Układ pomiaru temperatury termoelementem typu K o dużej szybkości. Paweł Kowalczyk Michał Kotwica

Wielkość: px
Rozpocząć pokaz od strony:

Download "Układ pomiaru temperatury termoelementem typu K o dużej szybkości. Paweł Kowalczyk Michał Kotwica"

Transkrypt

1 Układ pomiaru temperatury termoelementem typu K o dużej szybkości Paweł Kowalczyk Michał Kotwica

2 Plan prezentacji Fizyczne podstawy działania termopary Zalety wykorzystania termopar Właściwości termoelementu K Założenia projektowe Schemat blokowy Realizacja układowa Layout

3 Kluczowe odkrycia W 1921 T. Seebeck zaobserwował, że w zamkniętym obwodzie składającym się z dwóch różnych metali, o ile miejsca ich styku znajdują się w różnych temperaturach przepływa prąd W 1834 Peltier zaobserwował nagrzewanie lub ochładzanie styku dwóch metali w zależności od kierunku w którym płynie przez nie prąd W 1854 Lord Kelvin (W. Thomson) odkrył, że potencjały na końcach jednorodnego kawałka metalu różnią się gdy końce mają inną temperaturę

4 Podstawy działania termoelementu Działanie termopary opiera się na dwóch kluczowych zjawiskach: Zjawisko Peltiera (występowanie siły termoelektrycznej STE w punkcie złączenia dwóch metali) wynika z różnicy liczby swobodnych elektronów po obu stronach styku metali w określonej temperaturze Zjawisko Thomsona (występowanie STE na całej długości przewodnika) wynika z termicznych ruchów elektronów wzdłuż drutu o różnym gradiencie temperatury

5 Zasada działania Oba powyższe układy generują STE zależną od różnicy temperatury spoiny pomiarowej i temperatury odniesienia (w pierwszym przypadku temperatury złącza, w drugim temperatury spoiny odniesienia)

6 Zasada działania Siła termoelektryczna termoelementu zbudowanego z metali A i B o temperaturach spoin T 0 i T 1 wyraża się wzorem: SEM AB (T 0, T 1 ) = e AB (T 1 ) e AB (T 0 ) gdzie: e AB (T) siła termoelektryczna metali A i B w temperaturze T (uwzględniająca zarówno zjawisko Peltiera jak i Thomsona) W przypadku liniowej aproksymacji wzór upraszcza się do postaci: SEM AB (T 0, T 1 ) = S AB *(T 1 T 0 ) gdzie: S AB współczynnik Seebecka metali A i B

7 Zalety wykorzystania termoelementów Prostota budowy i duża niezawodność Nie wymagają zewnętrznej polaryzacji należy zapewnić jedynie swobodny przepływ prądu Możliwość mierzenia wysokich temperatur Niewielkie rozmiary i co za tym idzie mała pojemność cieplna, mała bezwładność czasowa, mozliwość lokalnego pomiaru temperatury

8 Właściwości termoelementu K (NiCr-NiAl) NiCr elektroda dodatnia, NiAl elektroda ujemna (ulega szybszemu zużyciu niż dodatnia) Zakres temperatur: od -270 C do 1370 C (wg. PN-81/M ) Zakres krótkotrwałej stosowalności: powyżej 1000 C Prawie liniowa charakterystyka termometryczna Współczynnik Seebecka wynosi ok. 42μV/ C

9 Właściwości termoelementu K (NiCr-NiAl) Materiał: nikielchrom-nikielaluminium (85%Ni, 15% Cr 95% Ni, 2% Al, 2% Mn, 1% Si) lub Chromel-Alumel (90%Ni, 10% Cr 94% Ni, 3% Mn, 2% Al, 1% Si) Odporny na atmosferę utleniającą W wyższych temperaturach wrażliwy na atmosferę redukującą i na obecność związków siarki Domieszkowanie poprawia odporność na korozję

10 Charakterystyka termometryczna termoelementu K (NiCr-NiAl) wg. PN-81/M w zakresie długotrwałej stosowalności termoelementu T[ C] E[mV] T[ C] E[mV] T[ C] E[mV] T[ C] E[mV] , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,71

11 Charakterystyka termometryczna termoelementu K (NiCr-NiAl) wg. PN-81/M w zakresie długotrwałej stosowalności termoelementu T[ C] E[mV] T[ C] E[mV] T[ C] E[mV] T[ C] E[mV] , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,27

