚCI W SYSTEMACH BI ANALIZA PARETO-LORENTZA SKUMULOWANY ZYSK A B C RANGA WKŁADU RANGA PRODUKTU WG ZYSKU INŻYNIERIA WARTOŚCI TAK TRZYMAĆ ODRZUCIĆ ZMNIEJSZYĆ KOSZTY ZWIĘKSZYĆ SPRZEDAŻ RANGA PRZYCHODU 15

16 ZBIERANIE DANYCH I GLOBALNA OCENA WSKAŹNIKÓW QFD Ranga cechy wg klientów Ranga cechy wg sprzedawców Ocena ważności Wymagania klientów (i) W A R T O Ś C I PARAMETRY TECHNICZNE OCENA KONKURENCJA A SPEŁNIENIE WYMAGAŃ Ważność parametrów technicznych Znaczenie parametrów techn. [%] Cechy krytyczne Docelowa wartość parametrów techn. Z WYLICZENIA PROCENTOWY UDZIAŁ W PUNKTACJI GLOBALNEJ WG OCENY EKSPERTÓW WG OCENY EKSPERTÓW Porównanie z konkurencją Wskaźnik techn. trudności wykonania KONKURENCJA A SPEŁNIENIE CECH WG OCENY EKSPERTÓW

17 INTEGRACJA INFORMACYJNO CZASOWO - PRZESTRZENNA ZSIZ {DANE/INFORMACJA/WIEDZA, f(z)} = IC + MRP I/II + ERP I/II + DEM = OLTP OLAP = ETL {OLTP} DM = A{OLAP}

18 PERSPEKTYWA KOSTEK OLAP OG/ZT/OW PODMIOT G E O G R A F I A ŚRODEK MATERIAŁOWY MAGAZYN REGION KOMÓRKA ORGANIZACYJNA

19 ZSIZ PLATFORMĄ X-ENGINEERINGU X-ENGINEERING INTERNET ZSIZ PROCES

20 TRZY PYTANIA X-ENGINEERINGU JAK POWINNA SIĘ ZMIENIAD organizacja/firma, ABY EFEKTYWNIE FUNKCJONOWAD? W CZYIM INTERESIE? Z CZYJĄ POMOCĄ?

21 @ERP PLATFORMĄ WSPÓŁDZIAŁANIA ORGANIZACJI ROZPROSZONYCH e-commerce e-crm WWW /FRONT-END B2B/TRANSAKCJE B2C/SKLEPY INTEGRACJA ORGANIZACJI ROZPROSZONYCH GROUP DSS B2P/ BUSINESS TO PARTNER e-scm

22 KOMUNIKACJA/ ZAPYTANIA/ANALIZA DANYCH/ OLAP DM OGÓLNY MODEL WSPÓŁDZIAŁANIA WSPÓŁCZESNYCH ORGANIZACJI {ORGANIZACJA} UŻYTKOWNIK ŚRODOWISKO TECHNOLOGICZNE METADANE BIZNESOWE ON-LINE TRANSACTION PROCESSING EKSTRAKCJA DANYCH SELEKCJA FAKTÓW POTRZEBY WSPÓŁDZIAŁANIA REPOZYTORIUM DANYCH bieżących i historycznych Visual Studio PRZYGOTOWANIE DANYCH DO SZYBKIEJ ANALIZY

23 MODELOWANIE PLATFORMY WSPÓŁDZIAŁANIA {ORGANIZACJE AUTONOMICZNE} SYSTEMY BI MODEL ORGANIZACJI INTELIGENTNEJ PODMIOT KOORDYNUJĄCY CENTRUM KOMPETENCJI WYMAGANIA OGRANICZENIA WIEDZA I NARZĘDZIA

24 ANALIZA I WSPOMAGANIE DECYZJI System wspomagania procesów planistycznych DSS = p {OLAP= f(oltp)} PRZESZŁOŚĆ MODEL RETROSPEKTYWNY OLAP X-ENGINEERING PRZYSZŁOŚĆ MODEL PROSPEKTYWNY PROGNOZOWANIE DATA MINING

25 REGUŁY OLAP wg CODDA WIELOWYMIAROWE WIDOKI PRZEZROCZYSTOŚD DOSTĘPNOŚD WYDAJNOŚD ARCHITEKTURA KLIENT-SERVER RÓWNORZĘDNOŚD WYMIARÓW MACIERZE RZADKIE WIELODOSTĘP OPEROWANIE WIELOMA WYMIARAMI INTUICYJNE MANIPULOWANIE DANYMI ELASTYCZNE RAPORTOWANIE NIEOGRANICZONŚD WYMIARÓW I AGREGACJI

26 Przetwarzanie danych (2)

27 Business Intelligence - architektura Informacja Wiedza Wnioski Działanie Wyniki Systemy źródłowe DM Kostka OLAP ETL Hurtownia danych DM Kostka OLAP Użytkownicy: - Raporty - Zapytania do bazy - Analizy OLAP -Budżetowanie - Data Mining

28 Ilość agregacji ZAGROŻENIA = Problem eksplozji danych (4 poziomy dla wymiaru) Ilość wymiarów

29 METODY DATA MINING EKSPLORACYJNA ANALIZA DANYCH = TWORZENIE HIPOTEZ NA PODSTAWIE OGLĄDANYCH DANYCH W CELU POSZUKIWANIA WZORCA = WYKRESY ROZRZUTU

30 METODY DATA MINING MODELOWANIE OPISOWE = MODEL CAŁOŚCIOWEGO ROZKŁADU PRAWDOPODOBIEOSTWA, ZWIĄZKI MIĘDZY ZMIENNYMI, KLASY, SEGMENTY, SKUPIENIA (KLASTRY)

31 METODY DATA MINING MODELOWAMIE PREDYKCYJNE = PRZEWIDYWANIE WARTOŚCI, MODELE REGRESJI, KLASYFIKACJI DANYCH (OBIEKTÓW) NP. DRZEWA DECYZYJNE, b- DRZEWA i tp.

