Model systemu transmisji sygnałów cyfrowych. * Fale w eterze. Układ wysokiej częstotliwości. Koder kanału. Koder źródła. Źródło wiadomości.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Model systemu transmisji sygnałów cyfrowych. * Fale w eterze. Układ wysokiej częstotliwości. Koder kanału. Koder źródła. Źródło wiadomości."

Transkrypt

1

2 Model systemu transmisji sygnałów cyfrowych. * Nadajnik Źródło wiadomości A/C Koder źródła Koder kanału Modulator Układ wysokiej częstotliwości Fale w eterze Odbiorca wiadomości C/A Dekoder źródła Dekoder kanału Demodulator Układ wysokiej częstotliwości Odbiornik * Model wg: Systemy radiokomunikacji ruchomej, K. Wesołowski, owski, Warszawa 1999

3 Źródło generuje wiadomości w postaci ciągłych funkcji czasu (np. mowa ludzka) lub w postaci dyskretnych symboli (np. tekst w kodzie ASCII). Aby, w przypadku mowy ludzkiej, możliwa była transmisja danych za pomocą sygnału cyfrowego, ciągły sygnał mowy musi zostać zapisany w postaci binarnej w tym celu jest on próbkowany z odpowiednią częstotliwością.

4 W przypadku wiadomości dyskretnych pomijany jest układ A/C, gdyż sygnał już jest cyfrowy! Za przełożenie sygnału analogowego na cyfrowy odpowiada przetwornik analogowo-cyfrowy, który przesyła dane dalej do kodera źródła mającego za zadanie dopasować ciągi binarne do własności statystycznych źródła czyli po prostu skompresować dane pod kontem częstości występowania tych samych znaków w przesyłanej wiadomości.

5 Kolejnym układem, znajdującym się na drodze danych do ośrodku transmisyjnego, jest koder kanałowy spełniający (wraz z dekoderem kanałowym znajdującym się w urządzeniu odbiorczym) rolę strażnika poprawności przesyłanych danych. Wysyła on dane dodatkowe do sprawdzania/korekcji błędów.

6 Bodaj najważniejszym układem w systemie transmisji jest modulator, który odpowiada za umieszczenie sygnału w odpowiednim paśmie częstotliwości i właściwe ukształtowanie jego widma.

7 Układ ten jest tak ważny ze względu na ograniczoną ilość częstotliwości, które można wykorzystać do transmisji danych na odległość oraz ze względu na ograniczoną liczbę użytkowników mogących nadawać bez zakłóceń w określonym paśmie częstotliwości.

8 Kolejnym istotnym układem jest układ wysokiej częstotliwości wzmacniający sygnał analogowy do wymaganego poziomu. Jego parametry zależą ściśle od modulatora, typu modulacji oraz systemu, w którym jest stosowany.

9 W przypadku urządzeń wymagających minimalnego zużycia energii wzmacniacz częstotliwości musi pracować także w swojej charakterystyce nieliniowej (co oznacza, że zmiana zużywanej energii nie jest proporcjonalna do wysokości wzmacnianego sygnału).

10 Ta właściwość ogranicza znacznie możliwości doboru modulacji stosowanych w transmisji, bowiem nieliniowa część charakterystyki wzmacniacza ma wpływ na powstawanie zniekształceń sygnału. Wzmacnianie przesyłanego sygnału jest konieczne ze względu na jego zanikanie w ośrodku transmisyjnem.

11 W odbiorniku zachodzą procesy odwrotne do tych realizowanych w nadajniku. Po wzmocnieniu sygnału w układzie wysokiej częstotliwości (to już u odbiorcy) następuje demodulacja sygnału (zależna między innymi od pierwotnej modulacji).

12 Wyodrębniony w procesie demodulacji ciąg impulsów trafia do dekodera kanałowego, który decyduje o poprawności przesłanych danych i tworzy sekwencję kodową wysłanego sygnału.

13 Na podstawie tej sekwencji dekoder źródła przetwarza informację binarną na pierwotnie wysłaną (w komputerze byłoby to rozpakowywanie wcześniej spakowanego pliku) i przesyła do przetwornika cyfrowoanalogowego (o ile nie jest to ciąg sygnałów dyskretnych). W ten sposób pokazuje się nam informacja na ekranie komputera (w przypadku sieci komputerowej) lub głos w słuchawce (w przypadku rozmowy telefonicznej).

14 Formatowanie informacji Przesyłanie informacji za pomocą długiego ciągu bitów jest nieefektywne conajmniej z dwóch powodów: ogranicza możliwości przełączania strumienia informacji w sieciach komutowanych, znacznie obniża użytkową efektywność transmisji w przypadku występowania błędów. Powszechnie stosowanym rozwiązaniem jest segmentacja strumienia bitów na mniejsze odcinki, których długość jest związana ze sposobem transmisji i protokołem komunikacyjnym.

15 Segmentacja umożliwia podział strumienia bitów na pakiety (transmisja pakietowa), ramki (synchroniczne protokoły bitowe), komórki (asynchroniczne protokoły transmisji typu ATM) i znaki stosowane w transmisjach o strukturze znakowej. Z wyjątkiem asynchronicznej transmisji znakowej bloki danych muszą mieć oznaczone początek i koniec bloku, a zwykle również identyfikację adresów wewnątrz sieci i numerację kolejności przesyłanych komórek.

16 Tryby transmisji Podczas transmisji danych informacje są przesyłane w postaci bitowej, znakowej lub bajtowej. W transmisji bitowej informacja jest reprezentowana przez ciągły strumień bitów i zwykle ma przezroczysty charakter dla nadajnika i odbiornika, z wyjątkiem specjalnych sekwencji bitów oznaczających początek lub koniec ramki. W transmisjach znakowych, działających zwykle przez modemy, istnieją trzy następujące tryby transmisji:

17 simpleks SX (simplex), jednokierunkowa transmisja, w której odbiornik nie może przesłać odpowiedzi ani potwierdzenia (transmisje rozsiewcze, radiofoniczne), a urządzenie odbiorcze nie wymaga żadnej obsługi przez użytkownika

18 półdupleks HDX (half duplex), dwukierunkowa, ale nie jednoczesna, naprzemienna transmisja - w danym momencie jest ustalony tylko jeden kierunek transmisji. Dla odwrócenia kierunku transmisji potrzebny jest system sygnalizacji, wskazujący, że urządzenie ukończyło nadawanie i możliwy jest dostęp do łącza.

