OZNACZANIE STĘŻENIA BARWNIKÓW W WODZIE METODĄ UV-VIS

Wielkość: px
Rozpocząć pokaz od strony:

Download "OZNACZANIE STĘŻENIA BARWNIKÓW W WODZIE METODĄ UV-VIS"

Transkrypt

1 OZNACZANE STĘŻENA BARWNKÓW W WODZE METODĄ UV-VS. SPEKTROFOTOMETRA UV-Vis Spektrofotometria w zakresie nadfioletu (ang. ultra-violet UV) i promieniowania widzialnego (ang. visible- Vis), czyli spektrofotometria UV-Vis, jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące w cząsteczkach, spowodowane absorpcją promieniowania elektromagnetycznego w zakresie nadfioletu ( nm), widzialnym ( nm) lub bliskiej podczerwieni. Technika ta polega na ilościowym pomiarze absorpcji, emisji lub odbicia światła. Wzrastająca energia λ Wzrastająca długość fali, λ Promienie Nadfiolet Podczerwień Fale Gamma Promienie X radiowe Promieniowanie widzialne Rys. 1. Widmo elektromagnetyczne. Metodą spektrofotometrii UV-Vis można oznaczać substancje organiczne (np. wiele związków posiadających wiązanie π lub elektrony n, w tym węglowodory aromatyczne, aldehydy, ketony, kwasy i aminy) i nieorganiczne (np. pierwiastki ziem rzadkich, ozon, SO 2 ) wykazujące absorpcję w nadfiolecie, związki absorbujące promieniowanie w zakresie widzialnym, w tym barwne związki organiczne (barwniki) i barwne sole metali (np. KMnO 4, CuSC 4 ) oraz substancje, których formy absorbujące promieniowanie uzyskuje się na drodze reakcji chemicznych. Do celów tych najczęściej wykorzystuje się reakcje kompleksowania.

2 Głównymi zaletami tej metody są: 1. Duża czułość, której miarą jest molowy współczynnik absorpcji ε, odpowiadający λ max badanego roztworu. Wartości ε dla czułych metod wynoszą powyżej dm 3 mol -1 cm -1. Metody mało czułe charakteryzują się współczynnikami ε o wartościach poniżej 1000 dm 3 mol -1 cm Duża precyzja oznaczeń. Precyzja oznaczeń zależy od zakresu oznaczanych stężeń i od klasy stosowanych aparatów. W metodach spektrofotometrycznych można uzyskać wyniki, których błąd nie przekracza ±0,2 %. 3. Selektywność oznaczeń uwarunkowana z jednej strony selektywnością absorpcji, z drugiej zaś selektywnością odczynników wywołującą barwną reakcję z substancją oznaczoną.. ABSORPCJA Wiązka promieniowania monochromatycznego przechodząca przez warstwę roztworu jest osłabiona w stosunku do padającego. Promieniowanie o natężeniu 0 ulega częściowo odbiciu lub rozproszeniu, częściowo pochłonięciu, a tylko częściowo przechodzi przez roztwór (Rys. 2.). = r p t Rys. 2. Schemat ilustrujący zjawisko absorpcji promieniowania. o - natężenie wiązki promieniowania monochromatycznego, r natężenie promieniowania rozproszonego i obitego, p natężenie promieniowania pochłoniętego, t natężenie promieniowania przechodzącego przez roztwór. Prawa absorpcji prawo absorpcji (prawo Lamberta) Wiązka promieniowania monochromatycznego po przejściu przez jednorodny ośrodek absorbujący o grubości b ulega osłabieniu zgodnie z równaniem: gdzie: = 0 e kb

3 0 - natężenie wiązki promieniowania monochromatycznego padającego na jednorodny ośrodek absorbujący, - natężenie promieniowania po przejściu przez ośrodek absorbujący, k - współczynnik absorpcji, e - podstawę logarytmów naturalnych. Stąd: gdzie: a = 0,4343 k, 0 0 ln = kb = A lub A = log = ab A - zdolność pochłaniania promieniowania zwana absorbancją. prawo absorpcji można zatem sformułować w sposób następujący: Absorbancja jest proporcjonalna do grubości warstwy absorbującej, jeśli wiązka promieniowania monochromatycznego przechodzi przez jednorodny ośrodek absorbujący. nną wielkością stosowaną do określania absorpcji promieniowania jest transmitancja (przepuszczalność) T określana jako: zatem: T = 0 1 A = log T Transmitancję podajemy najczęściej w procentach, stąd: % T = 100 = 100T lub A = log % T prawo absorpcji (prawo Lamberta-Beera) Prawo to dotyczy absorpcji promieniowania przez roztwory. Jeśli współczynnik absorpcji rozpuszczalnika jest równy zeru, to wiązka promieniowania monochromatycznego po przejściu przez jednorodny roztwór substancji absorbującej o stężeniu c ulega osłabieniu zgodnie z równaniem: = 0 e kbc Stąd, po przekształceniach jak wyżej, można zapisać: 0 A = log = abc prawo absorpcji można sformułować w sposób następujący:

4 Jeżeli współczynnik absorpcji rozpuszczalnika jest równy zeru, to absorbancja wiązki promieniowania monochromatycznego przechodzącej przez jednorodny roztwór jest wprost proporcjonalna do stężenia roztworu c i do grubości warstwy absorbującej b. prawo absorpcji (prawo addytywności absorpcji) Absorbancja roztworu wieloskładnikowego równa się sumie absorbancji poszczególnych składników: A = A + A gdzie A 1, A 2,..., A n - absorbancje poszczególnych składników. W równaniu: A = abc 1 wielkość a jest właściwym współczynnikiem absorpcji, gdy stężenie wyrażamy w [kg dm -3 ] lub [g cm -3 ]. Gdy stężenie c wyrazimy w [mol dm -3 ], równanie to przybiera postać: 2 A = εbc gdzie ε jest to molowy współczynnik absorpcji, a jego wymiar podawany jest dwojako: [dm 3 mol -1 cm -1 ] lub w jednostkach S [m 2 mol -1 ]. Addytywność absorbancji jest spełniona, jeśli pomiędzy składnikami środowiska absorbującego nie ma żadnych oddziaływań chemicznych. Oznacza ona, że każde indywiduum absorbuje tak, jakby inne były nieobecne. Jeżeli roztwór spełnia prawo absorpcji, wykres funkcji A = f (c) jest linią prostą, (Rys. 3). Współczynnik ε ma wartość stałą dla danego chromoforu, nie zależną od stężenia roztworu c. Wykres funkcji ε = f (c) jest linią prostą równoległą do osi odciętych (Rys. 4). A n A A=f(c) ε ε=f(c) Rys. 3. Wykres zależności A=f(c). c Rys. 4. Wykres zależności ε=f(c). c