32 METODY DATA MINING ODKRYWANIE WZORCÓW I REGUŁ = WEDŁUG WYBRANEGO ASPEKTU, PODOBIEOSTWO SKOJARZEO

33 METODY DATA MINING WYSZUKIWANIE WG ZAWARTOŚCI/WZORCA = TEKSTY, OBRAZY, SZEREGI CZASOWE, DOWOLNE DANE, PODOBIEOSTWO DO WZORCA

34 OLAP DATA MINING OLAP WIEMY, CZEGO NIE WIEMY DATA MINING NIE WIEMY, CZEGO NIE WIEMY np. IBM INTELLIGENT MINER FOR DATA SAS ENTERPRICE MINER ORACLE 9i DATA MINING

35 DSS = SYSTEMY WSPOMAGANIA DECYZJI Baza Modeli np. DM Baza danych Moduł zarządzania bazą modeli Interfejs dostępu do Internetu i korporacyjnego intranetu System zarządzania bazą modeli Interfejs dostępu do zewnętrznych baz danych Interfejs dostępu do innych systemów komputerowych Zewnętrzna baza danych Moduł dialogowy

36 SYSTEMY EKSPERCKIE = DM(OLAP) Maszyna wnioskująca Moduł objaśniający Baza wiedzy Moduł pozyskiwania wiedzy Interfejs użytkownika BAZY I HURTOWNE DANYCH Inżynier wiedzy Ekspert Użytkownik

37 Systemy sztucznej inteligencji SSI System łączności z użytkownikiem System Zarządzania Bazą Danych BAZY I HURTOWNIE DANYCH Oprogramowanie aplikacji System Zarządzania Bazą Wiedzy

38 SUKCES WSPÓŁCZESNEJ ORGANIZACJI OTWARCIE NA OTOCZENIE I POWSZECHNOŚĆ STOSOWANIA BI 38

Co to jest Business Intelligence?

Co to jest Business Intelligence? Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl

Bardziej szczegółowo

Wprowadzenie do technologii Business Intelligence i hurtowni danych

Wprowadzenie do technologii Business Intelligence i hurtowni danych Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Zintegrowany System Informatyczny (ZSI)

Zintegrowany System Informatyczny (ZSI) Zintegrowany System Informatyczny (ZSI) ZSI MARKETING Modułowo zorganizowany system informatyczny, obsługujący wszystkie sfery działalności przedsiębiorstwa PLANOWANIE ZAOPATRZENIE TECHNICZNE PRZYGOTOWANIE

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Paweł Gołębiewski. Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl

Paweł Gołębiewski. Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl Paweł Gołębiewski Softmaks.pl Sp. z o.o. ul. Kraszewskiego 1 85-240 Bydgoszcz www.softmaks.pl kontakt@softmaks.pl Droga na szczyt Narzędzie Business Intelligence. Czyli kiedy podjąć decyzję o wdrożeniu?

Bardziej szczegółowo

E-logistyka Redakcja naukowa Waldemar Wieczerzycki

E-logistyka Redakcja naukowa Waldemar Wieczerzycki E-logistyka Redakcja naukowa Waldemar Wieczerzycki E-logistyka to szerokie zastosowanie najnowszych technologii informacyjnych do wspomagania zarządzania logistycznego przedsiębiorstwem (np. produkcją,

Bardziej szczegółowo

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych

Bardziej szczegółowo

STUDIA I MONOGRAFIE NR

STUDIA I MONOGRAFIE NR STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU

Bardziej szczegółowo

Prezentacja firmy WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ. http://www.qbico.pl

Prezentacja firmy WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ. http://www.qbico.pl Prezentacja firmy { WYDAJNOŚĆ EFEKTYWNOŚĆ SKUTECZNOŚĆ http://www.qbico.pl Firma ekspercka z dziedziny Business Intelligence Srebrny Partner Microsoft w obszarach Business Intelligence i Data Platform Tworzymy

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury

Bardziej szczegółowo

Usługi analityczne budowa kostki analitycznej Część pierwsza.

Usługi analityczne budowa kostki analitycznej Część pierwsza. Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.

Bardziej szczegółowo

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl

Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykładów Wprowadzenie - integracja

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Plan wykład adów Wprowadzenie - integracja

Bardziej szczegółowo

Część I Istota analizy biznesowej a Analysis Services

Część I Istota analizy biznesowej a Analysis Services Spis treści Część I Istota analizy biznesowej a Analysis Services 1 Analiza biznesowa: podstawy analizy danych... 3 Wprowadzenie do analizy biznesowej... 3 Wielowymiarowa analiza danych... 5 Atrybuty w

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty

Bardziej szczegółowo

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego

HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego HURTOWNIE DANYCH Dzięki uprzejmości Dr. Jakuba Wróblewskiego http://www.jakubw.pl/zajecia/hur/bi.pdf http://www.jakubw.pl/zajecia/hur/dw.pdf http://www.jakubw.pl/zajecia/hur/dm.pdf http://www.jakubw.pl/zajecia/hur/

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Trochę się zmieniło, Model biznesowy Architektura Społeczna w EA Inteligentne aplikacje System EVERPROGRESS Główne funkcje systemu Osobisty asystent

Trochę się zmieniło, Model biznesowy Architektura Społeczna w EA Inteligentne aplikacje System EVERPROGRESS Główne funkcje systemu Osobisty asystent Trochę się zmieniło, Model biznesowy Architektura Społeczna w EA Inteligentne aplikacje System EVERPROGRESS Główne funkcje systemu Osobisty asystent więcej niż prosta aplikacja Cechy niefunkcjonalne systemu