19 dupleks FDX (full duplex), jednoczesna transmisja z pełną szybkością w obydwu kierunkach.

20 Multipleksacja kanałów Proces multipleksacji kanałów (zwielokrotnienia) polega na transmisji wielu sygnałów analogowych lub cyfrowych o niższej przepływności przez pojedynczy kanał komunikacyjny o dużej przepływności binarnej. Po drugiej stronie łącza zachodzi proces odwrotny, zwany demultipleksacją, odtwarzający pierwotne strumienie sygnałów.

21 Do najczęściej spotykanych metod zwielokrotnienia pojedynczych kanałów informacyjnych (w traktach przewodowych, światłowodowych, radiowych i satelitarnych) należą: czasowe TDM (Time Division Multiplexing) częstotliwościowe FDM (Frequency Division Multiplexing) kodowe CDM (Code Dwision Multiplexing) przesrzenne SDM (Spase Division Multiplexing)

22 czasowe TDM (Time Division Multiplexing) - sposób przesyłania analogowych lub cyfrowych sygnałów z wykorzystaniem jednego kanału (częstotliwościowego) do transmisji informacji do wielu użytkowników, przez podział kanału na odcinki czasu, zwane szczelinami czasowymi, skojarzone z rożnymi użytkownikami. Dla takiego multipleksowama stosuje się metodę dostępu do kanału z podziałem czasu TDMA (TDM Access).

23 Synch. TDM

24 Asynch. TDM.

25 Zwielokrotnienie TDM jest często mylone z metodą czasowego dostępu wielokrotnego TDMA (Time Division Multiplexing Access), stosowaną wtedy, gdy wielu użytkowników chce jednocześnie przesyłać informację do jednego odbiornika, np.do stacji bazowej.

26 Czasową multipleksację kanałów można również zastosować do realizacji łącza dupleksowego. Mamy wtedy tzw. dupleks czasowy TDD (Time Division Duplex), w którym część szczelin czasowych służy do przesyłania danych w jednym kierunku, pozostałe szczeliny w drugim kierunku (np. system DECT).

27 częstotliwościowe FDM (Frequency Division Multiplexing) - sposób przesyłania analogowych lub cyfrowych sygnałów z wykorzystaniem oddzielnej częstotliwości nośnej dla każdego kanału użytkownika i każdego kierunku transmisji. Dla tego typu multipleksowania stosuje się najczęściej metodę dostępu do kanału z podziałem częstotliwości FDMA (FDM Access) w którym każdy kanał użytkownika może być wprowadzany, wydzielany i wykorzystywany oddzielnie.

28

29

30 kodowe CDM (Code Dwision Multiplexing) - sposób polegający na niezależnym kodowaniu każdego z sygnałów kodem (sekwencją) rozpraszającym. Wszystkie tak zakodowane sygnały są przesyłane w tym samym paśmie transmisyjnym. Ze względu na ortogonalność stosowanych kodów rozpraszających odbiornik jest w stanie zdekodować wysłany do niego sygnał. W tej samej technologii można zrealizować również dostęp wielokrotny oznaczony skrótem CDMA (CDM Access).

31

32 Access Techniques TIME TIME User 3 User 2 User 1 FDMA FREQUENCY TDMA FREQUENCY CODE User 3 User 2 User 1 CDMA or Spread Spectrum TIME FREQUENCY Spatial Diversity

33 Space Division Multiplexing (SDM) Alice Carol Kabel 1 Kabel 2 Bob Dave Alice Carol Bob Dave Zelle 1 Zelle 2

34 Space Division Multiplexing (SDM) Alice Carol Bob Bob BS Carol Alice Dave Dave Array Processor

35 Techniki przetwarzania głosu

36 Jak wiemy, transmisja sygnałów mowy jest podstawową usługą radiokomunikacyjną. W systemach analogowych sygnał odwzorowujący bezpośrednio falę głosową moduluje parametr sygnału sinusoidalnego amplitudę w różnych systemach z modulacją amplitudy AM lub częstotliwość w przypadku zastosowania modulacji częstotliwości FM.

37 Nowoczesne systemy radiokomunikacyjne przesyłają sygnały mowy metodami cyfrowymi, stąd szczególne znaczenie efektywnego sposobu przedstawienia sygnału mowy w postaci ciągu impulsów binarnych.

38 Cyfryzacja sygnałów mowy

39

40 W celu transmisji sygnału rozmownego przez cyfrowy fragment systemu radiokomunikacyjnego sygnał analogowy, pochodzący od abonenta, jest przetwatzany (konwersja A/C) na postać cyfrową. Wartość analogowa każdej jest rejestrowana (kwantyzacja) jako jeden z 256 możliwych poziomów i zapisywana w 8-bitowym rejestrze zgodnie z kodem PCM.

41 Metoda PCM

42 PAM

43 Quantized PAM signal

44

45

46 Zakres częstotliwo stotliwości mowy

47 Przesłanie sygnału głosu ludzkiego wymaga kanału zdolnego do przeniesienia określonego pasma częstotliwości. Głos ludzki zawiera wiele częstotliwości podstawowych i harmonicznych, których zestaw nadaje ton i barwę charakterystyczną dla każdego rozmówcy.

48 Zakres częstotliwośći mowy obejmuje częstotliwości od 100 Hz do ponad 8 KHz, przy czym największa gęstość widmowa (energia) przypada w okolicy 500 Hz i sukcesywnie maleje ze wzrostem częstotliwości.!