12 Charakterystyka termometryczna termoelementu K (NiCr-NiAl) wg. PN-81/M w zakresie długotrwałej stosowalności termoelementu 50,000 40,000 30,000 STE [mv] 20,000 10,000 0,000-10, Temperatura [C]

13 Założenia projektowe: Temperatura pracy od -20 C do 300 C Dwa zakresy pomiarowe (w celu poprawy dokładności) Zasilanie z napięcia 3,3V Przystosowanie do działania w niesprzyjających warunkach (temperatura odniesienia)

14 Schemat blokowy

15 Realizacja Układowa

16 Układ kompensacji Kompensacja zimnych końców umożliwia pracę termopary przy temperaturze odniesienia innej od tej podanej w nocie katalogowej Zmiana temperatury wpływa na sygnał z termopary i generuje jednocześnie zaburzenie o tej samej wartości przeciwnie skierowane w układzie kompensacji.

17 Sygnał z LM19 trafia na dzielnik napięcia R1 R2, którego przekładnia jest równa współczynnikowi Seebecke a zastosowanej termopary. Napięcie z R2 odejmowane jest od SEM uzyskanym na termoparze, a skompensowana wartość (o charakterystyce temperaturowej malejącej) odejmowana jest od stałego napięcia, co w efekcie daje na wyjściu charakterystykę rosnącą.

18 Wzmacniacz pomiarowy Skompensowany sygnał jest podawany na wzmacniacz AD8551. Zworka w torze sprzężenia wzmacniacza odpowiada za zmianę zakresu pracy. Po wybraniu zakresu za pomocą zworki, ostatecznej kalibracji wzmocnienia dokonuje się za pomocą potencjometru, tak aby dla górnego końca zakresu wzmacniacz był w nasyceniu. Wtedy pomiar max temp. zakresu będzie skutkował napięciem 3.3 V na wzmacniaczu.

19 Analiza działania układu Pierwszy zakres pomiarowy od -20 do 100 C Na osi X temperatura jest zamodelowana napięciem Warunki idealne (25 C), układ kompensacji nieaktywny Skalibrowany wzmacniacz pracuje w całym zakresie pracy

20 Analiza działania układu Drugi zakres pomiarowy od 100 do 300 C Na osi X temperatura jest zamodelowana napięciem Warunki idealne (25 C), układ kompensacji nieaktywny Skalibrowany wzmacniacz pracuje w całym zakresie pracy

21 Analiza układu kompensacji W celu zbadania pracy układu kompensacji zasymulowane zostało jego zachowanie dla stałej temperatury mierzonej przez czujnik w zakresie zaburzeń wprowadzanych przez zmianę temperatury zimnych końców. Przytoczono po jednym wyniku dla każdego zakresu pomiarowego, odpowiednio dla 0 i 180 C

22

23 Analiza układu kompensacji Układ kompensacji działa jednak nie jest w stanie usunąć całkowicie efektu zimnych końców, jest to konsekwencja nie do końca liniowej ch-ki termopary i bardzo dużych wzmocnień w torze analogowym wymuszonych małymi wartościami sygnału z termopary.

24 Szacunek błędu Zmiana temp odniesienia o 10 C skutkuje szacunkowym błędem w granicach 0,05-0,7 C Na błędu pomiaru wynikająca z kompensacji zimnych końców zależy: -temperatura mierzona (w jakim pkt. ch- ki termopary się znajduje) -wartość i kierunek (± od temp katalogowej dla termopary) zmiany zimnych końców temp

25 Leyout

Czujniki temperatur, termopary

Czujniki temperatur, termopary Czujniki temperatur, termopary 1 Termopara Czujniki termoelektryczne są to przyrządy reagujące na zmianę temperatury zmianą siły termodynamicznej wbudowanego w nie termoelementu. Połączone na jednym końcu

Bardziej szczegółowo

teoretyczne podstawy działania

teoretyczne podstawy działania Techniki Niskotemperaturowe w medycynie Seminarium Termoelektryczne urządzenia chłodnicze - teoretyczne podstawy działania Edyta Kamińska IMM II st. Sem I 1 Spis treści Termoelektryczność... 3 Zjawisko

Bardziej szczegółowo

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE SEMINARIUM Termoelektryczne urządzenia chłodnicze Teoretyczne podstawy działania Anna Krzesińska I M-M sem. 2 1 Spis treści Termoelektryczność...3 Efekt Seebecka...4

Bardziej szczegółowo

Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi

Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi Temat nr 3: Pomiar temperatury termometrami termoelektrycznymi 1.Wiadomości podstawowe Termometry termoelektryczne należą do najbardziej rozpowszechnionych przyrządów, służących do bezpośredniego pomiaru