Bardziej szczegółowo

Hurtownie danych a transakcyjne bazy danych

Hurtownie danych a transakcyjne bazy danych Hurtownie danych a transakcyjne bazy danych Materiały źródłowe do wykładu: [1] Jerzy Surma, Business Intelligence. Systemy wspomagania decyzji, Wydawnictwo Naukowe PWN, Warszawa 2009 [2] Arkadiusz Januszewski,

Bardziej szczegółowo

Specjalizacja magisterska Bazy danych

Specjalizacja magisterska Bazy danych Specjalizacja magisterska Bazy danych Strona Katedry http://bd.pjwstk.edu.pl/katedra/ Prezentacja dostępna pod adresem: http://www.bd.pjwstk.edu.pl/bazydanych.pdf Wymagania wstępne Znajomość podstaw języka

Bardziej szczegółowo

Marcin Adamczak Jakub Gruszka MSP. Business Intelligence

Marcin Adamczak Jakub Gruszka MSP. Business Intelligence Marcin Adamczak Jakub Gruszka MSP Business Intelligence Plan Prezentacji Definicja Podział Zastosowanie Wady i zalety Przykłady Historia W październiku 1958 Hans Peter Luhn pracownik działu badań w IBM

Bardziej szczegółowo

Budowa modeli wymagań dla Regionalnych Systemów Informacji Medycznej opartych o hurtownie danych

Budowa modeli wymagań dla Regionalnych Systemów Informacji Medycznej opartych o hurtownie danych Dr Jerzy ROSZKOWSKI Management Systems Consulting Budowa modeli wymagań dla Regionalnych Systemów Informacji Medycznej opartych o hurtownie danych TIAPiSZ 09 Definiowanie wymagań Główny problem: Jak definiować

Bardziej szczegółowo

PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX

PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX PREZENTACJA FUNKCJONALNA SYSTEMU PROPHIX Architektura i struktura funkcjonalna systemu PROPHIX PROPHIX Corporate Performance Management (Zarządzanie Wydajnością Firmy) System do samodzielnego planowania,

Bardziej szczegółowo

STUDIA NIESTACJONARNE I STOPNIA Przedmioty kierunkowe

STUDIA NIESTACJONARNE I STOPNIA Przedmioty kierunkowe STUDIA NIESTACJONARNE I STOPNIA Przedmioty kierunkowe Technologie informacyjne prof. dr hab. Zdzisław Szyjewski 1. Rola i zadania systemu operacyjnego 2. Zarządzanie pamięcią komputera 3. Zarządzanie danymi

Bardziej szczegółowo

Wstęp... 9. Część I. Podstawy teoretyczne zintegrowanych systemów zarządzania

Wstęp... 9. Część I. Podstawy teoretyczne zintegrowanych systemów zarządzania Wstęp... 9 Część I. Podstawy teoretyczne zintegrowanych systemów zarządzania 1. Systemy informatyczne zarządzania... 13 1.1. System informacyjny, system informatyczny, system informatyczny zarządzania...

Bardziej szczegółowo

Hurtownia danych praktyczne zastosowania

Hurtownia danych praktyczne zastosowania Hurtownia danych praktyczne zastosowania Dorota Olkowicz dorota.olkowicz@its.waw.pl Centrum Bezpieczeństwa Ruchu Drogowego ITS Plan prezentacji 1. Hurtownie danych 2. Hurtownia danych POBR 3. Narzędzia

Bardziej szczegółowo

Sylabus przedmiotu: Data wydruku: Dla rocznika: 2014/2015. Kierunek: Opis przedmiotu. Dane podstawowe. Efekty i cele. Opis. 1 z 5

Sylabus przedmiotu: Data wydruku: Dla rocznika: 2014/2015. Kierunek: Opis przedmiotu. Dane podstawowe. Efekty i cele. Opis. 1 z 5 Sylabus przedmiotu: Specjalność: Informatyka w zarządzaniu Wszystkie specjalności Data wydruku: Dla rocznika: 2014/2015 Kierunek: Wydział: Zarządzanie Ekonomii, Zarządzania i Turystyki Dane podstawowe

Bardziej szczegółowo

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1)

Hurtownie danych. Hurtownie danych. dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki. Maciej Zakrzewicz (1) Hurtownie danych dr hab. Maciej Zakrzewicz Politechnika Poznańska Instytut Informatyki Maciej Zakrzewicz (1) Plan wykładu Wprowadzenie do Business Intelligence (BI) Hurtownia danych Zasilanie hurtowni

Bardziej szczegółowo

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa

Budowa systemu wspomagającego podejmowanie decyzji. Metodyka projektowo wdrożeniowa Budowa systemu wspomagającego podejmowanie decyzji Metodyka projektowo wdrożeniowa Agenda Systemy wspomagające decyzje Business Intelligence (BI) Rodzaje systemów BI Korzyści z wdrożeń BI Zagrożenia dla

Bardziej szczegółowo

Wsparcie dla działań na rzecz poprawy efektywności energetycznej ze strony systemów informatycznych

Wsparcie dla działań na rzecz poprawy efektywności energetycznej ze strony systemów informatycznych Wsparcie dla działań na rzecz poprawy efektywności energetycznej ze strony systemów informatycznych Potencjał efektywności energetycznej w przemyśle Seminarium Stowarzyszenia Klaster 3x20 Muzeum Górnictwa

Bardziej szczegółowo

Wyzwania Biznesu. Co jest ważne dla Ciebie?