49

50 Ucho ludzkie odbiera sygnały w znacznie szerszym zakresie częstotliwości, a graniczne wyróżnianie sygnałów zależy od cech osobniczych człowieka. Typowy zakres sygnałów rejestrowanych przez ucho ludzkie obejmuje częstotliwości od 20 Hz do 15 khz (niekiedy 20 khz), a największa czułość mieści się od l khz do 3 khz.

51 Dla dobrego zrozumienia mowy i rozpoznania osoby mówiącej wystarczy pasmo, w którym jest zawarta główna część energii, to znaczy w zakresie od 300 Hz do 3400 Hz.

52 Ze względów ekonomicznych zdecydowano transmitować w urządzeniach telefonicznych pasmo o szerokości 3,1 khz (niekiedy 3,3 khz w zakresie od 200 do 3500 Hz), zapewniające właściwe zrozumienie mowy.

53 Uwzględniając bariery ochronne do obydwu stronach pasma, niezbędne przy niultipleksowaniu i wydzielaniu sygnałów mowy na wyższych częstotliwościach pracy, rzeczywista szerokość pasma transmitowanego przez urządzenia telefoniczne i kanały transmisyjne wynosi 4 khz. Do transmisji dźwięku (również tego o wysokiej jakości) przyjmuje się pasmo w zakreśla częstotliwości naturalnych od 20 Hz do 16 khz.

54 W systemach kablowej telefonii przewodowej zakres częstotliwości nośnych zależy od natury medium i wymagań aplikacyjnych. Typowa skrętka dwuprzewodowa przenosi częstotliwości w zakresie od 10 Hz do 1000 khz, a w wykonaniach specjalnych nawet powyżej l MHz. Kable współosiowe (koncentryczne) są przystosowane do przekazów w zakresie częstotliwości od l do 100 MHz. Dla częstotliwości radiowych, aż do promieniowania widzialnego, zdefiniowano wiele pasm o różnych szerokościach i zastosowaniu.

55 Kodery i dekodery sygnału u mowy

56 Najstarszą metodą kodowania sygnałów mowy jest kodowanie PCM (Pulse Code Modulation) modulacja impulsowo-kodowa. Na rysunku przedstawiono zasadę działania kodera i dekodera PCM.

57 Podstawowy układ kodera PCM składa się z : filtru ograniczającego pasmo kodowanego sygnału do co najwyżej połowy częstotliwości próbkowania, tzw. filtru antyaliasingowego, układu próbkującego z częstotliwością f s, układu nieliniowego o w przybliżeniu logarytmicznej charakterystyce, kwantyzatora równomiernego.

58 W praktyce telefonii przewodowej PCM filtr antyaliasingowy ogranicza pasmo sygnału do 4 khz, układ próbkujący działa z częstotliwością 8 khz a charakterystyka nieliniowa znormalizowana przez CCITT jest określona wzorem: Ax 1+ ln A f ( x) = 1 + ln Ax 1+ ln A przy czym dla kwantyzatora 8-bitowego stała A = 87,6. dla dla 0 1 A x 1 A x 1 Dla takiego kwantyzatora przy częstotliwości próbkowania równej 8 khz otrzymujemy strumień binarny o szybkości 64 kbit/s.

59 Zwróćmy uwagę, że dla małych sygnałów charakterystyka jest liniowa, natomiast dla sygnałów o amplitudzie powyżej progu 1/A jest logarytmiczna. f ( x) = Ax 1+ ln A 1 + ln Ax 1+ ln A dla dla 0 x 1 A 1 A x 1

60 W dekoderze zastosowana charakterystyka ma kształt odwrotny, tak więc złożenie obu z nich daje charakterystykę liniową, nie zmieniającą kształtu sygnału.

61 Dzięki zastosowaniu charakterystyki kompresji sygnały małe są bardziej wzmacniane niż sygnały duże, co daje w rezultacie prawie stały stosunek mocy sygnału do mocy szumu kwantyzacji w dużym zakresie wartości sygnału kwantowanego. W przypadku kwantyzacji liniowej stosunek ten zmieniałby się liniowo wraz z mocą sygnału kwantowanego.

62 W praktycznej realizacji koderów PCM układ kompresji wraz z liniowym kwantyzatorem może zostać zastąpiony przez kwantyzator nieliniowy. Tego rodzaju kodowanie mowy jest stosowane w radiokomunikacji jedynie w niektórych bezprzewodowych systemach zastępujących przewodową pętlę abonencką łączem radiowym.

63 Kompresja głosug

64 Operacja kompresji głosu ma za zadanie redukcję liczby bitów potrzebnych do wiernego przesłania na odległość i późniejszego odtworzenia sygnałów mowy rejestrowanych cyfrowo. Podczas rejestracji dźwięków kompresja zwykle powoduje obniżenie jakości sygnału, jednak dzięki stałemu doskonaleniu technik kompresji uzyskanie i przesłanie skompresowanego dźwięku o wysokiej jakości klasy Hi-Fi jest również możliwe.

65 Efektywność kompresji (nie należy jej mylić z jakością) zależy od przyjętego standardu kompresji, przy czym im wyższa kompresja, tym węższe jest pasmo potrzebne do przesłania głosu i na ogół gorsza jakość odtwarzania mowy. Niektóre standardy kodowania umożliwiają naprawę lub odtwoizenie utraconych ramek głosowych za pomocą funkcji ekstrapolacji.

66 Kompresji sygnałów mowy dokonuje się za pomocą wielu coraz bardziej sprawnych standardów kompresujących, spośród których najbardziej znanymi są: G najprostszy, domyślny standard akustyczny PCM obejmujący konwersję anałogowo-cyfrową sygnału głosowego 4 khz (8 khz) do strumienia kanałowego o szybkości 64 kb/s, stanowi również poziom odniesienia dla innych konwersji; G.727-popularny standard adaptacyjno-róźnicowy ADPCM (Adaptive Differential PCM) o przepływności wynikowej 32 kb/s, stosowany w łączności bezprzewodowej WLL (Wireless Local Loop).