5 Ograniczenia w stosowaniu prawa Lamberta-Beera W myśl prawa absorpcji zależność absorbancji od stężenia powinna mieć charakter liniowy. W praktyce spotykamy się z odchyleniami od przebiegu prostoliniowego, zarówno z ujemnymi, jak i z dodatnimi (Rys. 5.). Rys. 5. Typowe odstępstwa od prawa Beera: - prosta dla układu spełniającego prawa absorpcji, - krzywe dla układów nie spełniających praw absorpcji. Główne przypadki odstępstw charakteryzują się zmianą współczynnika absorpcji (ε): a) zmniejszanie się ze wzrostem stężenia; (b) wartości różne od rzeczywistej niezależnie od stężenia; (c) wzrost ze wzrostem stężenia. Powyższe odchylenia mogą być wywołane przez: podstawowe ograniczenia praw współczynnik absorpcji zależy od współczynnika załamania promieniowania w danym środowisku; dla roztworów rozcieńczonych (c<10-2 mol dm -3 ) współczynnik załamania jest stały i identyczny ze współczynnikiem załamania czystego rozpuszczalnika. W roztworach o większych stężeniach, zmiany wartości współczynnika załamania mogą być przyczyną odstępstw od praw absorpcji, występowanie innego niż absorpcja oddziaływania promieniowania elektromagnetycznego. czynniki chemiczne powodujące odchylenia od prostoliniowego przebiegu absorbancji związane są z reakcjami chemicznymi zachodzącymi w analizowanym roztworze. Ponadto prawo Lamberta może być spełnione tylko dla przypadku istnienia w roztworze jednej formy cząsteczek. W wyniku zmiany ph czy stężenia roztworu część z nich może ulec zmianom lub deformacjom (dysocjacja, asocjacja, polimeryzacja, solwatacja, a także różne reakcje kompleksowania) co prowadzi do zmiany wartości molowych współczynników adsorpcji odpowiednich cząstek i zaburzenie prostoliniowego charakteru zależności A=f(c). czynniki aparaturowe. brak ścisłej monochromatyzacji wiązki promienia,

6 jeżeli w przyrządzie zachodzi rozpraszanie promieniowania; wywiera ono tym większy wpływ, im większe są wartości mierzonych absorpcji, zbyt duża szerokośćspektralna wiązki promieniowania przechodzącego przez próbkę.. APARATURA Podstawowymi częściami składowymi spektrofotometrów UV-vis są: 1. Źródło promieniowania, 2. układ optyczny (monochromator), 3. pomieszczenie na komórkę pomiarową, 4. detektor mierzący natężenie promieniowania, 5. wskaźnik, rejestrator, komputer. źródło promieniowa monochromator kuweta pomiarowa detektor Rys. 6. Schemat blokowy spektrofotometru UV-Vis wskaźnik i rejestrator Źródło promieniowania Jako źródło promieniowania stosowane są: a) lampy deuterowe w zakresie od 180 nm do 380 nm, b) lampy wolframowo-halogenowe powyżej 380 nm przez zakres widzialny i bliską podczerwień, c) wysokociśnieniowe łukowe lampy ksenonowe są źródłem ciągłego promieniowania, pokrywającego cały zakres UV-Vis. Monochromator ma za zadanie wybrać, z emitowanego przez źródło promieniowania ciągłego, wąskie pasmo o żądanej długości fali i przepuścić je przez komórkę z badaną substancją. Elementy wchodzące w skład układu optycznego przedstawiono na Rysunku 9. Komórka pomiarowa. Do pomiarów absorpcji gazów i cieczy stosowane są kuwety. Do badań w nadfiolecie przy długościach fali nm stosuje się kuwety wykonane z kwarcu lub ze stopionej krzemionki, ponieważ materiały te nie pochłaniają promieniowania z tego zakresu. W zakresie widzialnym widma można stosować kuwety szklane. W szczególnych przypadkach używa się kuwet wykonanych z tworzyw sztucznych.

7 Standardowa grubość kuwet wynosi 10 mm, ale są Grubość warstwy również dostępne kuwety o grubości mniejszej (np. Kuweta pomiarowa 1 mm) oraz większej (np. 100 mm). Kuweta pomiarowa powinna zapewniać dokładnie zdefiniowaną grubość Analit warstwy absorbującej cieczy, wykazywać odporność na działanie analizowanych substancji chemicznych oraz o T zapewniać w maksymalnym stopniu transmitancję promieniowania. *Do uzyskania optymalnych wyników analizy ważny jest odpowiedni dobór rozpuszczalnika. Rozpuszczalnik musi wykazywać niską absorpcję w tych zakresach widma, w których absorbuje badana próbka., nie może reagować z substancją rozpuszczoną, a także powinien wykazywać małą lotność. Detektory fotoelektryczne stosowane w spektrofotometrach UV-Vis przetwarzają energię promieniowania elektromagnetycznego na energię elektryczną. Najczęściej stosowane są fotokomórki, fotopowielacze oraz fotodiody. METODY OZNACZEŃ SPEKTROFOTOMETRYCZNYCH. lościowe oznaczenia metodą spektrofotometrii UV-Vis należą do metod porównawczych. Oznaczenie pojedynczego składnika przeprowadza się: 1) Metodą porównywania z pojedynczym wzorcem. Mierzymy absorbancję A x roztworu badanego o stężeniu c x i absorbancję A s roztworu wzorcowego o znanym stężeniu c s przy tej samej długości fali λ i w kuwetach o tej samej grubości b. Z porównania zmierzonych absorbancji na podstawie prawa Lamberta Beera, można obliczyć stężenie badanej próbki ze wzoru: Ax c x = c s. As 2) Metodą porównywania z kilkoma wzorcami, czyli metodą krzywej wzorcowej. W metodzie tej wykorzystuje się serię roztworów wzorcowych o stężeniu analitu 0 (ślepa próba), 1, 2, 3, 4, 5 i dla każdego roztworu mierzy się absorbancję. Następnie wykreśla się krzywą kalibracyjną A=f(c). Dla badanej próbki mierzy się absorbancję i z krzywej kalibracyjnej odczytuje stężenie c x 3) Metodą dodatku wzorca. Procedura oznaczeń w tej metodzie sprowadza się do pomiaru absorbancji A o próbki badanej o stężeniu c x i absorbancji A i mieszaniny próbki badanej o