Wyzwania Biznesu. Co jest ważne dla Ciebie? Wyzwania Biznesu Zarabianie pieniędzy Oszczędzanie pieniędzy i poprawa wydajności Szybsze wprowadzanie produktów na rynek Maksymalizacja zwrotu z inwestycji portfelowych Trzymać się harmonogramu, budżetu

Bardziej szczegółowo

Matryca pokrycia efektów kształcenia

Matryca pokrycia efektów kształcenia Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego wyboru) Efekty

Bardziej szczegółowo

Systemy baz danych i hurtowni danych

Systemy baz danych i hurtowni danych Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Celem wykładu jest przypomnienie

Bardziej szczegółowo

DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE:

DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: DOKUMENT INFORMACYJNY COMARCH BUSINESS INTELLIGENCE: JAKIE PROBLEMY ROZWIĄZUJE BI 1 S t r o n a WSTĘP Niniejszy dokument to zbiór podstawowych problemów, z jakimi musi zmagać się przedsiębiorca, analityk,

Bardziej szczegółowo

Przedmiot nauk o zarządzaniu Organizacja w otoczeniu rynkowym jako obiekt zarządzania Struktury organizacyjne Zarządzanie procesowe

Przedmiot nauk o zarządzaniu Organizacja w otoczeniu rynkowym jako obiekt zarządzania Struktury organizacyjne Zarządzanie procesowe Przedmowa Rozdział 1 Przedmiot nauk o zarządzaniu 1.1. Geneza nauk o zarządzaniu 1.2. Systematyka nauk o zarządzaniu 1.3. Pojęcie organizacji 1.4. Definicja pojęcia zarządzania i terminów zbliżonych 1.5.

Bardziej szczegółowo

Stawiamy na specjalizację. by CSB-System AG, Geilenkirchen Version 1.1

Stawiamy na specjalizację. by CSB-System AG, Geilenkirchen Version 1.1 1 Business Intelligence Jak najlepiej wykorzystać dostępne źródła informacji, czyli Business Intelligence w zarządzaniu III Konferencja i warsztaty dla branży mięsnej Potencjał rynku potencjał firmy 2

Bardziej szczegółowo

STUDIA STACJONARNE I STOPNIA Przedmioty kierunkowe

STUDIA STACJONARNE I STOPNIA Przedmioty kierunkowe STUDIA STACJONARNE I STOPNIA Przedmioty kierunkowe Technologie informacyjne Prof. dr hab. Zdzisław Szyjewski 1. Rola i zadania systemu operacyjnego 2. Zarządzanie pamięcią komputera 3. Zarządzanie danymi

Bardziej szczegółowo

Wykorzystanie technologii informacyjnych do zarządzania łańcuchami i sieciami dostaw w warunkach globalizacji rynku żywności

Wykorzystanie technologii informacyjnych do zarządzania łańcuchami i sieciami dostaw w warunkach globalizacji rynku żywności Zarządzanie łańcuchami dostaw żywności w Polsce. Kierunki zmian. Wacław Szymanowski Książka jest pierwszą na naszym rynku monografią poświęconą funkcjonowaniu łańcuchów dostaw na rynku żywności w Polsce.

Bardziej szczegółowo

System INTEGRYB jako zintegrowane repozytorium danych umożliwiające zaawansowaną analitykę badawczą

System INTEGRYB jako zintegrowane repozytorium danych umożliwiające zaawansowaną analitykę badawczą System INTEGRYB jako zintegrowane repozytorium danych umożliwiające zaawansowaną analitykę badawczą Lena Szymanek 1, Jacek Seń 1, Krzysztof Skibicki 2, Sławomir Szydłowski 2, Andrzej Kunicki 1 1 Morski

Bardziej szczegółowo

INŻYNIERIA OPROGRAMOWANIA

INŻYNIERIA OPROGRAMOWANIA INSTYTUT INFORMATYKI STOSOWANEJ 2013 INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania Jak? Kto? Kiedy? Co? W jaki sposób? Metodyka Zespół Narzędzia

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Wprowadzenie Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 24, 2014 Tarnów, Październik 2004, 2 Strażaków Zginęło w Pożarze Neuilly, Wrzesień 2002, 5 Strażaków Zginęło w Backdrafcie

Bardziej szczegółowo

Systemy Business Intelligence w praktyce. Maciej Kiewra

Systemy Business Intelligence w praktyce. Maciej Kiewra Systemy Business Intelligence w praktyce Maciej Kiewra Wspólna nazwa dla grupy systemów: Hurtownia danych Pulpity menadżerskie Karty wyników Systemy budżetowe Hurtownia danych - ujednolicone repozytorium

Bardziej szczegółowo

Business Intelligence narzędziem wsparcia sprzedaży

Business Intelligence narzędziem wsparcia sprzedaży Forum Sektora Finansowego 2007 Business Intelligence narzędziem wsparcia sprzedaży Filip Łapiński Konsultant Zarządzający IBM Polska 05/06/2007 Prognozy IBM Institute for Business Value IBM Institute for

Bardziej szczegółowo

III Edycja ITPro 16 maja 2011

III Edycja ITPro 16 maja 2011 III Edycja ITPro 16 maja 2011 SharePoint 2010 SharePoint jako platforma ERP Paweł Szczecki pawel.szczecki@predica.pl Prelegent Paweł Szczecki Współwłaściciel firmy Predica sp. z o.o. Odpowiedzialny za

Bardziej szczegółowo

Wstęp do Business Intelligence

Wstęp do Business Intelligence Wstęp do Business Intelligence Co to jest Buisness Intelligence Business Intelligence (analityka biznesowa) - proces przekształcania danych w informacje, a informacji w wiedzę, która może być wykorzystana

Bardziej szczegółowo

Migracja Business Intelligence do wersji 11.0

Migracja Business Intelligence do wersji 11.0 Migracja Business Intelligence do wersji 11.0 Copyright 2012 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest

Bardziej szczegółowo

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych

Bazy danych. Plan wykładu. Rodzaje baz. Rodzaje baz. Hurtownie danych. Cechy hurtowni danych. Wykład 14: Hurtownie danych Plan wykładu Bazy Wykład 14: Hurtownie Bazy operacyjne i analityczne Architektura hurtowni Projektowanie hurtowni Małgorzata Krętowska, Agnieszka Oniśko Wydział Informatyki PB Bazy (studia dzienne) 2 Rodzaje

Bardziej szczegółowo

2014-03-17. Misja. Strategia. Cele UNIT4 TETA BI CENTER. Plan prezentacji. Grupa UNIT4 TETA. Grupa kapitałowa UNIT4 UNIT4 TETA BI CENTER

2014-03-17. Misja. Strategia. Cele UNIT4 TETA BI CENTER. Plan prezentacji. Grupa UNIT4 TETA. Grupa kapitałowa UNIT4 UNIT4 TETA BI CENTER Plan prezentacji Prowadzący: Mateusz Jaworski m.jaworski@tetabic.pl 1. Grupa kapitałowa UNIT4. 2. Grupa UNIT4 TETA. 3. UNIT4 TETA BI CENTER. 4. TETA Business Intelligence. 5. Analiza wielowymiarowa. 6..

Bardziej szczegółowo

Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy

Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business www.comarch.pl Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Tomasz Matysik Kołobrzeg, 19.11.2009

Bardziej szczegółowo

Komputerowe wspomaganie procesu planowania i kontroli projektu

Komputerowe wspomaganie procesu planowania i kontroli projektu \ Komputerowe wspomaganie procesu planowania i kontroli projektu Komputerowe wspomaganie procesu planowania i kontroli projektu Atrybuty operacyjne projektów: lista zadań WBS (struktura podziału pracy)

Bardziej szczegółowo

Oferta szkoleniowa Yosi.pl 2012/2013

Oferta szkoleniowa Yosi.pl 2012/2013 Oferta szkoleniowa Yosi.pl 2012/2013 "Podróżnik nie posiadający wiedzy, jest jak ptak bez skrzydeł" Sa'Di, Gulistan (1258 rok) Szanowni Państwo, Yosi.pl to dynamicznie rozwijająca się firma z Krakowa.

Bardziej szczegółowo

Samodzielny Business Intelligence in memory duże i małe. Paweł Gajda Business Solution Architect

Samodzielny Business Intelligence in memory duże i małe. Paweł Gajda Business Solution Architect Samodzielny Business Intelligence in memory duże i małe Paweł Gajda Business Solution Architect Agenda 1. Zapytania biznesowe 2. SAP Visual Intelligence 3. Szybkość 4. Zaangażowanie 5. Samoobsługa 6. Kreatywność

Bardziej szczegółowo

Maciej Kiewra mkiewra@qbico.pl. Quality Business Intelligence Consulting http://www.qbico.pl

Maciej Kiewra mkiewra@qbico.pl. Quality Business Intelligence Consulting http://www.qbico.pl Maciej Kiewra mkiewra@qbico.pl Quality Business Intelligence Consulting http://www.qbico.pl Wstęp Integration Services narzędzie do integracji danych Pomyślane do implementacji procesów ETL Extract ekstrakcja

Bardziej szczegółowo

Migracja Business Intelligence do wersji 10.2. Aktualizacja dokumentu: 2011-02-04

Migracja Business Intelligence do wersji 10.2. Aktualizacja dokumentu: 2011-02-04 Migracja Business Intelligence do wersji 10.2 Aktualizacja dokumentu: 2011-02-04 Spis treści Wstęp... 3 1 Tabela czynności jakie należy wykonać podczas migracji modułu Business Intelligence... 4 2 Migracja

Bardziej szczegółowo

Analiza internetowa czyli Internet jako hurtownia danych

Analiza internetowa czyli Internet jako hurtownia danych Analiza internetowa czyli Internet jako hurtownia danych Agenda 1. Hurtownie danych, eksploracja danych i OLAP 3. Internet 5. Analiza Internetowa 7. Google Analytics 9. Podsumowanie Hurtownie danych (definicja)

Bardziej szczegółowo

Rozwiązania na platformie BizFlow er

Rozwiązania na platformie BizFlow er Rozwiązania na platformie BizFlow er Przygotowali Witold Strzępa ws@omm.com.pl Szymon Owsianowski so@omm.com.pl Agenda 1. Czym jest platforma BizFlow er 2. Komponenty platformy 3. Rozwiązania WF EOD, korespondencja,

Bardziej szczegółowo

Rozwiązania na platformie BizFlow er

Rozwiązania na platformie BizFlow er Rozwiązania na platformie BizFlow er Przygotowali dla VGL Group Witold Strzępa ws@omm.com.pl Szymon Owsianowski so@omm.com.pl Gdynia IV.2015 Agenda 1. Czym jest platforma BizFlow er 2. Komponenty platformy

Bardziej szczegółowo

Migracja Business Intelligence do wersji 2013.3

Migracja Business Intelligence do wersji 2013.3 Migracja Business Intelligence do wersji 2013.3 Copyright 2013 COMARCH Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest

Bardziej szczegółowo

StatSoft profesjonalny partner w zakresie analizy danych

StatSoft profesjonalny partner w zakresie analizy danych Analiza danych Data mining Sterowanie jakością Analityka przez Internet StatSoft profesjonalny partner w zakresie analizy danych StatSoft Polska Sp. z o.o. StatSoft Polska Sp. z o.o. ul. Kraszewskiego

Bardziej szczegółowo

1. Informacje o StatSoft Polska

1. Informacje o StatSoft Polska 1. Informacje o StatSoft Polska StatSoft Polska jest największym w Polsce dostawcą programów do statystycznej analizy danych, a także największym w Polsce organizatorem specjalistycznych kursów i szkoleń

Bardziej szczegółowo

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym

Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?