67 G standard zapewniający kompresję 8:1 (strumień 8 kb/s), często określany jako głos o opłacanej jakości. Jest oparty na algoiytmie CS-ACELP (Conjugate Structure-Algebric Code Excited 1inear Prediction) kompresniącym do 8 kb/s. Nowsza odmiana G.729A o uproszczonym algorytmie wprowadza mniejsze opóźnienia w procesie kompresji.

68 G standard oferujący kompresję głosu do 12:1. Dostarcza strumieni głosowych o przepływności 6,3 według algorytmu MP-MLQ (Multi-Pulse Maximum Likelihood Quantization) bądź z przepływnością 5,3 kb/s zgodnie z algorytmem ACELP (Algebraic Code Excited Linear Predicllon).

69

70

71 Decybele

72 W jaki sposób można porównać amplitudy dwóch sygnałów? Można by powiedzieć, na przykład, że sygnał X jest dwukrotnie większy od sygnału Y. Sposób świetny i użyteczny w wielu przypadkach. Lecz ponieważ często mamy do czynienia ze stosunkami sięgającymi miliona, latwiej jest używać miary logarytmicznej dlatego wprowadzono decybel (jest to jedna dziesiąta bela, którego nikt nigdy nie używa).

73 Z definicji, stosunek amplitud dwóch sygnałów wyraża się w decybelach następująco: k U [ db] = decybel = 20 U log 10 U 2 1 gdzie U 1 i U 2 są amplitudami obu sygnałów.

74 Stąd, na przykład, sygnał o amplitudzie dwukrotnie większej niż amplituda innego sygnału jest o 6 db silniejszy, gdyż log 10 2= 0,3010. Sygnał o 10 razy większej amplitudzie jest przesunięty o +20 db, a sygnał o 10 razy mniejszej amplitudzie przesunięty jest o 20dB w stosunku do sygnału odniesienia.

75 Stosunek dwóch sygnałów wygodnie jest również wyrażać, podając poziom mocy jednego sygnału względem drugiego: k P [ db] = decybel = 10 log 10 P 2 P 1 gdzie P 1, i P 2 oznaczają moce obu sygnałów.

76 Dopóki obydwa sygnały mają ten sam kształt fal, np. sinusoidalny, obie definicje dają ten sam wynik. Jeśli porównujemy niepodobne do siebie sygnały, np. falę sinusoidalną z szumem, należy użyć definicji, w której występują moce sygnałów. Decybel (db) jest podstawową jednostką używaną przez projektantów systemów radiokomunikacyjnych przy porównywaniu możliwości urządzeń transmisji danych.

77 Trafik

78 Do określenia intensywności przepływu danych i komunikatów przez urządzenie, złącze lub węzeł sieci radiokomunikacyjnej stosuje się pojęcie trafiku, czyli obsługi średniego natężenia ruchu telefonicznego. Wielkość natężenia ruchu jest definiowana w stosunku do ruchu, jaki wnosi przeprowadzenie jednej rozmowy telefonicznej. Jednostką natężenia ruchu jest erlang(erl).

79 Agner Krarup Erlang ( ) A.K. Erlang był pierwszą osobą, która zajęła się problemem sieci telefonicznych. Przy studiowaniu wiejskich połączeń telefonicznych opracował on wór, znany obecnie jako wzór Erlanga, do obliczania naciążenia ruchu w sieci telefonicznej Chociaż model Erlanga jest prosty, matematyka leżąca u podstaw obliczania naciążenia ruchu w nowoczesnej sieci telefonicznej, nadal oparta jest na pracy tego modelu.

80 Jeden erlang oznacza ruch, w którym jedno łącze (ścieżka, kanał, węzeł) jest ciągle zajęte (jednogodzinna rozmowa w ciągu godziny, jednominutowe połączenie w ciągu minuty). Natężenie ruchu wynosi 5 Erl, jeśli w ciągu godziny istnieje np. 100 połączeń 3-minutowych lub 25 rozmów 4-minutowych plus 40 rozmów 5-minutowycn itp.

81 Maksymalny trafik przenoszony przez nowoczesne systemy komutacji wynosi kilkadziesiąt tysięcy eriangow. Podstawowym czynnikiem wyznaczającym max. liczbę obsługiwanych abonentów jest średni ruch generowany przez 1 abonenta w czasie jednej godziny. Obliczenia wykonuje się dla godziny największego ruchu, w skrócie GNR.

82 Wzór na średni ruch generowany przez 1 abonenta sieci, w GNR, wyrażony w erlangach: A = n T 3600 T średni czas jednej rozmowy wyrażony w sekundach, n średnia liczba połączeń na jednego abonenta w GNR.

83 Stopa błędu

84 Do określenia wierności informacji transmitowanej przez tor telekomunikacyjny stosuje się pojęcie stopy błędu BER (Bit Error Rate). Wskaźnik BER definiuje prawdopodobieństwo wystąpienia przekłamania bitu informacji w strumieniu przesyłanej informacji.

85 W celu poprawy stopy błędu (typowa wartość 10-5 ) stosuje się korekcję charakterystyki kanału i optymalizację metod modulacji. Dzięki stosowaniu kodów korekcyjnych (kodowanie nadmiarowe, kody cykliczne) uzyskuje się stopę błędu w zakresie od 10-6 do 10-10, a nawet lepszą.

86 Technika preplotu

87 Technika pizeplotu (interleaving), stosowana zwykle w nadajnikach radiowych (naziemnych i satelitarnych) i skojarzona z operacja rozplotu (deinterleaving) używaną przy odbiorze sygnału, polega na rozpraszaniu występujących blisko siebie paczek błędnych bitów w strumieniu informacji - na znacznie szerszy zakres informacji przesyłanej pizez ten sam kanał.