8 stężeniu c x z dodatkiem wzorca o znanym stężeniu c s. Metoda ta może być stosowana tylko w przypadku, gdy w badanym zakresie występuje prostoliniowa zależność A od c. Metodą spektrofotometrii UV-Vis możliwe są także oznaczenia ilościowe mieszanin złożonych z dwu i z wielu absorbujących składników. Ze względu jednak na możliwość nakładania się na siebie krzywych adsorpcji, oznaczenia te wymagają zastosowania bardziej skomplikowanych procedur niż w przypadku oznaczeń pojedynczych składników. Zastosowanie spektrofotometrii UV-Vis w analizie jakościowej. Elektronowe widmo absorpcyjne jest cechą charakterystyczną związku chemicznego i określa jednoznacznie związek jednorodny. W przypadku związków organicznych widma w zakresie nm są stosowane do ustalenia pewnych zależności strukturalnych i identyfikacji grup funkcyjnych. Wynika to z obecności w cząsteczce chromoforów- ugrupowań odpowiedzialnych za absorpcję promieniowania w tym zakresie. Najczęściej są to pierścienie aromatyczne (aromatyczny sekstet elektronów), wiązania wielokrotne (ich część - wiązania typu π) zarówno między atomami węgla jak i inne, np. grupy karbonylowej C=O. Tabela 1. Struktury oraz właściwości absorpcyjne wybranych chromoforów chromofor benzenowy chromofor alkenowy C C chromofor azowy N N chromofor karbonylowy C O chromofor nitrozowy N O chromofor tiolowy C S

9 Obok pojęcia chromoforu w spektroskopii UV-Vis używa się pojęcia auksochromu. Auksochromami są różne grupy funkcyjne w cząsteczce, które choć same nie pochłaniają energii z zakresu UV-Vis, swoją elektroujemnością wpływają na energię chromoforu, przesuwając absorpcję w kierunku fal dłuższych. Do najpopularniejszych auksochromów należy grupa aminowa i hydroksylowa. Grupy te nie są auksochromami z definicji. Pełnią rolę auksochromów, gdy są tak powiązane z chromoforem, że mogą wpływać na jego energię, np. grupa hydroksylowa w fenolu (bezpośrednie powiązanie z chromoforem i możliwość oddziaływania chromofor-auksochrom) pełni role auksochromu, natomiast grupa hydroksylowa w alkoholu benzylowym auksochromem nie jest (grupa CH 2 między hydroksylem i pierścieniem skutecznie blokuje wpływ wolnych par tlenu na pierścień). Auksochrom z jednej strony wpływa na wartość energii podstawowego poziomu energetycznego chromoforu, z drugiej strony może oddziaływać z otoczeniem cząsteczki (wartość ph roztworu, polarność rozpuszczalnika itp.), które z kolei modyfikuje jego siłę oddziaływania na chromofor. Tak więc poprzez auksochrom, otoczenie może modyfikować energię chromoforu zmieniając tym samym położenie, a czasem i kształt widma. Rys. 8. Przykładowe widmo tej samej substancji zarejestrowane w roztworach o trzech różnych wartościach ph (ph=1, kwaśny; ph=7, obojętny i ph=10, zasadowy). Taki wpływ otoczenia na kształt i położenie widma czasem utrudnia pomiary i każe pamiętać, że widmo UV-Vis jest charakterystyczne dla danej substancji w danych (określonych) warunkach, z drugiej strony jest przydatnym w badaniach struktury cząsteczki, pozwalając np. określić, czy grupa aminowa ma charakter aromatyczny (auksochrom, wyraźny wpływ ph na położenie maksimum pasma) czy też alifatyczny (połączona z pierścieniem poprzez łańcuch węglowy, widmo nie reaguje na zmiany ph).

10 CEL ĆWCZENA Celem niniejszego ćwiczenia jest zapoznanie się z zasadą działania i pracą Spektrofotometru UV-Vis A2800 firmy Hitachi. i oznaczenie stężeń roztworów barwników metodą krzywej wzorcowej. Analiza polega na pomiarze absorbancji analitu w całym zakresie UV-Vis i wyznaczeniu λ max (długość fali, odpowiadająca najbardziej intensywnemu pasmu absorpcji). Następnie należy przeprowadzić pomiary absorbcji badanych próbek przy wyznaczonej długości fali i na podstawie sporządzonej krzywej kalibracji wyznaczyć ich stężenie oraz wartości ε. Siatka dyfrakcyjna Szczelina 2 Filtr Szczelina 1 D2 Lampa UV W lampa Vis Lustro 1 Lustro 4 Wiązka referencyjna Kuweta referencyjna Detektor 2 Soczewka 1 Lustro półprzepuszczalne Lustro 2 Lustro 3 Wiązka pomiarowa Kuweta próbki Detektor 1 Soczewka 2 Monochromator Komora pomiarowa Rys. 8. Schemat budowy i działania spektrofotometru UV-Vis Na rysunku 8. przedstawiono schemat budowy dwuwiązkowego spektrofotometru UV-Vis. Szerokopasmowa wiązka promieniowania emitowanego przez lampę deuterową lub jodowolframową kierowana jest przez zwierciadło skupiające (Lustro 1) na szczelinę wejściową (Szczelina 1) i dalej na monochromator. Toroidalna siatka dyfrakcyjna powoduje rozszczepienie wiązki promieniowania na poszczególne fale, tworząc uporządkowane według długości fal continuum. Z tego continuum szczelina wyjściowa (Szczelina 2) wycina promień światła monochromatycznego (zawierający tylko 1 długość fali), który następnie przechodzi przez filtr i pada na zwierciadło toroidalne (Lustro 2). Promień odbity od tego zwierciadła dzieli się