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia II. Wyznaczanie charakterystyk statycznych czujników temperatury

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia II. Wyznaczanie charakterystyk statycznych czujników temperatury Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia II Wyznaczanie charakterystyk statycznych czujników temperatury 1 1. Wstęp Temperatura jest jedną z najważniejszych wielkości fizycznych

Bardziej szczegółowo

ZJAWISKA TERMOELEKTRYCZNE

ZJAWISKA TERMOELEKTRYCZNE Wstęp W ZJAWISKA ERMOELEKRYCZNE W.1. Wstęp Do zjawisk termoelektrycznych zaliczamy: zjawisko Seebecka - efekt powstawania różnicy potencjałów elektrycznych na styku metali lub półprzewodników, zjawisko

Bardziej szczegółowo

Ciepłe + Zimne = przepływ ładunków

Ciepłe + Zimne = przepływ ładunków AKADEMICKIE LICEUM OGÓLNOKSZTAŁCĄCE POLITECHNIKI WROCŁAWSKIEJ Ciepłe + Zimne = przepływ ładunków Zjawiska termoelektryczne Karol Kobiałka (1A), Michał Łakomski (1A), Monika Zemankiewicz (1A) 2015-01-29

Bardziej szczegółowo

2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH

2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH 2. CHARAKTERYSTYKI TERMOMETRYCZNE TERMOELEMENTÓW I METALOWYCH OPORNIKÓW TERMOMETRYCZNYCH 2.1. Cel ćwiczenia: zapoznanie się ze zjawiskami fizycznymi, na których oparte jest działanie termoelementów i oporników

Bardziej szczegółowo

str. 1 d. elektron oraz dziura e.

str. 1 d. elektron oraz dziura e. 1. Półprzewodniki samoistne a. Niska temperatura b. Wzrost temperatury c. d. elektron oraz dziura e. f. zjawisko fotoelektryczne wewnętrzne g. Krzem i german 2. Półprzewodniki domieszkowe a. W półprzewodnikach

Bardziej szczegółowo

Wzorcowanie termometrów i termopar

Wzorcowanie termometrów i termopar Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wzorcowanie termometrów i termopar - 1 - Wstęp teoretyczny Temperatura jest jednym z parametrów określających stan termodynamiczny ciała

Bardziej szczegółowo

PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH

PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH Rzeszów 2001 2 1. WPROWADZENIE 1.1. Ogólna charakterystyka

Bardziej szczegółowo

Lekcja 25. Termoelektryczność

Lekcja 25. Termoelektryczność Lekcja 25. Termoelektryczność W metalach elektrony swobodne poruszają się bezładnie z olbrzymią prędkością średnią zależną od temperatury. Jest ona rzędu 100 km/s w temperaturze pokojowej i zwiększa się

Bardziej szczegółowo

wzmacniacz pomiarowy dla czujników temperatury 1-kanałowy IM34-11EX-CI/K60

wzmacniacz pomiarowy dla czujników temperatury 1-kanałowy IM34-11EX-CI/K60 1 / 5 TURCK Inc. ñ 3000 Campus Drive Minneapolis, MN 55441-2656 ñ Phone: 763-553-7300 ñ Application Support: 1-800-544-7769 ñ Fax 763-553-0708 ñ www.turck.com przetwornik pomiarowy temperatury IM34-11Ex-CI/K60

Bardziej szczegółowo

2.1 Cechowanie termopary i termistora(c1)

2.1 Cechowanie termopary i termistora(c1) 76 Ciepło 2.1 Cechowanie termopary i termistora(c1) Celem ćwiczenia jest zbadanie zależności temperaturowej oporu termistora oraz siły elektromotorycznej indukowanej w obwodach z termoparą. Przeprowadzane

Bardziej szczegółowo

Liniowe układy scalone

Liniowe układy scalone Liniowe układy scalone Wykład 3 Układy pracy wzmacniaczy operacyjnych - całkujące i różniczkujące Cechy układu całkującego Zamienia napięcie prostokątne na trójkątne lub piłokształtne (stała czasowa układu)

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Cel ćwiczenia: Wyznaczenie współczynnika temperaturowego oporu platyny oraz pomiar charakterystyk termopary miedź-konstantan.

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY

WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 3 str. 1/9 ĆWICZENIE 3 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI TEMPERATURY 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi czujnikami elektrycznymi

Bardziej szczegółowo

POMIARY TEMPERATURY. 1. Cel ćwiczenia. 2. Przebieg ćwiczenia. 3. Pomiar temperatury.