Bardziej szczegółowo

Systemy ERP. dr inż. Andrzej Macioł http://amber.zarz.agh.edu.pl/amaciol/

Systemy ERP. dr inż. Andrzej Macioł http://amber.zarz.agh.edu.pl/amaciol/ Systemy ERP dr inż. Andrzej Macioł http://amber.zarz.agh.edu.pl/amaciol/ Źródło: Materiały promocyjne firmy BaaN Inventory Control Jako pierwsze pojawiły się systemy IC (Inventory Control) - systemy zarządzania

Bardziej szczegółowo

Oferta podstawowa na dostarczenie i wdrożenie systemu Ascent.DBI

Oferta podstawowa na dostarczenie i wdrożenie systemu Ascent.DBI Oferta podstawowa na dostarczenie i wdrożenie systemu jest systemem, który wspiera koordynację procedur zarządzania dokumentacją oraz informacją Kapitał zakładowy 11 000 000 PLN Oferta podstawowa na dostarczenie

Bardziej szczegółowo

Skuteczna Strategia CRM - wyzwanie dla organizacji. Artur Kowalski Prometriq

Skuteczna Strategia CRM - wyzwanie dla organizacji. Artur Kowalski Prometriq Skuteczna Strategia CRM - wyzwanie dla organizacji Artur Kowalski Prometriq Wrocław, 19-11-2009 Jest tylko jedna strategia sukcesu Polega ona na precyzyjnym zdefiniowaniu docelowego odbiorcy i zaoferowaniu

Bardziej szczegółowo

Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line

Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line Personalizowane rekomendacje w e-commerce, czyli jak skutecznie zwiększyć przychody w sklepie on-line Paweł Wyborski - Agenda Kim jesteśmy Czym są personalizowane rekomendacje Jak powstają rekomendacje,

Bardziej szczegółowo

SZKOLENIA SAS. ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie

SZKOLENIA SAS. ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie SZKOLENIA SAS ONKO.SYS Kompleksowa infrastruktura inforamtyczna dla badań nad nowotworami CENTRUM ONKOLOGII INSTYTUT im. Marii Skłodowskiej Curie DANIEL KUBIK ŁUKASZ LESZEWSKI ROLE ROLE UŻYTKOWNIKÓW MODUŁU

Bardziej szczegółowo

Portale raportowe, a narzędzia raportowe typu self- service

Portale raportowe, a narzędzia raportowe typu self- service Portale raportowe, a narzędzia raportowe typu self- service Bartłomiej Graczyk Kierownik Projektów / Architekt rozwiązań Business Intelligence E mail: bartek@graczyk.info.pl Site: www.graczyk.info.pl Agenda

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA

KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA Wykład 8 Narzędzia zarządzania informacją cz. 2 Dr inż. Mariusz Makuchowski Baza wiedzy Baza wiedzy (ang. Knowledgebase) stanowi swoisty rejestr problemów zgłaszanych

Bardziej szczegółowo

INNOWACYJNA METODA PROMOCJI TECHNOLOGII GIS I ZASOBU GEODEZYJNEGO I KARTOGRAFICZNEGO SKIEROWANA DO UŻYTKOWNIKÓW Z BRANŻ POKREWNYCH

INNOWACYJNA METODA PROMOCJI TECHNOLOGII GIS I ZASOBU GEODEZYJNEGO I KARTOGRAFICZNEGO SKIEROWANA DO UŻYTKOWNIKÓW Z BRANŻ POKREWNYCH INNOWACYJNA METODA PROMOCJI TECHNOLOGII GIS I ZASOBU GEODEZYJNEGO I KARTOGRAFICZNEGO SKIEROWANA DO UŻYTKOWNIKÓW Z BRANŻ POKREWNYCH Tomasz Berezowski, XII Podlaskie Forum GIS, 18.06.2015 PRZEDSTAWIENIE

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Dopasowanie IT/biznes

Dopasowanie IT/biznes Dopasowanie IT/biznes Dlaczego trzeba mówić o dopasowaniu IT-biznes HARVARD BUSINESS REVIEW, 2008-11-01 Dlaczego trzeba mówić o dopasowaniu IT-biznes http://ceo.cxo.pl/artykuly/51237_2/zarzadzanie.it.a.wzrost.wartosci.html

Bardziej szczegółowo

Bartłomiej Graczyk MCT,MCITP,MCTS

Bartłomiej Graczyk MCT,MCITP,MCTS Praktyczne wykorzystanie elementów raportowania (SSRS, Performance Point Service, Excel Services, Visio Services) w Microsoft Project 2010 Bartłomiej Graczyk 2012-11-05 Bartłomiej Graczyk MCT,MCITP,MCTS

Bardziej szczegółowo

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska Techniki CAx dr inż. Michał Michna 1 Sterowanie CAP Planowanie PPC Sterowanie zleceniami Kosztorysowanie Projektowanie CAD/CAM CAD Klasyfikacja systemów Cax Y-CIM model Planowanie produkcji Konstruowanie

Bardziej szczegółowo

Eksploracja danych a serwisy internetowe Przemysław KAZIENKO

Eksploracja danych a serwisy internetowe Przemysław KAZIENKO Eksploracja danych a serwisy internetowe Przemysław KAZIENKO Wydział Informatyki i Zarządzania Politechnika Wrocławska kazienko@pwr.wroc.pl Dlaczego eksploracja danych w serwisach internetowych? Kanały