88 Dzięki temu uzyskuje się pojedyncze i rozproszone w czasie błędy, które mogą być identyfikowane i korygowane za pomocą kodowania nadmiarowego, eliminując wpływ zaników radiowych lub chwilowych spiętrzeń błędów wynikających z zakłóceń sygnału radiowego. Typowym kodem nadmiarowego zabezpieczenia transmisji szeregowej jest blokowy kod Hamminga.

89 Operacja przeplotu w nadajniku i towarzysząca jej operacja rozplotu w odbiorniku mają za zadanie rozproszenie ciągów występujących blisko siebie błędnych bitów, jakie mogą się pojawić na wejściu dekodera kanałowego w odbiorniku. Takie grupy btędów, zwane paczkami błędów (ang. error burst) mogą być powodowane własnościami kanału fizycznego (np. kanał z zanikami) lub działaniem kodu wewnętrznego w układzie, który stosuje tzw. kodowanie kaskadowe.

90

91 Przeplot polega na zmianie kolejności bitów pobieranych z wyjścia kodera kanałowego, według wcześniej ustalonej reguły, przed wysłaniem ich w kanał transmisyjny.

92 Na rysunku a) pokazano przykładowy ciąg siedmiobitowych słów kodowych A, B, C,... G, który generowany jest na wyjściu kodera kanałowego. Układ przeplotu zmienia jego kolejność tak, że powstaje ciąg binarny pokazany na rysunku b)., który następnie wysyłany jest w kanał. W układzie rozplotu przywracana jest początkowa kolejność bitów (rys. c).

93 Jeśli w kanale zdarzy się, na przykład, pięciobitowa paczka błędów, wówczas w układzie rozplotu błędy te zostaną rozproszone tak, że w dowolnym siedmiobitowym ciągu odebranym znajdzie się co najwyżej jeden błędny bit.

94 Jeżeli w układzie kodem zabezpieczającym przed błędami będzie, na przykład, kod blokowy Hamminga, wówczas zdoła on skorygować wszystkie pojedyncze błędy występujące w ciągu danych, ale nie zdołałby skorygować paczki błędów gdyby w systemie nie zastosowano przeplotu.

95 Przeplot blokowy W nadajniku bity z wyjścia kodera są zapisywane do tablicy dwuwymiarowej w założonej kolejności. Najprostszym rozwiązaniem jest zapis w kolejnych wierszach tablicy. Po zapełnieniu tablicy następuje jej odczyt w innej kolejności np. w kolejności kolumn. W odbiorniku odebrany ciąg jest zapisywany do analogicznej tablicy (tablicy rozplotu) dokładnie w taki sposób, w jaki następował jego odczyt z tablicy przeplotu w nadajniku.

96 Można podać sekwencję adresów zapisu i odczytu z tablicy. Sekwencja adresowa i rozmiar tablicy tzw. głębokość przeplotu powinny być dobrane tak, aby zmienić charakter statystyczny powstałych w kanale błędów paczkowych i uczynić je jak najbardziej zbliżonymi do błędów niezależnych. Należy podkreślić kluczowe znaczenie synchronizacji dla poprawnego działania układu przeplotu. Tak więc często bity nadawane mają pewne krótkie słowo pełniące funkcję synchronizacyjną.

97 Opisaną powyżej zasadę przeplotu łatwo zrealizować w układzie tzw. przeplotu blokowego (wierszowokolumnowego).

98 Przeplot realizowany jest w macierzy o rozmiarze M N (na rysunku przyjęto M=4 oraz N=6). Symbole wpisywane są do macierzy kolumnami. Po zapełnieniu macierzy, odczyt odbywa się wierszami. W układzie rozplotu zapis i odczyt maderzy odbywają się w sposób odwrotny. Dla każdej paczki K przekłamanych bitowi (N K), na wyjściu układu rozplotu pojawią się pojedyncze blędy oddzielone od siebie co najmniej M-1 bitami poprawnymi.

99 Niekorzystną konsekwencją zastosowania w układzie telekomunikacyjnym przeplotu jest wprowadzenie do łańcucha transmisyjnego dodatkowego opóźnienia. Całkowite opóźnienie wprowadzane przez układ przeplotu pokazany na rysunku wynosi (2MN-2M+2)T, gdzie T jest długością pojedynczego bitu. Ponieważ w praktycznych realizacjach zapis i odczyt macierzy przeplotu (lub rozplotu) odbywają się równocześnie, zarówno w nadajniku jak i odbiorniku potrzebne są po dwa moduły pamięci o rozmiarze MxN każda; jedna z macierzy M N jest wypełniana podczas gdy druga jest odczytywana.

100 Przeplot splotowy Przykładowy schemat realizacji przeplotu i rozplotu splotowego. Ciągi binarne są wprowadzane szeregowo na kolejne wejścia grupy B rejestrów opóźniających o wzrastającej długości.

101 W układzie przeplotu pierwszy rejestr ma opóźnienie zerowe, drugi opóźnia o M taktów, trzeci o 2M taktów i tak dalej, wreszcie ostatni o (B-1)M taktów. Sygnały wyjściowe z ostatnich komórek kolejnych rejestrów są podawane za pomocą komutatora szeregowo na wyjście układu przeplotu.

102 Układ rozplotu działa identycznie jak układ przeplotu. Jedyną różnicą jest uporządkowanie grupy rejestrów opóźniających począwszy od rejestru o długości (B-1)M komórek, a kończąc na opóźnieniu zerowym.

103 Tu również kluczowe znaczenie ma synchronizacja. Sprowadza się ona do synchronicznego przełączania komutatorów w nadajniku i odbiorniku tak, aby opóźnienie łączne w każdej równoległej gałęzi pomiędzy wejściem przeplotu a wyjściem rozplotu było stałe i wynosiło (B-1)M.