11 następnie, przy pomocy pół-zwierciadła, na promień próbki i promień referencyjny (porównawczy). Oba te promienie przechodzą następnie, odpowiednio, przez kuwetę próbki badanej i kuwetę próbki odniesienia w komorze próbek. Po przejściu przez kuwety, oba promienie ulegają skupieniu za pomocą soczewek skupiających (Soczewka 1 i Soczewka 2). Skupione promienie ulegają zogniskowaniu na fotodiodach krzemowych Detektor 1 i Detektor 2, gdzie zostają przekształcone na sygnały elektryczne. Rejestrując wartości absorbancji w funkcji zmieniającej się długości fali przechodzącej przez roztwór otrzymujemy widmo. Zmiany długości fali najczęściej uzyskuje się zmieniając w sposób ciągły i automatyczny kąt monochromatora w stosunku do padającej nań wiązki ze źródła promieniowania. Rys. 10. Przykład widma absorpcyjnego. WYKONANE DOŚWADCZENA Przygotowanie roztworów wzorcowych analitu 1) Przygotować roztwór podstawowy barwnika rozpuszczając 25 mg w 500 ml wody destylowanej. 2) Do 8 probówek o pojemności 25 ml odmierzyć pipetą automatyczną: 0,2; 0,4; 0,6; 0,8; 1,0; 1,2; 1,4; 1,6 ml roztworu podstawowego, uzupełnić wodą do 10 ml, zamknąć probówki parafilmem i dokładnie wymieszać. 3) Obliczyć stężenia przygotowanych roztworów. Przygotowanie badanej próbki Dokłady opis kolejnych czynności przygotowania badanej próbki do analizy w poszczególnych doświadczeniach będzie dostępny na zajęciach.

12 Wykonanie oznaczeń spektrofotometrycznych 1) Zarejestrować widmo roztworu podstawowego barwnika w całym zakresie UV-Vis stosując wodę jako odnośnik w celu wyznaczenia analitycznej długości fali (λ max, nm), dla maksimum pasma absorpcyjnego barwnika. 2) Przy wyznaczonej λ max zmierzyć absorbancję A roztworów wzorcowych analitu. 3) Przy wyznaczonej analitycznej długości fali zmierzyć absorbancję badanej próbki. Opracowanie wyników i dyskusja: 1. Wyniki pomiarów zestawić w tabelach. 2. Przedstawić graficznie zależność A=f(c) otrzymaną na podstawie pomiarów absorbancji roztworów wzorcowych (krzywa kalibracji). 3. Z parametrów otrzymanej prostej regresji oraz wyznaczonych eksperymentalnie wartości absorbancji badanej próbki obliczyć stężenie barwnika w próbce. 4. Sformułować wnioski Literatura [1] Cygański, Metody spektroskopowe w chemii analitycznej, WN-T, Warszawa [2] Szczepaniak W., Metody instrumentalne w analizie chemicznej. W-wa, PWN, [3] Ewing G. W., Metody instrumentalne w analizie chemicznej. W-wa, PWN, Przygotowała: Anna Kołodziej

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

ELEMENTY ANALIZY INSTRUMENTALNEJ. SPEKTROFOTOMETRII podstawy teoretyczne

ELEMENTY ANALIZY INSTRUMENTALNEJ. SPEKTROFOTOMETRII podstawy teoretyczne ELEMENTY ANALZY NSTRUMENTALNEJ Ćwiczenie 3 Temat: Spektrofotometria UV/ViS SPEKTROFOTOMETR podstawy teoretyczne SPEKTROFOTOMETRA jest techniką instrumentalną, w której do celów analitycznych wykorzystuje

Bardziej szczegółowo

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s] SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

Ćw. 5 Absorpcjometria I

Ćw. 5 Absorpcjometria I Ćw. 5 Absorpcjometria I Absorpcja promieniowania elektromagnetycznego z obszaru widzialnego i nadfioletowego przez atomy i cząsteczki powoduje zmianę ich stanu elektronowego. Zjawiska te moŝna badać za

Bardziej szczegółowo

Opracował dr inż. Tadeusz Janiak

Opracował dr inż. Tadeusz Janiak Opracował dr inż. Tadeusz Janiak 1 Uwagi dla wykonujących ilościowe oznaczanie metodami spektrofotometrycznymi 3. 3.1. Ilościowe oznaczanie w metodach spektrofotometrycznych Ilościowe określenie zawartości

Bardziej szczegółowo

Ćwiczenie 1. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp. Część teoretyczna.

Ćwiczenie 1. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp. Część teoretyczna. Ćwiczenie 1 Metodyka poprawnych i dokładnych pomiarów absorbancji, wyznaczenie małych wartości absorbancji. Czynniki wpływające na mierzone widma absorpcji i wartości absorbancji dla wybranych długości

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Spektrofotometryczne oznaczanie stężenia jonów żelaza(iii) opiekun mgr K. Łudzik ćwiczenie nr 26 Zakres zagadnień obowiązujących do ćwiczenia 1. Prawo Lamberta

Bardziej szczegółowo

Laboratorium Podstaw Biofizyki

Laboratorium Podstaw Biofizyki CEL ĆWICZENIA Celem ćwiczenia jest zbadanie procesu adsorpcji barwnika z roztworu oraz wyznaczenie równania izotermy Freundlicha. ZAKRES WYMAGANYCH WIADOMOŚCI I UMIEJĘTNOŚCI: widmo absorpcyjne, prawo Lamberta-Beera,

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Oznaczanie chlorków metodą spektrofotometryczną z tiocyjanianem rtęci(ii)

Bardziej szczegółowo

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia Poznanie podstawowej metody określania biochemicznych parametrów płynów ustrojowych oraz wymagań technicznych stawianych urządzeniu pomiarowemu.

Bardziej szczegółowo

Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej

Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej Spektrofotometryczne wyznaczanie stałej dysocjacji czerwieni fenolowej Metoda: Spektrofotometria UV-Vis Cel ćwiczenia: Celem ćwiczenia jest zapoznanie studenta z fotometryczną metodą badania stanów równowagi

Bardziej szczegółowo

Atomowa spektrometria absorpcyjna i emisyjna

Atomowa spektrometria absorpcyjna i emisyjna Nowoczesne techniki analityczne w analizie żywności Zajęcia laboratoryjne Atomowa spektrometria absorpcyjna i emisyjna Cel ćwiczenia: Celem ćwiczenia jest oznaczenie zawartości sodu, potasu i magnezu w

Bardziej szczegółowo

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego

Bardziej szczegółowo

KOLORYMETRYCZNE OZNACZANIE Cd, Mn i Ni

KOLORYMETRYCZNE OZNACZANIE Cd, Mn i Ni KOLORYMETRYCZNE OZNACZANE Cd, Mn i Ni nstrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. l. WSTĘP 1.1. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego

Bardziej szczegółowo

Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego

Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego Oznaczanie żelaza i miedzi metodą miareczkowania spektrofotometrycznego Oznaczanie dwóch kationów obok siebie metodą miareczkowania spektrofotometrycznego (bez maskowania) jest możliwe, gdy spełnione są