Bardziej szczegółowo

Zarządzanie majątkiem nieruchomości (AM) samorządów (JST) W Ł A DYSŁAW JAN BRZESKI

Zarządzanie majątkiem nieruchomości (AM) samorządów (JST) W Ł A DYSŁAW JAN BRZESKI Zarządzanie majątkiem nieruchomości (AM) samorządów (JST) W Ł A DYSŁAW JAN BRZESKI wladyslaw.brzeski@psdrn.pl Ewolucja paradygmatu AM Tradycyjna perspektywa opiekuńczo-użytkowa Użytkowanie, konserwacja

Bardziej szczegółowo

Automatyzacja Procesów Biznesowych. Systemy Informacyjne Przedsiębiorstw

Automatyzacja Procesów Biznesowych. Systemy Informacyjne Przedsiębiorstw Automatyzacja Procesów Biznesowych Systemy Informacyjne Przedsiębiorstw Rodzaje przedsiębiorstw Produkcyjne największe zapotrzebowanie na kapitał, największe ryzyko Handlowe kapitał obrotowy, średnie ryzyko

Bardziej szczegółowo

Wstęp... 7. 3. Technologie informacyjne wpływające na doskonalenie przedsiębiorstwa

Wstęp... 7. 3. Technologie informacyjne wpływające na doskonalenie przedsiębiorstwa Spis treści Wstęp.............................................................. 7 1. Przedsiębiorstwo w dobie globalizacji.............................. 11 1.1. Wyzwania globalnego rynku....................................

Bardziej szczegółowo

Cena netto (PLN) IV kwartał. Cena netto (PLN) Podstawy SAS INTRO 1 1 200 1 260 2 20 4 1 7 2

Cena netto (PLN) IV kwartał. Cena netto (PLN) Podstawy SAS INTRO 1 1 200 1 260 2 20 4 1 7 2 2015 SAS Education sas.com/poland/training Centrum Szkoleniowe SAS Institute sp. z o.o. ul. Gdańska 27/31, 01-633 Warszawa (22) 560 46 20 cs@spl.sas.com Kalendarz szkoleń Grow With Us Nazwa szkolenia Kod

Bardziej szczegółowo

Integracja systemów transakcyjnych

Integracja systemów transakcyjnych Integracja systemów transakcyjnych Robert Wrembel Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Problematyka i architektury integracji danych

Bardziej szczegółowo

Spis tre±ci. Przedmowa... Cz ± I

Spis tre±ci. Przedmowa... Cz ± I Przedmowa.................................................... i Cz ± I 1 Czym s hurtownie danych?............................... 3 1.1 Wst p.................................................. 3 1.2 Denicja

Bardziej szczegółowo

Rozwiązanie GIS dla mniejszego. miasta: model Miasta Stalowa Wola. Janusz JEśAK. Jacek SOBOTKA. Instytut Rozwoju Miast. ESRI Polska Sp. z o. o.

Rozwiązanie GIS dla mniejszego. miasta: model Miasta Stalowa Wola. Janusz JEśAK. Jacek SOBOTKA. Instytut Rozwoju Miast. ESRI Polska Sp. z o. o. Rozwiązanie GIS dla mniejszego miasta: model Miasta Stalowa Wola Instytut Rozwoju Miast Janusz JEśAK ESRI Polska Sp. z o. o. Jacek SOBOTKA Rybnik, 27-28 września 2007 Plan Prezentacji Geneza przedsięwzięcia

Bardziej szczegółowo

ROZDZIAŁ 1. WPROWADZENIE DO PROBLEMATYKI SYSTEMÓW EKSPERTOWYCH 19

ROZDZIAŁ 1. WPROWADZENIE DO PROBLEMATYKI SYSTEMÓW EKSPERTOWYCH 19 SPIS TREŚCI WSTĘP 15 ROZDZIAŁ 1. WPROWADZENIE DO PROBLEMATYKI SYSTEMÓW EKSPERTOWYCH 19 1.1. Pojęcie i rozwój systemów ekspertowych 19 1.1.1. Definiowanie systemu ekspertowego w literaturze przedmiotu 20

Bardziej szczegółowo

Spis treúci. 1. Wprowadzenie... 13

Spis treúci. 1. Wprowadzenie... 13 Księgarnia PWN: W. Dąbrowski, A. Stasiak, M. Wolski - Modelowanie systemów informatycznych w języku UML 2.1 Spis treúci 1. Wprowadzenie... 13 2. Modelowanie cele i metody... 15 2.1. Przegląd rozdziału...

Bardziej szczegółowo

Konieczne inwestycje z obszaru IT w sektorze elektroenergetycznym Integracja Paweł Basaj Architekt systemów informatycznych

Konieczne inwestycje z obszaru IT w sektorze elektroenergetycznym Integracja Paweł Basaj Architekt systemów informatycznych Konieczne inwestycje z obszaru IT w sektorze elektroenergetycznym Integracja Paweł Basaj Architekt systemów informatycznych 2009 IBM Corporation Wymagania związane z bezpieczeństwem energetycznym, obsługą

Bardziej szczegółowo

INFOMAGE INFORMATION MANAGEMENT CRM. Innowacyjny system do wsparcia sprzedaży w firmie

INFOMAGE INFORMATION MANAGEMENT CRM. Innowacyjny system do wsparcia sprzedaży w firmie INFOMAGE CRM Innowacyjny system do wsparcia sprzedaży w firmie INFOMAGE Infomage CRM O produkcie Infomage CRM jest innowacyjnym systemem do wsparcia sprzedaży w firmie. Budując system Infomage CRM wykorzystaliśmy