104 I to jest już koniec

2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH

2. STRUKTURA RADIOFONICZNYCH SYGNAŁÓW CYFROWYCH 1. WSTĘP Radiofonię cyfrową cechują strumienie danych o dużych przepływnościach danych. Do przesyłania strumienia danych o dużych przepływnościach stosuje się transmisję z wykorzystaniem wielu sygnałów

Bardziej szczegółowo

PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów)

PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów) PODSTAWY TELEKOMUNIKACJI Egzamin I - 2.02.2011 (za każde polecenie - 6 punktów) 1. Dla ciągu danych: 1 1 0 1 0 narysuj przebiegi na wyjściu koderów kodów transmisyjnych: bipolarnego NRZ, unipolarnego RZ,

Bardziej szczegółowo

Transmisja cyfrowa i analogowa

Transmisja cyfrowa i analogowa 1 Transmisja cyfrowa i analogowa 2 Istnieją dwa odmienne sposoby przesyłania dowolnej informacji przez łącza radiokomunikacyjne: transmisja analogowa i transmisja cyfrowa. Transmisja cyfrowa w najprostszym

Bardziej szczegółowo

Podstawy Transmisji Przewodowej Wykład 1

Podstawy Transmisji Przewodowej Wykład 1 Podstawy Transmisji Przewodowej Wykład 1 Grzegorz Stępniak Instytut Telekomunikacji, PW 24 lutego 2012 Instytut Telekomunikacji, PW 1 / 26 1 Informacje praktyczne 2 Wstęp do transmisji przewodowej 3 Multipleksacja

Bardziej szczegółowo

Kwantowanie sygnałów analogowych na przykładzie sygnału mowy

Kwantowanie sygnałów analogowych na przykładzie sygnału mowy Kwantowanie sygnałów analogowych na przykładzie sygnału mowy Treść wykładu: Sygnał mowy i jego właściwości Kwantowanie skalarne: kwantyzator równomierny, nierównomierny, adaptacyjny Zastosowanie w koderze

Bardziej szczegółowo

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ

ZAKŁAD SYSTEMÓW ELEKTRONICZNYCH I TELEKOMUNIKACYJNYCH Laboratorium Podstaw Telekomunikacji WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ Laboratorium Podstaw Telekomunikacji Ćw. 4 WPŁYW SZUMÓW NA TRANSMISJĘ CYFROWĄ 1. Zapoznać się z zestawem do demonstracji wpływu zakłóceń na transmisję sygnałów cyfrowych. 2. Przy użyciu oscyloskopu cyfrowego

Bardziej szczegółowo

W11 Kody nadmiarowe, zastosowania w transmisji danych

W11 Kody nadmiarowe, zastosowania w transmisji danych W11 Kody nadmiarowe, zastosowania w transmisji danych Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Plan wykładu 1. Kody nadmiarowe w systemach transmisji cyfrowej 2. Typy kodów,

Bardziej szczegółowo

sieci mobilne 2 sieci mobilne 2

sieci mobilne 2 sieci mobilne 2 sieci mobilne 2 sieci mobilne 2 Poziom trudności: Bardzo trudny 1. 39. Jaka technika wielodostępu jest wykorzystywana w sieci GSM? (dwie odpowiedzi) A - TDMA B - FDMA C - CDMA D - SDMA 2. 40. W jaki sposób

Bardziej szczegółowo

Metody wielodostępu do kanału. dynamiczny statyczny dynamiczny statyczny EDCF ALOHA. token. RALOHA w SALOHA z rezerwacją FDMA (opisane

Metody wielodostępu do kanału. dynamiczny statyczny dynamiczny statyczny EDCF ALOHA. token. RALOHA w SALOHA z rezerwacją FDMA (opisane 24 Metody wielodostępu podział, podstawowe własności pozwalające je porównać. Cztery własne przykłady metod wielodostępu w rożnych systemach telekomunikacyjnych Metody wielodostępu do kanału z możliwością

Bardziej szczegółowo

celowym rozpraszaniem widma (ang: Spread Spectrum System) (częstotliwościowe, czasowe, kodowe)

celowym rozpraszaniem widma (ang: Spread Spectrum System) (częstotliwościowe, czasowe, kodowe) 1. Deinicja systemu szerokopasmowego z celowym rozpraszaniem widma (ang: Spread Spectrum System) 2. Ogólne schematy nadajników i odbiorników 3. Najważniejsze modulacje (DS, FH, TH) 4. Najważniejsze własności

Bardziej szczegółowo

Krzysztof Włostowski pok. 467 tel

Krzysztof Włostowski   pok. 467 tel Systemy z widmem rozproszonym ( (Spread Spectrum) Krzysztof Włostowski e-mail: chrisk@tele tele.pw.edu.pl pok. 467 tel. 234 7896 1 Systemy SS - Spread Spectrum (z widmem rozproszonym) CDMA Code Division

Bardziej szczegółowo

Systemy plezjochroniczne (PDH) synchroniczne (SDH), Transmisja w sieci elektroenergetycznej (PLC Power Line Communication)

Systemy plezjochroniczne (PDH) synchroniczne (SDH), Transmisja w sieci elektroenergetycznej (PLC Power Line Communication) Politechnika Śląska Katedra Elektryfikacji i Automatyzacji Górnictwa Systemy plezjochroniczne (PDH) synchroniczne (SDH), Transmisja w sieci elektroenergetycznej (PLC Power Line Communication) Opracował:

Bardziej szczegółowo

Cyfrowy system łączności dla bezzałogowych statków powietrznych średniego zasięgu. 20 maja, 2016 R. Krenz 1

Cyfrowy system łączności dla bezzałogowych statków powietrznych średniego zasięgu. 20 maja, 2016 R. Krenz 1 Cyfrowy system łączności dla bezzałogowych statków powietrznych średniego zasięgu R. Krenz 1 Wstęp Celem projektu było opracowanie cyfrowego system łączności dla bezzałogowych statków latających średniego