Bardziej szczegółowo

Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu

Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu Adsorpcja błękitu metylenowego na węglu aktywnym w obecności acetonu Cel ćwiczenia Celem ćwiczenia jest zbadanie procesu adsorpcji barwnika z roztworu, wyznaczenie równania izotermy Freundlicha oraz wpływu

Bardziej szczegółowo

POMIARY SPEKTROFOTOMETRYCZNE

POMIARY SPEKTROFOTOMETRYCZNE Laboratorium Elektronicznej Aparatury Medycznej Katedra Inżynierii Biomedycznej Wydział Podstawowych Problemów Techniki Politechnika Wrocławska ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia

Bardziej szczegółowo

ANALIZA INSTRUMENTALNA

ANALIZA INSTRUMENTALNA ANALIZA INSTRUMENTALNA TECHNOLOGIA CHEMICZNA STUDIA NIESTACJONARNE Sala 522 ul. Piotrowo 3 Studenci podzieleni są na cztery zespoły laboratoryjne. Zjazd 5 przeznaczony jest na ewentualne poprawy! Możliwe

Bardziej szczegółowo

Laboratorium 4. Określenie aktywności katalitycznej enzymu. Wprowadzenie do metod analitycznych. 1. CZĘŚĆ TEORETYCZNA

Laboratorium 4. Określenie aktywności katalitycznej enzymu. Wprowadzenie do metod analitycznych. 1. CZĘŚĆ TEORETYCZNA Laboratorium 4 Określenie aktywności katalitycznej enzymu. Wprowadzenie do metod analitycznych. Prowadzący: dr inż. Karolina Labus 1. CZĘŚĆ TEORETYCZNA Enzymy to wielkocząsteczkowe, w większości białkowe,

Bardziej szczegółowo

ABSORPCYJNA SPEKTORFOTOMETRIA CZĄSTECZKOWA

ABSORPCYJNA SPEKTORFOTOMETRIA CZĄSTECZKOWA BSORPYJN SPEKTORFOTOMETRI ZĄSTEZKOW (Oznaczanie chromu i kobaltu obok siebie) Politechnika Gdańska; opracowała: mgr inż. M. Wasielewska 1 WPROWDZENIE Metody spektroskopowe są to metody opierające się na

Bardziej szczegółowo

3. Badanie kinetyki enzymów

3. Badanie kinetyki enzymów 3. Badanie kinetyki enzymów Przy stałym stężeniu enzymu, a przy zmieniającym się początkowym stężeniu substratu, zmiany szybkości reakcji katalizy, wyrażonej jako liczba moli substratu przetworzonego w

Bardziej szczegółowo

ĆWICZENIE 11. ANALIZA INSTRUMENTALNA KOLORYMETRIA - OZNACZANIE Cr(VI) METODĄ DIFENYLOKARBAZYDOWĄ. DZIAŁ: Kolorymetria

ĆWICZENIE 11. ANALIZA INSTRUMENTALNA KOLORYMETRIA - OZNACZANIE Cr(VI) METODĄ DIFENYLOKARBAZYDOWĄ. DZIAŁ: Kolorymetria ĆWICZENIE 11 ANALIZA INSTRUMENTALNA KOLORYMETRIA - OZNACZANIE Cr(VI) METODĄ DIFENYLOKARBAZYDOWĄ DZIAŁ: Kolorymetria ZAGADNIENIA Elektronowe widmo absorpcyjne; rodzaje przejść elektronowych w kompleksach

Bardziej szczegółowo

spektroskopia UV Vis (cz. 2)

spektroskopia UV Vis (cz. 2) spektroskopia UV Vis (cz. 2) spektroskopia UV-Vis dlaczego? wiele związków organicznych posiada chromofory, które absorbują w zakresie UV duża czułość: zastosowanie w badaniach kinetyki reakcji spektroskop

Bardziej szczegółowo

Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego

Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego Ćw. M8 Zjawisko absorpcji i emisji światła w analityce. Pomiar widm absorpcji i stężenia ryboflawiny w roztworach wodnych za pomocą spektrofotometru. Wyznaczanie stężeń substancji w roztworze metodą fluorescencyjną.

Bardziej szczegółowo

PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2)

PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Równowaga chemiczna (Fiz2)

Bardziej szczegółowo

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy) POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

Synteza nanocząstek Ag i pomiar widma absorpcyjnego

Synteza nanocząstek Ag i pomiar widma absorpcyjnego Synteza nanocząstek Ag i pomiar widma absorpcyjnego Nanotechnologia jest nową, interdyscyplinarną dziedziną nauki łączącą osiągnięcia różnych nauk (m. in. chemii, biologii, fizyki, mechaniki, inżynierii)

Bardziej szczegółowo

REFRAKTOMETRIA. 19. Oznaczanie stężenia gliceryny w roztworze wodnym

REFRAKTOMETRIA. 19. Oznaczanie stężenia gliceryny w roztworze wodnym REFRAKTOMETRIA 19. Oznaczanie stężenia gliceryny w roztworze wodnym Celem ćwiczenia jest zaobserwowanie zmiany współczynnika refrakcji wraz ze zmianą stężenia w roztworu. Odczynniki i aparatura: 10% roztwór

Bardziej szczegółowo

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II

ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II ANALIZA ŚLADOWYCH ZANIECZYSZCZEŃ ŚRODOWISKA I ROK OŚ II Ćwiczenie 1 Przygotowanie próbek do oznaczania ilościowego analitów metodami wzorca wewnętrznego, dodatku wzorca i krzywej kalibracyjnej 1. Wykonanie

Bardziej szczegółowo

Aparatura w absorpcyjnej spektrometrii atomowej

Aparatura w absorpcyjnej spektrometrii atomowej Lidia Kozak, Przemysław Niedzielski Lidia Kozak, Przemysław Niedzielski Spektrometry absorpcji atomowej zbudowane są z następujących podstawowych części: źródła promieniowania, atomizera, monochromatora,

Bardziej szczegółowo

SPEKTROSKOPIA SPEKTROMETRIA

SPEKTROSKOPIA SPEKTROMETRIA SPEKTROSKOPIA Spektroskopia to dziedzina nauki, która obejmuje metody badania materii przy użyciu promieniowania elektromagnetycznego, które może być w danym układzie wytworzone (emisja) lub może z tym

Bardziej szczegółowo

Spektroskopia UV-VIS zagadnienia

Spektroskopia UV-VIS zagadnienia Spektroskopia absorbcyjna to dziedzina, która obejmuje metody badania materii przy użyciu promieniowania elektromagnetycznego, które może z tą materią oddziaływać. Spektroskopia UV-VS zagadnienia promieniowanie