POMIARY TEMPERATURY. 1. Cel ćwiczenia. 2. Przebieg ćwiczenia. 3. Pomiar temperatury. POMIARY TEMPERATURY 1. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z metodami pomiaru temperatury oraz wyznaczenie charakterystyk wybranych czujników temperatury (NTC, PTC, PT100, LM35, termopara

Bardziej szczegółowo

wzmacniacz pomiarowy dla czujników temperatury 1-kanałowy IM34-11EX-CI/K60

wzmacniacz pomiarowy dla czujników temperatury 1-kanałowy IM34-11EX-CI/K60 1 / 5 Hans Turck GmbH & Co.KG ñ D-45472 Mülheim an der Ruhr ñ Witzlebenstraße 7 ñ Tel. 0208 4952-0 ñ Fax 0208 4952-264 ñ more@turck.com ñ www.turck.com przetwornik pomiarowy temperatury IM34-11Ex-CI/K60

Bardziej szczegółowo

Termoelektryczne urządzenia chłodnicze

Termoelektryczne urządzenia chłodnicze POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE Termoelektryczne urządzenia chłodnicze Teoretyczne podstawy działania Monika Wilczyńska Inżynieria Mechaniczno Medyczna

Bardziej szczegółowo

Projektowanie systemów pomiarowych

Projektowanie systemów pomiarowych Projektowanie systemów pomiarowych 10 Pomiar temperatury wybrane metody http://www.acse.pl/czujniki-temperatury 1 Pomiary temperatury Skale temperatury: - Celsjusza (1742) uporządkowana przez Stromera

Bardziej szczegółowo

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY IŃSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr1 KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY 1.WPROWADZENIE Przewodzenie ciepła (kondukcja) jest to wymiana ciepła między

Bardziej szczegółowo

Zjawisko termoelektryczne

Zjawisko termoelektryczne 34 Zjawisko Peltiera polega na tym, że w obwodzie składającym się z różnych przewodników lub półprzewodników wytworzenie różnicy temperatur między złączami wywołuje przepływ prądu spowodowany różnicą potencjałów

Bardziej szczegółowo

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 209493 (13) B1 (21) Numer zgłoszenia: 382135 (51) Int.Cl. G01F 1/698 (2006.01) G01P 5/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

SKALOWANIE TERMOPARY I WYZNACZANIE TEMPERATURY KRZEPNIĘCIA STOPU

SKALOWANIE TERMOPARY I WYZNACZANIE TEMPERATURY KRZEPNIĘCIA STOPU ĆWICZENIE 20 SKALOWANIE TERMOPARY I WYZNACZANIE TEMPERATURY KRZEPNIĘCIA STOPU Cel ćwiczenia: Poznanie budowy i zasady działania termopary. Skalowanie termopary i wyznaczanie jej współczynnika termoelektrycznego.

Bardziej szczegółowo

Pomiar temperatury termoelementami

Pomiar temperatury termoelementami Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych W9/K2 Miernictwo Energetyczne laboratorium Pomiar temperatury termoelementami Instrukcja do ćwiczenia nr 1 Opracował: dr inż. Wiesław Wędrychowicz

Bardziej szczegółowo

11. Wzmacniacze mocy. Klasy pracy tranzystora we wzmacniaczach mocy. - kąt przepływu

11. Wzmacniacze mocy. Klasy pracy tranzystora we wzmacniaczach mocy. - kąt przepływu 11. Wzmacniacze mocy 1 Wzmacniacze mocy są układami elektronicznymi, których zadaniem jest dostarczenie do obciążenia wymaganej (na ogół dużej) mocy wyjściowej przy możliwie dużej sprawności i małych zniekształceniach

Bardziej szczegółowo

Liniowe układy scalone. Wykład 2 Wzmacniacze różnicowe i sumujące

Liniowe układy scalone. Wykład 2 Wzmacniacze różnicowe i sumujące Liniowe układy scalone Wykład 2 Wzmacniacze różnicowe i sumujące Wzmacniacze o wejściu symetrycznym Do wzmacniania małych sygnałów z różnych czujników, występujących na tle dużej składowej sumacyjnej (tłumionej

Bardziej szczegółowo

Eksperyment pomiary zgazowarki oraz komory spalania

Eksperyment pomiary zgazowarki oraz komory spalania Eksperyment pomiary zgazowarki oraz komory spalania Damian Romaszewski Michał Gatkowski Czym będziemy mierzyd? Pirometr- Pirometry tworzą grupę bezstykowych mierników temperatury, które wykorzystują zjawisko