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.03 Podstawowe zasady modulacji amlitudy na przykładzie modulacji DSB 1. Podstawowe zasady modulacji amplitudy

Bardziej szczegółowo

Projektowanie układów scalonych do systemów komunikacji bezprzewodowej

Projektowanie układów scalonych do systemów komunikacji bezprzewodowej Projektowanie układów scalonych do systemów komunikacji bezprzewodowej Część 1 Dr hab. inż. Grzegorz Blakiewicz Katedra Systemów Mikroelektronicznych Politechnika Gdańska Ogólna charakterystyka Zalety:

Bardziej szczegółowo

Demodulator FM. o~ ~ I I I I I~ V

Demodulator FM. o~ ~ I I I I I~ V Zadaniem demodulatora FM jest wytworzenie sygnału wyjściowego, który będzie proporcjonalny do chwilowej wartości częstotliwości sygnału zmodulowanego częstotliwościowo. Na rysunku 12.13b przedstawiono

Bardziej szczegółowo

Podstawy transmisji sygnałów

Podstawy transmisji sygnałów Podstawy transmisji sygnałów 1 Sygnał elektromagnetyczny Jest funkcją czasu Może być również wyrażony jako funkcja częstotliwości Sygnał składa się ze składowych o róznych częstotliwościach 2 Koncepcja

Bardziej szczegółowo

MODULACJE IMPULSOWE. TSIM W10: Modulacje impulsowe 1/22

MODULACJE IMPULSOWE. TSIM W10: Modulacje impulsowe 1/22 MODULACJE IMPULSOWE TSIM W10: Modulacje impulsowe 1/22 Fala nośna: Modulacja PAM Pulse Amplitude Modulation Sygnał PAM i jego widmo: y PAM (t) = n= x(nt s ) Y PAM (ω) = τ T s Sa(ωτ/2)e j(ωτ/2) ( ) t τ/2

Bardziej szczegółowo

Przykładowe zadanie praktyczne

Przykładowe zadanie praktyczne Przykładowe zadanie praktyczne Opracuj projekt realizacji prac związanych z uruchomieniem i testowaniem kodera i dekodera PCM z układem scalonym MC 145502 zgodnie z zaleceniami CCITT G.721 (załączniki

Bardziej szczegółowo

MODULACJA. Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji. dr inż. Janusz Dudczyk

MODULACJA. Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji. dr inż. Janusz Dudczyk Wyższa Szkoła Informatyki Stosowanej i Zarządzania MODULACJA Definicje podstawowe, cel i przyczyny stosowania modulacji, rodzaje modulacji dr inż. Janusz Dudczyk Cel wykładu Przedstawienie podstawowych

Bardziej szczegółowo

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania

Bardziej szczegółowo

Transmisja w paśmie podstawowym

Transmisja w paśmie podstawowym Rodzaje transmisji Transmisja w paśmie podstawowym (baseband) - polega na przesłaniu ciągu impulsów uzyskanego na wyjściu dekodera (i być moŝe lekko zniekształconego). Widmo sygnału jest tutaj nieograniczone.

Bardziej szczegółowo

Przetwarzanie sygnałów w telekomunikacji

Przetwarzanie sygnałów w telekomunikacji Przetwarzanie sygnałów w telekomunikacji Prowadzący: Przemysław Dymarski, Inst. Telekomunikacji PW, gm. Elektroniki, pok. 461 dymarski@tele.pw.edu.pl Wykład: Wstęp: transmisja analogowa i cyfrowa, modulacja

Bardziej szczegółowo

Sieci Bezprzewodowe. Systemy modulacji z widmem rozproszonym. DSSS Direct Sequence. DSSS Direct Sequence. FHSS Frequency Hopping

Sieci Bezprzewodowe. Systemy modulacji z widmem rozproszonym. DSSS Direct Sequence. DSSS Direct Sequence. FHSS Frequency Hopping dr inż. Krzysztof Hodyr Sieci Bezprzewodowe Część 2 Systemy modulacji z widmem rozproszonym (spread spectrum) Parametry warunkujące wybór metody modulacji Systemy modulacji z widmem rozproszonym Zjawiska

Bardziej szczegółowo

Podstawy telekomunikacji. Kolokwium nr 2. Zagadnienia.

Podstawy telekomunikacji. Kolokwium nr 2. Zagadnienia. Podstawy telekomunikacji. Kolokwium nr 2. Zagadnienia. TDM (Time Division Multiplexing) dzielenie przesyłanych sygnałów na części, którym później przypisuje się czasy transmisji (tzw. szczeliny czasowe).

Bardziej szczegółowo

Rozkład materiału z przedmiotu: Przetwarzanie i obróbka sygnałów

Rozkład materiału z przedmiotu: Przetwarzanie i obróbka sygnałów Rozkład materiału z przedmiotu: Przetwarzanie i obróbka sygnałów Dla klasy 3 i 4 technikum 1. Klasa 3 34 tyg. x 3 godz. = 102 godz. Szczegółowy rozkład materiału: I. Definicje sygnału: 1. Interpretacja

Bardziej szczegółowo

Kody splotowe (konwolucyjne)

Kody splotowe (konwolucyjne) Modulacja i Kodowanie Labolatorium Kodowanie kanałowe kody konwolucyjne Kody splotowe (konwolucyjne) Główną różnicą pomiędzy kodami blokowi a konwolucyjnymi (splotowymi) polega na konstrukcji ciągu kodowego.