Bardziej szczegółowo

HARMONOGRAM: DZIEŃ GODZINA MIEJSCE PROWADZĄCY TEMAT OPIS

HARMONOGRAM: DZIEŃ GODZINA MIEJSCE PROWADZĄCY TEMAT OPIS WARSZTATY Grupa warsztatowa nr 1 System bilingowy operator telekomunikacyjny od środka Uczestnikom warsztatów zostanie przedstawiona specyfika działalności operatora telekomunikacyjnego ze szczególnym

Bardziej szczegółowo

Projektowanie architektury systemu rozproszonego. Jarosław Kuchta Projektowanie Aplikacji Internetowych

Projektowanie architektury systemu rozproszonego. Jarosław Kuchta Projektowanie Aplikacji Internetowych Projektowanie architektury systemu rozproszonego Jarosław Kuchta Zagadnienia Typy architektury systemu Rozproszone przetwarzanie obiektowe Problemy globalizacji Problemy ochrony Projektowanie architektury

Bardziej szczegółowo

Jakub Kisielewski. www.administracja.comarch.pl

Jakub Kisielewski. www.administracja.comarch.pl Nowatorski punkt widzenia możliwości analitycznosprawozdawczych w ochronie zdrowia na przykładzie systemu Elektronicznej Platformy Gromadzenia, Analizy i Udostępniania zasobów cyfrowych o Zdarzeniach Medycznych

Bardziej szczegółowo

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl

Bazy Danych. Bazy Danych i SQL Podstawowe informacje o bazach danych. Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Bazy Danych Bazy Danych i SQL Podstawowe informacje o bazach danych Krzysztof Regulski WIMiIP, KISiM, regulski@metal.agh.edu.pl Literatura i inne pomoce Silberschatz A., Korth H., S. Sudarshan: Database

Bardziej szczegółowo

Skrócone opisy pryncypiów architektury korporacyjnej podmiotów publicznych

Skrócone opisy pryncypiów architektury korporacyjnej podmiotów publicznych Skrócone opisy pryncypiów architektury korporacyjnej podmiotów publicznych Wersja: 1.0 17.06.2015 r. Wstęp W dokumencie przedstawiono skróconą wersję pryncypiów architektury korporacyjnej podmiotów publicznych.

Bardziej szczegółowo

Rok akademicki: 2014/2015 Kod: EAR-2-106-IS-s Punkty ECTS: 4. Kierunek: Automatyka i Robotyka Specjalność: Informatyka w sterowaniu i zarządzaniu

Rok akademicki: 2014/2015 Kod: EAR-2-106-IS-s Punkty ECTS: 4. Kierunek: Automatyka i Robotyka Specjalność: Informatyka w sterowaniu i zarządzaniu Nazwa modułu: Systemy informatyczne w produkcji Rok akademicki: 2014/2015 Kod: EAR-2-106-IS-s Punkty ECTS: 4 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Automatyka

Bardziej szczegółowo

Hurtownie danych w praktyce

Hurtownie danych w praktyce Hurtownie danych w praktyce Fakty i mity Dr inż. Maciej Kiewra Parę słów o mnie... 8 lat pracy zawodowej z hurtowniami danych Projekty realizowane w kraju i zagranicą Certyfikaty Microsoft z Business Intelligence

Bardziej szczegółowo

firmy produkty intranet handel B2B projekty raporty notatki

firmy produkty intranet handel B2B projekty raporty notatki firmy mail intranet produkty DOKUMENTY handel raporty B2B projekty notatki serwis zadania Dlaczego warto wybrać Pakiet ITCube? Najczęściej wybierany polski CRM Pakiet ITCube jest wykorzystywany przez ponad

Bardziej szczegółowo

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.

Hurtownie danych. Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw. Hurtownie danych Projektowanie hurtowni: modele wielowymiarowe. Modelowanie punktowe. Operacje OLAP na kostkach. http://zajecia.jakubw.pl/hur UZASADNIENIE BIZNESOWE Po co nam hurtownia danych? Jakie mogą

Bardziej szczegółowo

Pakiet dla Efektywności Energetycznej

Pakiet dla Efektywności Energetycznej Pakiet dla Efektywności Energetycznej Przegląd systemu 2/28/2012 Aplikacje dla spółek energetycznych Audyt Energetyczny Zużycie Mediów Budynki i Instalacje Monitoring Billing Energia elektryczna Multimedia

Bardziej szczegółowo

Security Master Class

Security Master Class Security Master Class Platforma kompleksowej analizy zdarzeń Linux Polska SIEM Radosław Żak-Brodalko Senior Solutions Architect Linux Polska sp. z o.o. Podstawowe problemy Jak pokryć lukę między technicznym

Bardziej szczegółowo

Splunk w akcji. Radosław Żak-Brodalko Solutions Architect Linux Polska Sp. z o.o.

Splunk w akcji. Radosław Żak-Brodalko Solutions Architect Linux Polska Sp. z o.o. Splunk w akcji Radosław Żak-Brodalko Solutions Architect Linux Polska Sp. z o.o. 1 Splunk agent wiedzy o infrastrukturze czyli SIEM i coś więcej 2 Splunk gromadzi oraz integruje informacje dotyczące funkcjonowania

Bardziej szczegółowo

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Systemy baz danych w zarządzaniu przedsiębiorstwem W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Proces zarządzania danymi Zarządzanie danymi obejmuje czynności: gromadzenie

Bardziej szczegółowo

Nasze kompetencje. Co nas wyróżnia. Skuteczne wdrożenie - dopasowanie do strategii klientów

Nasze kompetencje. Co nas wyróżnia. Skuteczne wdrożenie - dopasowanie do strategii klientów Grupa Codec Codec jest europejskim liderem w zakresie usług doradczych i wdrażania rozwiązań wspierających efektywność organizacji. Pełniąc rolę ogniwa łączącego strategię, controlling i nowoczesne technologie

Bardziej szczegółowo