Bardziej szczegółowo

Ćwiczenie. Elektryczne metody pomiaru temperatury

Ćwiczenie. Elektryczne metody pomiaru temperatury Program Rozwojowy Politechniki Warszawskiej, Zadanie 36 Przygotowanie i modernizacja programów studiów oraz materiałów dydaktycznych na Wydziale Elektrycznym Laboratorium Akwizycja, przetwarzanie i przesyłanie

Bardziej szczegółowo

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Przetworniki A/C Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Parametry przetworników analogowo cyfrowych Podstawowe parametry przetworników wpływające na ich dokładność

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

ZASADA DZIAŁANIA miernika V-640

ZASADA DZIAŁANIA miernika V-640 ZASADA DZIAŁANIA miernika V-640 Zasadniczą częścią przyrządu jest wzmacniacz napięcia mierzonego. Jest to układ o wzmocnieniu bezpośred nim, o dużym współczynniku wzmocnienia i dużej rezystancji wejściowej,

Bardziej szczegółowo

ĆWICZENIE nr 5. Pomiary wielkości nieelektrycznych

ĆWICZENIE nr 5. Pomiary wielkości nieelektrycznych Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONIZNEJ ĆWIZENIE nr 5 Pomiary wielkości nieelektrycznych EL ĆWIZENIA: elem ćwiczenia

Bardziej szczegółowo

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE

Bardziej szczegółowo

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Wejścia analogowe w sterownikach, regulatorach, układach automatyki Wejścia analogowe w sterownikach, regulatorach, układach automatyki 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia

Bardziej szczegółowo

ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi

ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze

Bardziej szczegółowo

Czujniki temperatury

Czujniki temperatury Czujniki temperatury Pomiar temperatury Pomiar temperatury jest jednym z najczęściej wykonywanych pomiarów wielkości nieelektrycznej w gospodarstwach domowych jak i w przemyśle. Do pomiaru temperatury

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INFOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

KALIBRATORY SOND TEMPERATUROWYCH

KALIBRATORY SOND TEMPERATUROWYCH KALIBRATORY SOND TEMPERATUROWYCH ESCORT-21 / ESCORT-22 DANE TECHNICZNE Porównanie funkcji kalibratorów: Escort 21 Escort 22 Kalibrator termopar / tester pętli Kalibrator termopar / termometr Kalibracja

Bardziej szczegółowo

Przykład 2. Przykład 3. Spoina pomiarowa

Przykład 2. Przykład 3. Spoina pomiarowa Wykład 10. Struktura toru pomiarowego. Interfejsy, magistrale, złącza. Eksperyment pomiarowy zjawisko lub model metrologiczny mezurand, czujniki przetwarzanie na sygnał elektryczny, kondycjonowanie sygnału

Bardziej szczegółowo

Wzorcowanie mierników temperatur Błędy pomiaru temperatury

Wzorcowanie mierników temperatur Błędy pomiaru temperatury Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych W9/K2 Miernictwo Energetyczne laboratorium Wzorcowanie mierników temperatur Błędy pomiaru temperatury Instrukcja do ćwiczenia nr 3 Opracował: dr

Bardziej szczegółowo

M-1TI. PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ. 2

M-1TI. PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ.  2 M-1TI PRECYZYJNY PRZETWORNIK RTD, TC, R, U NA SYGNAŁ ANALOGOWY 4-20mA Z SEPARACJĄ GALWANICZNĄ www.metronic.pl 2 CECHY PODSTAWOWE Przetwarzanie sygnału z czujnika na sygnał standardowy pętli prądowej 4-20mA

Bardziej szczegółowo

Czujnik temperatury RaECzTa

Czujnik temperatury RaECzTa Czujnik temperatury RaECzTa ver. 1 ver. 2 Instrukcja płytki czujnika temperatury, podłączenia i kalibracji. UWAGA: nowa wersja 2 płytki ma połączenia w innej kolejności. Nowa płytka jest łatwo rozpoznawalna:

Bardziej szczegółowo

Zapoznanie się ze zjawiskiem Seebecka i Peltiera. Zastosowanie elementu Peltiera do chłodzenia i zamiany energii cieplnej w energię elektryczną.