Bardziej szczegółowo

Techniki atomowej spektroskopii absorpcyjnej (AAS) i możliwości ich zastosowania do analizy próbek środowiskowych i geologicznych

Techniki atomowej spektroskopii absorpcyjnej (AAS) i możliwości ich zastosowania do analizy próbek środowiskowych i geologicznych Zn Fe Cu Techniki atomowej spektroskopii absorpcyjnej (AAS) i możliwości ich zastosowania do analizy próbek środowiskowych i geologicznych Dr Artur Michalik Artur.Michalik@ujk.edu.pl Podstawy teoretyczne,

Bardziej szczegółowo

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Ćwiczenie 1 Zastosowanie statystyki do oceny metod ilościowych Błąd gruby, systematyczny, przypadkowy, dokładność, precyzja, przedział

Bardziej szczegółowo

PODSTAWY LABORATORIUM PRZEMYSŁOWEGO. ĆWICZENIE 3a

PODSTAWY LABORATORIUM PRZEMYSŁOWEGO. ĆWICZENIE 3a PODSTAWY LABORATORIUM PRZEMYSŁOWEGO ĆWICZENIE 3a Analiza pierwiastkowa podstawowego składu próbek z wykorzystaniem techniki ASA na przykładzie fosforanów paszowych 1 I. CEL ĆWICZENIA Zapoznanie studentów

Bardziej szczegółowo

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych Zwiększenie liczby wysoko wykwalifikowanych absolwentów kierunków ścisłych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Bardziej szczegółowo

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej

Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Oznaczanie mocznika w płynach ustrojowych metodą hydrolizy enzymatycznej Wprowadzenie: Większość lądowych organizmów kręgowych część jonów amonowych NH + 4, produktu rozpadu białek, wykorzystuje w biosyntezie

Bardziej szczegółowo

-1- Piotr Janas, Paweł Turkowski Zespół Fizyki, Akademia Rolnicza Do użytku wewnętrznego ĆWICZENIE 44 ABSORPCJOMETRIA. WYZNACZANIE STĘŻENIA ROZTWORU

-1- Piotr Janas, Paweł Turkowski Zespół Fizyki, Akademia Rolnicza Do użytku wewnętrznego ĆWICZENIE 44 ABSORPCJOMETRIA. WYZNACZANIE STĘŻENIA ROZTWORU -1- Piotr Janas, Paweł Turkowski Zespół Fizyki, Akademia Rolnicza Do użytku wewnętrznego ĆWICZENIE 44 ABSORPCJOMETRIA. WYZNACZANIE STĘŻENIA ROZTWORU Kraków, 16.01.2004 SPIS TREŚCI I. CZĘŚĆ TEORETYCZNA...

Bardziej szczegółowo

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,

Bardziej szczegółowo

Badanie absorpcji promieniowania γ

Badanie absorpcji promieniowania γ Badanie absorpcji promieniowania γ 29.1. Zasada ćwiczenia W ćwiczeniu badana jest zależność natężenia wiązki osłabienie wiązki promieniowania γ po przejściu przez warstwę materiału absorbującego w funkcji

Bardziej szczegółowo

cykloheksan benzen p-nitrofenol

cykloheksan benzen p-nitrofenol 1 Ćwiczenie 19K. Interakcja światła z materią. Absorpcja światła. Wyznaczanie widm absorpcji wybranych biomolekuł. Część teoretyczna: Spektroskopia jest często stosowaną techniką w badaniach chemicznych

Bardziej szczegółowo

BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ

BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ KATEDRA BIOCHEMII Wydział Biologii i Ochrony Środowiska BADANIE WŁASNOŚCI KOENZYMÓW OKSYDOREDUKTAZ ĆWICZENIE 2 Nukleotydy pirydynowe (NAD +, NADP + ) pełnią funkcję koenzymów dehydrogenaz przenosząc jony

Bardziej szczegółowo

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ

Właściwości optyczne. Oddziaływanie światła z materiałem. Widmo światła widzialnego MATERIAŁ Właściwości optyczne Oddziaływanie światła z materiałem hν MATERIAŁ Transmisja Odbicie Adsorpcja Załamanie Efekt fotoelektryczny Tradycyjnie właściwości optyczne wiążą się z zachowaniem się materiałów

Bardziej szczegółowo

Szkoła Letnia STC Łódź 2013 Oznaczanie zabarwienia cukru białego, cukrów surowych i specjalnych w roztworze wodnym i metodą MOPS przy ph 7,0

Szkoła Letnia STC Łódź 2013 Oznaczanie zabarwienia cukru białego, cukrów surowych i specjalnych w roztworze wodnym i metodą MOPS przy ph 7,0 Oznaczanie zabarwienia cukru białego, cukrów surowych i specjalnych w roztworze wodnym i metodą MOPS przy ph 7,0 1 Dr inż. Krystyna Lisik Inż. Maciej Sidziako Wstęp Zabarwienie jest jednym z najważniejszych

Bardziej szczegółowo

SPEKTROFOTOMETRYCZNA ANALIZA

SPEKTROFOTOMETRYCZNA ANALIZA POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 8 SPEKTROFOTOMETRYCZNA ANALIZA LUDZKIEJ HEMOGLOBINY I. WSTĘP TEORETYCZNY Hemoglobina (Hb) jest białkiem złożonym z grupy prostetycznej

Bardziej szczegółowo

Polarymetryczne oznaczanie stężenia i skręcalności właściwej substancji optycznie czynnych

Polarymetryczne oznaczanie stężenia i skręcalności właściwej substancji optycznie czynnych Polarymetryczne oznaczanie stężenia i skręcalności właściwej substancji optycznie czynnych Część podstawowa: Zagadnienia teoretyczne: polarymetria, zjawisko polaryzacji, skręcenie płaszczyzny drgań, skręcalność

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Pomiar zawartości krzemionki w pyle w środowisku miejsca pracy

Pomiar zawartości krzemionki w pyle w środowisku miejsca pracy Pomiar zawartości krzemionki w pyle w środowisku miejsca pracy Prowadzący: Dr Paweł Miśkowiec Miejsce wykonywania ćwiczenia: Zakład Chemii Środowiska, Wydział Chemii UJ ul. Gronostajowa 3 (III Kampus UJ),

Bardziej szczegółowo

Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska

Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska 1.1. Wprowadzenie do spektroskopii UV/VIS Spektroskopia w nadfiolecie, oraz świetle widzialnym UV/VIS