Zapoznanie się ze zjawiskiem Seebecka i Peltiera. Zastosowanie elementu Peltiera do chłodzenia i zamiany energii cieplnej w energię elektryczną. FiIS PRAONIA FIZYZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆIZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OENA el ćwiczenia: Zapoznanie się ze

Bardziej szczegółowo

Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7

Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Ćw. 7. Kondycjonowanie sygnałów pomiarowych Problemy teoretyczne: Moduły kondycjonujące serii 5B (5B34) podstawowa charakterystyka Moduł kondycjonowania

Bardziej szczegółowo

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC Wybrane elementy elektroniczne Rezystory NTC Czujniki temperatury Rezystancja nominalna 20Ω 40MΩ (typ 2kΩ 40kΩ) Współczynnik temperaturowy -2-5% [%/K] Max temperatura pracy 120 200 (350) [ºC] Współczynnik

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu.

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu. Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu. WZMACNIACZ 1. Wzmacniacz elektryczny (wzmacniacz) to układ elektroniczny, którego

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym 1. Definicja sprzężenia zwrotnego Sprzężenie zwrotne w układach elektronicznych polega na doprowadzeniu części sygnału wyjściowego z powrotem do wejścia. Częśd sygnału wyjściowego, zwana sygnałem zwrotnym,

Bardziej szczegółowo

Zastosowania liniowe wzmacniaczy operacyjnych

Zastosowania liniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania liniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

PRZETWORNIK PROGRAMOWALNY T1249

PRZETWORNIK PROGRAMOWALNY T1249 PRZETWORNIK PROGRAMOWALNY T1249 temperatura czujnika / 4 20 ma klasa dokładności: 0.05 separacja galwaniczna 2kV zasilanie z wyjściowej pętli prądowej w pełni programowalny obudowa o szerokości 12.5mm

Bardziej szczegółowo

Układy akwizycji danych. Komparatory napięcia Przykłady układów

Układy akwizycji danych. Komparatory napięcia Przykłady układów Układy akwizycji danych Komparatory napięcia Przykłady układów Komparatory napięcia 2 Po co komparator napięcia? 3 Po co komparator napięcia? Układy pomiarowe, automatyki 3 Po co komparator napięcia? Układy

Bardziej szczegółowo

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH BADANIE PRZETWORNIKÓW POMIAROWYCH Instrukcja do ćwiczenia Łódź 1996 1. CEL ĆWICZENIA

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 9. Czujniki temperatury

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 9. Czujniki temperatury Cel ćwiczenia: Poznanie budowy i zasady działania oraz parametrów charakterystycznych dla stykowych czujników temperatury. Zapoznanie się z metodami pomiaru temperatur czujnikami stykowymi oraz sposobami

Bardziej szczegółowo

M-1TI. PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA ZASTOSOWANIE:

M-1TI. PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA ZASTOSOWANIE: M-1TI PROGRAMOWALNY PRECYZYJNY PRZETWORNIK RTD, TC, R, U / 4-20mA Konwersja sygnału z czujnika temperatury (RTD, TC), rezystancji (R) lub napięcia (U) na sygnał pętli prądowej 4-20mA Dowolny wybór zakresu

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

P-1a. Dyskryminator progowy z histerezą

P-1a. Dyskryminator progowy z histerezą wersja 03 2017 1. Zakres i cel ćwiczenia Celem ćwiczenia jest zaprojektowanie dyskryminatora progowego z histerezą wykorzystując komparatora napięcia A710, a następnie zmontowanie i przebadanie funkcjonalne

Bardziej szczegółowo

Pomiar współczynnika przewodzenia ciepła ciał stałych

Pomiar współczynnika przewodzenia ciepła ciał stałych Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar współczynnika przewodzenia ciepła ciał stałych - - Wiadomości wstępne Przewodzenie ciepła jest procesem polegającym na przenoszeniu

Bardziej szczegółowo

Ćwiczenie 1 ANALIZA TERMICZNA STOPÓW METALI *

Ćwiczenie 1 ANALIZA TERMICZNA STOPÓW METALI * Ćwiczenie 1 ANALIZA TERMICZNA STOPÓW METALI * 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się ze sposobem wyznaczania krzywych nagrzewania lub chłodzenia metali oraz ich stopów, a także wykorzystanie

Bardziej szczegółowo

Liniowe układy scalone. Komparatory napięcia i ich zastosowanie

Liniowe układy scalone. Komparatory napięcia i ich zastosowanie Liniowe układy scalone Komparatory napięcia i ich zastosowanie Komparator Zadaniem komparatora jest wytworzenie sygnału logicznego 0 lub 1 na wyjściu w zależności od znaku różnicy napięć wejściowych Jest

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI BEZPRZEWODOWY POMIAR TEMPERATURY

INSTRUKCJA OBSŁUGI BEZPRZEWODOWY POMIAR TEMPERATURY INSTRUKCJA OBSŁUGI BEZPRZEWODOWY POMIAR TEMPERATURY ODBIORNIK LIM-RE410 NADAJNIK LIM-TR401 Wydanie LS 16/01 1. Opis Nadajnik LIM-TR401 służy do bezprzewodowego pomiaru temperatury w szerokim zakresie od

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych

LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych LABORATORIUM ELEKTRONIKA I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień (I): 1.