Bardziej szczegółowo

Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej

Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej Potencjometryczna metoda oznaczania chlorków w wodach i ściekach z zastosowaniem elektrody jonoselektywnej opracowanie: dr Jadwiga Zawada Cel ćwiczenia: poznanie podstaw teoretycznych i praktycznych metody

Bardziej szczegółowo

OZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA GAMMA PRZY UŻYCIU LICZNIKA SCYNTYLACYJNEGO

OZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA GAMMA PRZY UŻYCIU LICZNIKA SCYNTYLACYJNEGO Politechnika Poznańska, nstytut Chemii i Elektrochemii Technicznej, OZNACZANE WSPÓŁCZYNNKA POCHŁANANA PROMENOWANA GAMMA PRZY UŻYCU LCZNKA SCYNTYLACYJNEGO nstrukcję przygotował: dr, inż. Zbigniew Górski

Bardziej szczegółowo

KALIBRACJA. ważny etap procedury analitycznej. Dr hab. inż. Piotr KONIECZKA

KALIBRACJA. ważny etap procedury analitycznej. Dr hab. inż. Piotr KONIECZKA KALIBRAJA ważny etap procedury analitycznej 1 Dr hab. inż. Piotr KONIEZKA Katedra hemii Analitycznej Wydział hemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 8-233 GDAŃK e-mail: piotr.konieczka@pg.gda.pl

Bardziej szczegółowo

Robert Zakrzewski Wydział Chemii UŁ

Robert Zakrzewski Wydział Chemii UŁ Robert Zakrzewski Wydział Chemii UŁ http://pl.wikipedia.org/wiki/%c5%bbelazo Informacje ogólne Informacje ogólne Nazwa Symbol śelazo (łac. Ferrum) Fe Liczba atomowa 26 Grupa 8 Okres 4 Blok d Masa atomowa

Bardziej szczegółowo

Widmo promieniowania

Widmo promieniowania Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Deuterowa korekcja tła w praktyce

Deuterowa korekcja tła w praktyce Str. Tytułowa Deuterowa korekcja tła w praktyce mgr Jacek Sowiński jaceksow@sge.com.pl Plan Korekcja deuterowa 1. Czemu służy? 2. Jak to działa? 3. Kiedy włączyć? 4. Jak/czy i co regulować? 5. Jaki jest

Bardziej szczegółowo

OBLICZENIA BIOCHEMICZNE

OBLICZENIA BIOCHEMICZNE OBLICZENIA BIOCHEMICZNE Praca w laboratorium biochemicznym wymaga umiejętności obliczania stężeń i rozcieńczeń odczynników stosowanych do doświadczeń. W podstawowym kursie biochemii nie ma czasu na przygotowywanie

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru 1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru Wzór związku chemicznego podaje jakościowy jego skład z jakich pierwiastków jest zbudowany oraz liczbę atomów poszczególnych pierwiastków

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

Analiza spektralna i pomiary spektrofotometryczne

Analiza spektralna i pomiary spektrofotometryczne Analiza spektralna i pomiary spektrofotometryczne Zagadnienia: 1. Absorbcja światła. 2. Współrzędne trójchromatyczne barwy, Prawa Gassmana. 3. Trójkąt barw. Trójkąt nasyceń. 4. Rozpraszanie światła. 5.

Bardziej szczegółowo

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego 1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD

Bardziej szczegółowo

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Wykład XIV: Właściwości optyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Wykład XIV: Właściwości optyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wiadomości wstępne: a) Załamanie

Bardziej szczegółowo

ĆWICZENIE 2 KONDUKTOMETRIA

ĆWICZENIE 2 KONDUKTOMETRIA ĆWICZENIE 2 KONDUKTOMETRIA 1. Oznaczanie słabych kwasów w sokach i syropach owocowych metodą miareczkowania konduktometrycznego Celem ćwiczenia jest ilościowe oznaczenie zawartości słabych kwasów w sokach

Bardziej szczegółowo

ATOMOWA SPEKTROMETRIA ABSORPCYJNA (ASA)

ATOMOWA SPEKTROMETRIA ABSORPCYJNA (ASA) ATOMOWA SPEKTROMETRIA ABSORPCYJNA (ASA) 1. PODSTAWY FIZYCZNE Dyskretne poziomy energetyczne elektronów w atomie dyskretny charakter absorpcji i emisji energii przez atom. E n = Z me hc 2 4 2 = RZ 2 2 2

Bardziej szczegółowo

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XL OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Nazwa zadania: Światełko na tafli wody Mając do dyspozycji fotodiodę, źródło prądu stałego (4,5V bateryjkę), przewody, mikroamperomierz oraz

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Widma w podczerwieni (IR)

Widma w podczerwieni (IR) Spektroskopowe metody identyfikacji związków organicznych Widma w podczerwieni (IR) dr 2 Widmo w podczerwieni Liczba drgań zależy od liczby atomów w cząsteczce: cząsteczka nieliniowa o n atomach ma 3n-6

Bardziej szczegółowo

ABSORPCYJNA SPEKTROMETRIA ATOMOWA

ABSORPCYJNA SPEKTROMETRIA ATOMOWA ABSORPCYJNA SPEKTROMETRIA ATOMOWA Ćwiczenie 1. Badanie wpływu warunków pomiaru na absorbancję oznaczanego pierwiastka Ustalenie składu gazów płomienia i położenia palnika Do dwóch kolbek miarowych o pojemności

Bardziej szczegółowo

TEMAT ĆWICZENIA: OZNACZANIE METALI W WODZIE WODOCIĄGOWEJ TECHNIKĄ PŁOMIENIOWEJ ATOMOWEJ SPEKTROMETRII ABSORPCYJNEJ

TEMAT ĆWICZENIA: OZNACZANIE METALI W WODZIE WODOCIĄGOWEJ TECHNIKĄ PŁOMIENIOWEJ ATOMOWEJ SPEKTROMETRII ABSORPCYJNEJ PROBLEMATYKA: Kalibracja metody analitycznej Badanie i eliminacja efektów interferencyjnych TEMAT ĆWICZENIA: OZNACZANIE METALI W WODZIE WODOCIĄGOWEJ TECHNIKĄ PŁOMIENIOWEJ ATOMOWEJ SPEKTROMETRII ABSORPCYJNEJ

Bardziej szczegółowo

Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej

Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej Wysokosprawna chromatografia cieczowa w analizie jakościowej i ilościowej W analizie ilościowej z zastosowaniem techniki HPLC wykorzystuje się dwa możliwe schematy postępowania: kalibracja zewnętrzna sporządzenie