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH. Instrukcja do ćwiczenia. Pomiary temperatur metodami stykowymi.

POLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH. Instrukcja do ćwiczenia. Pomiary temperatur metodami stykowymi. POLITECHNIKA WROCŁAWSKA LABORATORIUM POMIARÓW WIELKOSCI NIEELEKTRYCZNYCH Instrukcja do ćwiczenia Pomiary temperatur metodami stykowymi. Wrocław 2005 Temat ćwiczenia: Pomiary temperatur czujnikami stykowymi

Bardziej szczegółowo

PRZETWORNIKI C / A PODSTAWOWE PARAMETRY

PRZETWORNIKI C / A PODSTAWOWE PARAMETRY PRZETWORIKI C / A PODSTAWOWE PARAMETRY Rozdzielczość przetwornika C/A - Określa ją liczba - bitów słowa wejściowego. - Definiuje się ją równieŝ przez wartość związaną z najmniej znaczącym bitem (LSB),

Bardziej szczegółowo

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki

Bardziej szczegółowo

Temperatura, PRZYRZĄDY DO POMIARU TEMPERATURY

Temperatura, PRZYRZĄDY DO POMIARU TEMPERATURY Temperatura, PRZYRZĄDY DO POMIARU TEMPERATURY Pojęcie temperatury jako miary stanu cieplnego kojarzy się z odczuciami fizjologicznymi Jeden ze parametrów stanu termodynamicznego układu charakteryzujący

Bardziej szczegółowo

Ćwiczenie 2. Zjawiska cieplne w ogniwie Peltier a

Ćwiczenie 2. Zjawiska cieplne w ogniwie Peltier a Zespół Elektrotermii Laboratorium Termokinetyki Ćwiczenie 2. Zjawiska cieplne w ogniwie Peltier a 1. Zasada działania ogniw Peltiera Działanie modułów termoelektrycznych, zwanych najczęściej ogniwami Peltier

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska 1947 r. pierwszy tranzystor ostrzowy John Bradeen (z lewej), William Shockley (w środku) i Walter Brattain (z prawej) (Bell Labs) Zygmunt Kubiak

Bardziej szczegółowo

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko Klasa Imię i nazwisko Nr w dzienniku espół Szkół Łączności w Krakowie Pracownia elektroniczna Nr ćw. Temat ćwiczenia Data Ocena Podpis Badanie parametrów wzmacniacza mocy 1. apoznać się ze schematem aplikacyjnym

Bardziej szczegółowo

Linearyzatory czujników temperatury

Linearyzatory czujników temperatury AiR Pomiary przemysłowe ćw. seria II Linearyzatory czujników temperatury Zastosowanie opornika termometrycznego 100 do pomiaru temperatury Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów ze sposobami

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo

E-TRONIX Sterownik Uniwersalny SU 1.2

E-TRONIX Sterownik Uniwersalny SU 1.2 Obudowa. Obudowa umożliwia montaż sterownika na szynie DIN. Na panelu sterownika znajduje się wyświetlacz LCD 16x2, sygnalizacja LED stanu wejść cyfrowych (LED IN) i wyjść logicznych (LED OUT) oraz klawiatura

Bardziej szczegółowo

ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania

ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

WKŁAD POMIAROWY W1P... I PW1P

WKŁAD POMIAROWY W1P... I PW1P WŁAD POMIAROWY W1P... I PW1P Zakres pomiarowy: -00...700 C : Pt100, Pt500, Pt100, inny : A, B, inna Materiał osłony: 1H1N9T Wkłady z serii W1P... są zespołem pomiarowym rezystancyjnych czujników temperatury.

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Wykład VII Detektory I

Wykład VII Detektory I Wykład VII Detektory I Rodzaje detektorów Parametry detektorów Sygnał na wyjściu detektora zależy od długości fali (l), powierzchni światłoczułej (A) i częstości modulacji (f), polaryzacji (niech opisuje

Bardziej szczegółowo

DTR. GI APLISENS PRODUKCJA PRZETWORNIKÓW CIŚNIENIA I APARATURY POMIAROWEJ DOKUMENTACJA TECHNICZNO-RUCHOWA

DTR. GI APLISENS PRODUKCJA PRZETWORNIKÓW CIŚNIENIA I APARATURY POMIAROWEJ DOKUMENTACJA TECHNICZNO-RUCHOWA DTR. GI - 22.01 APLISENS PRODUKCJA PRZETWORNIKÓW CIŚNIENIA I APARATURY POMIAROWEJ DOKUMENTACJA TECHNICZNO-RUCHOWA INTELIGENTNY GŁOWICOWY PRZETWORNIK TEMPERATURY TYPU GI - 22 WARSZAWA, STYCZEŃ 2002r. 1

Bardziej szczegółowo

wzmacniacz pomiarowy dla czujników temperatury 1-kanałowy IMX12-TI02-1TCURTDR- 1I1R-CPR/24VDC

wzmacniacz pomiarowy dla czujników temperatury 1-kanałowy IMX12-TI02-1TCURTDR- 1I1R-CPR/24VDC wzmacniacz pomiarowy do czujników temperatury IMX12- TI02-1TCURTDR-1I-1RI-CPR/24VDC jest wyposażony w wejścia dla: Termopar zgodnie z normą IEC 60584, DIN 43710, GOST R 8.585-2001, niskich napięć (-150

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 5 Prawo autorskie Niniejsze

Bardziej szczegółowo

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW

CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Prawa promieniowania: Plancka, Stefana-Boltzmana.

Bardziej szczegółowo

FLUKE. 80PK-1 Sonda typ K

FLUKE. 80PK-1 Sonda typ K FLUKE 80PK-1 Sonda typ K Wszelkie kopiowanie, odtwarzanie i rozpowszechnianie niniejszej instrukcji wymaga pisemnej zgody firmy Transfer Multisort Elektronik. Uwaga! W celu uniknięcia porażenia elektrycznego

Bardziej szczegółowo

Podstawowe układy elektroniczne

Podstawowe układy elektroniczne Podstawowe układy elektroniczne Nanodiagnostyka 16.11.2018, Wrocław MACIEJ RUDEK Podstawowe elementy Podstawowe elementy elektroniczne Podstawowe elementy elektroniczne Rezystor Kondensator Cewka 3 Podział

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny Wzmacniacz operacyjny opisywany jest jako wzmacniacz prądu stałego, czyli wzmacniacz o sprzężeniach bezpośrednich, który charakteryzuje się bardzo dużym wzmocnieniem, wejściem różnicowym (symetrycznym)

Bardziej szczegółowo

Cechowanie termopary i termistora

Cechowanie termopary i termistora C1 Cechowanie termopary i termistora Celem ćwiczenia jest: - zbadanie zależności napięcia generowanego w termoparze od różnicy temperatur między jej złączami (cechowanie termopary); - dla chętnych/ambitnych

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

Czujniki i urządzenia pomiarowe

Czujniki i urządzenia pomiarowe Czujniki i urządzenia pomiarowe Czujniki zbliŝeniowe (krańcowe), detekcja obecności Wyłączniki krańcowe mechaniczne Dane techniczne Napięcia znamionowe 8-250VAC/VDC Prądy ciągłe do 10A śywotność mechaniczna

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE e LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 3 Pomiary wzmacniacza operacyjnego Wykonując pomiary PRZESTRZEGAJ

Bardziej szczegółowo

Liniowe układy scalone. Budowa scalonego wzmacniacza operacyjnego

Liniowe układy scalone. Budowa scalonego wzmacniacza operacyjnego Liniowe układy scalone Budowa scalonego wzmacniacza operacyjnego Wzmacniacze scalone Duża różnorodność Powtarzające się układy elementarne Układy elementarne zbliżone do odpowiedników dyskretnych, ale

Bardziej szczegółowo

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12 PL 218560 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218560 (13) B1 (21) Numer zgłoszenia: 393408 (51) Int.Cl. H03F 3/18 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL

Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL Politechnika Warszawska Instytut Techniki Cieplnej, MEiL, ZSL SEMINARIUM INSTYTUTOWE Problem pomiaru szybkozmiennych temperatur w aplikacjach silnikowych badania eksperymentalne Dr inż. Jan Kindracki Warszawa,

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Ćwiczenie nr 123: Dioda półprzewodnikowa

Ćwiczenie nr 123: Dioda półprzewodnikowa Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 123: Dioda półprzewodnikowa

Bardziej szczegółowo