Bardziej szczegółowo

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K

dla której jest spełniony warunek równowagi: [H + ] [X ] / [HX] = K RÓWNOWAGI W ROZTWORACH Szwedzki chemik Svante Arrhenius w 1887 roku jako pierwszy wykazał, że procesowi rozpuszczania wielu substancji towarzyszy dysocjacja, czyli rozpad cząsteczek na jony naładowane

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

PRACOWNIA CHEMII. Kinetyka reakcji chemicznych (Fiz1)

PRACOWNIA CHEMII. Kinetyka reakcji chemicznych (Fiz1) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Kinetyka reakcji chemicznych

Bardziej szczegółowo

KALIBRACJA BEZ TAJEMNIC

KALIBRACJA BEZ TAJEMNIC KALIBRACJA BEZ TAJEMNIC 1 Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska e-mail: piotr.konieczka@pg.gda.pl 2 S w S x C x -? C w 3 Sygnał wyjściowy detektora funkcja

Bardziej szczegółowo

Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie -

Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie - Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania, technika otrzymywania grup i czystych substancji Cz. 5. Podstawy instrumentalizacji chromatografii aparatura

Bardziej szczegółowo

ĆWICZENIE 2 WYZNACZANIE WYDAJNOŚCI KWANTOWYCH ORAZ CZASÓW ZANIKU LUMINESCENCJI ZWIĄZKÓW W ROZTWORZE ORAZ CIELE STAŁYM, CZ. II.

ĆWICZENIE 2 WYZNACZANIE WYDAJNOŚCI KWANTOWYCH ORAZ CZASÓW ZANIKU LUMINESCENCJI ZWIĄZKÓW W ROZTWORZE ORAZ CIELE STAŁYM, CZ. II. Laboratorium specjalizacyjne Chemia sądowa ĆWICZENIE 2 WYZNACZANIE WYDAJNOŚCI KWANTOWYCH ORAZ CZASÓW ZANIKU LUMINESCENCJI ZWIĄZKÓW W ROZTWORZE ORAZ CIELE STAŁYM, CZ. II. Zagadnienia: Zjawiska fosforescencji

Bardziej szczegółowo

METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO)

METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO) METODYKA POMIARÓW WIDM ABSORPCJI (WA) NA CARY-300 (Varian) i V-550 (JASCO) Czas od włączenia spektrofotometru Cary-300 do momentu uzyskania stabilnej pracy: ok 30 minut., w przypadku V-550 ok. 3h. WA widmo

Bardziej szczegółowo

ĆWICZENIE 2. Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych

ĆWICZENIE 2. Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych ĆWICZENIE 2 Usuwanie chromu (VI) z zastosowaniem wymieniaczy jonowych Część doświadczalna 1. Metody jonowymienne Do usuwania chromu (VI) można stosować między innymi wymieniacze jonowe. W wyniku przepuszczania

Bardziej szczegółowo

Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej

Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie

Bardziej szczegółowo

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Odbicie promienia od powierzchni metalu E n 1 Równania Fresnela E θ 1 θ 1 r E = E odb, 0,

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA

POLITECHNIKA GDAŃSKA POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII CHEMICZNEJ Ćwiczenia laboratoryjne CHEMIA I TECHNOLOGIA MATERIAŁÓW BARWNYCH USUWANIE BARWNIKÓW ZE ŚCIEKÓW PRZEMYSŁU TEKSTYLNEGO Z WYKORZYSTANIEM

Bardziej szczegółowo

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych

Bardziej szczegółowo

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Dysocjacja elektrolitów W drugiej połowie XIX wieku szwedzki chemik S.A. Arrhenius doświadczalnie udowodnił, że substancje

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym

Skręcenie wektora polaryzacji w ośrodku optycznie czynnym WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA

POLITECHNIKA GDAŃSKA PLITECHIKA GDAŃSKA WYDZIAŁ CHEMICZY KATEDRA TECHLGII CHEMICZEJ Ćwiczenia laboratoryjne CHEMIA I TECHLGIA MATERIAŁÓW BARWYCH SPEKTRFLURYMETRIA GDAŃSK RK 2011 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru

Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną CZĘŚĆ DOŚWIADCZALNA. Tabela wyników pomiaru Wyznaczanie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną Cel ćwiczenia Celem ćwiczenia jest wyznaczenie stałej dysocjacji pk a słabego kwasu metodą konduktometryczną. Zakres wymaganych

Bardziej szczegółowo

Oznaczanie SO 2 w powietrzu atmosferycznym

Oznaczanie SO 2 w powietrzu atmosferycznym Ćwiczenie 6 Oznaczanie SO w powietrzu atmosferycznym Dwutlenek siarki bezwodnik kwasu siarkowego jest najbardziej rozpowszechnionym zanieczyszczeniem gazowym, występującym w powietrzu atmosferycznym. Głównym

Bardziej szczegółowo

BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY).

BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY). BADANIE ZAWARTOŚCI WIELOPIERŚCIENIOWYCH WĘGLOWODORÓW AROMATYCZNYCH (OZNACZANIE ANTRACENU W PRÓBKACH GLEBY). Wprowadzenie: Wielopierścieniowe węglowodory aromatyczne (WWA) to grupa związków zawierających

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Metody optyczne w medycynie

Metody optyczne w medycynie Metody optyczne w medycynie Podstawy oddziaływania światła z materią E i E t E t = E i e κ ( L) i( n 1)( L) c e c zmiana amplitudy (absorpcja) zmiana fazy (dyspersja) Tylko światło pochłonięte może wywołać

Bardziej szczegółowo

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ

Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ Wprowadzenie Ćwiczenie IX KATALITYCZNY ROZKŁAD WODY UTLENIONEJ opracowanie: Barbara Stypuła Celem ćwiczenia jest poznanie roli katalizatora w procesach chemicznych oraz prostego sposobu wyznaczenia wpływu

Bardziej szczegółowo

BARWY W CHEMII Dr Emilia Obijalska Katedra Chemii Organicznej i Stosowanej UŁ

BARWY W CHEMII Dr Emilia Obijalska Katedra Chemii Organicznej i Stosowanej UŁ BARWY W CHEMII Dr Emilia bijalska Katedra Chemii rganicznej i Stosowanej UŁ Akademia Ciekawej Chemii Czym jest światło? Wzrok człowieka reaguje na fale elektromagnetyczne w zakresie 380-760nm. Potocznie

Bardziej szczegółowo