Bardziej szczegółowo

Sprawdzian wiadomości z jednostki szkoleniowej M3.JM1.JS3 Użytkowanie kart dźwiękowych, głośników i mikrofonów

Sprawdzian wiadomości z jednostki szkoleniowej M3.JM1.JS3 Użytkowanie kart dźwiękowych, głośników i mikrofonów Sprawdzian wiadomości z jednostki szkoleniowej M3.JM1.JS3 Użytkowanie kart dźwiękowych, głośników i mikrofonów 1. Przekształcenie sygnału analogowego na postać cyfrową określamy mianem: a. digitalizacji

Bardziej szczegółowo

Systemy i Sieci Radiowe

Systemy i Sieci Radiowe Systemy i Sieci Radiowe Wykład 2 Wprowadzenie część 2 Treść wykładu modulacje cyfrowe kodowanie głosu i video sieci - wiadomości ogólne podstawowe techniki komutacyjne 1 Schemat blokowy Źródło informacji

Bardziej szczegółowo

Sieci Komputerowe Mechanizmy kontroli błędów w sieciach

Sieci Komputerowe Mechanizmy kontroli błędów w sieciach Sieci Komputerowe Mechanizmy kontroli błędów w sieciach dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Zagadnienia Zasady kontroli błędów

Bardziej szczegółowo

Kompresja dźwięku w standardzie MPEG-1

Kompresja dźwięku w standardzie MPEG-1 mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy

Bardziej szczegółowo

10 Międzynarodowa Organizacja Radia i Telewizji.

10 Międzynarodowa Organizacja Radia i Telewizji. 10 Międzynarodowa Organizacja Radia i Telewizji. Odbiór sygnału telewizyjnego. Pytania sprawdzające 1. Jaką modulację stosuje się dla sygnałów telewizyjnych? 2. Jaka jest szerokość kanału telewizyjnego?

Bardziej szczegółowo

Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości

Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład Kody liniowe - kodowanie w oparciu o macierz parzystości Kodowanie i kompresja Tomasz Jurdziński Studia Wieczorowe Wykład 13 1 Kody liniowe - kodowanie w oparciu o macierz parzystości Przykład Różne macierze parzystości dla kodu powtórzeniowego. Co wiemy z algebry

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 5

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 5 Politechnika Białostocka WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Cyfrowa transmisja pasmowa. Numer ćwiczenia: 5 Laboratorium

Bardziej szczegółowo

Przebieg sygnału w czasie Y(fL

Przebieg sygnału w czasie Y(fL 12.3. y y to układy elektroniczne, które przetwarzają energię źródła przebiegu stałego na energię przebiegu zmiennego wyjściowego (impulsowego lub okresowego). W zależności od kształtu wytwarzanego przebiegu

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.08 Zasady wytwarzania sygnałów zmodulowanych za pomocą modulacji AM 1. Zasady wytwarzania sygnałów zmodulowanych

Bardziej szczegółowo

Lekcja 20. Temat: Detektory.

Lekcja 20. Temat: Detektory. Lekcja 20 Temat: Detektory. Modulacja amplitudy. (AM z ang. Amplitude Modulation) jeden z trzech podstawowych rodzajów modulacji, polegający na kodowaniu sygnału informacyjnego (szerokopasmowego o małej

Bardziej szczegółowo

ARCHITEKTURA GSM. Wykonali: Alan Zieliński, Maciej Żulewski, Alex Hoddle- Wojnarowski.

ARCHITEKTURA GSM. Wykonali: Alan Zieliński, Maciej Żulewski, Alex Hoddle- Wojnarowski. 1 ARCHITEKTURA GSM Wykonali: Alan Zieliński, Maciej Żulewski, Alex Hoddle- Wojnarowski. SIEĆ KOMÓRKOWA Sieć komórkowa to sieć radiokomunikacyjna składająca się z wielu obszarów (komórek), z których każdy

Bardziej szczegółowo

Przykładowe rozwiązanie zadania dla zawodu technik telekomunikacji

Przykładowe rozwiązanie zadania dla zawodu technik telekomunikacji PROJEKT REALIZACJI PRAC ZWIĄZANYCH Z URUCHOMIENIEM I TESTOWANIEM KODERA I DEKODERA PCM ORAZ WYKONANIE PRAC OBEJMUJĄCYCH OPRACOWANIE WYNIKÓW POMIARÓW Z URUCHOMIENIA I SPRAWDZENIA DZIAŁANIA JEGO CZĘŚCI CYFROWEJ

Bardziej szczegółowo

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.09 Określenie procentu modulacji sygnału zmodulowanego AM 1. Określenie procentu modulacji sygnału zmodulowanego

Bardziej szczegółowo

1. Kodowanie PCM 1.1 Informacje podstawowe

1. Kodowanie PCM 1.1 Informacje podstawowe 1. Kodowanie PCM 1.1 Informacje podstawowe Zdefiniowanie pojęcia sygnału należy poprzedzić określeniem samej informacji, która jest pojęciem pierwotnym, a więc nie wymagającym definiowania. Encyklopedia

Bardziej szczegółowo

Sieci komputerowe II. Uniwersytet Warszawski Podanie notatek

Sieci komputerowe II. Uniwersytet Warszawski Podanie notatek Sieci komputerowe II Notatki Uniwersytet Warszawski Podanie notatek 03-01-2005 Wykład nr 1: 03-01-2005 Temat: Transmisja danych łączami 1 Podstawowe pojęcia Dla uporządkowania przypomnijmy podstawowe używane

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11)

(12) OPIS PATENTOWY (19) PL (11) RZECZPOSPOLITA POLSKA Urząd Patentowy Rzeczypospolitej Polskiej (12) OPIS PATENTOWY (19) PL (11) 181873 (21) Numer zgłoszenia: 320737 (13) B 1 (22) Data zgłoszenia 07.10.1996 (5 1) IntCl7 (86) Data i numer

Bardziej szczegółowo

- Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation Modulacje cyfrowe Podstawowe modulacje cyfrowe ASK - Amplitude Shift Keying FSK - Frequency Shift Keying PSK - Phase Shift Keying QAM - Quadrature Amplitude Modulation Modulacje cyfrowe Efekywność widmowa

Bardziej szczegółowo

Krzysztof Leszczyński Adam Sosnowski Michał Winiarski. Projekt UCYF

Krzysztof Leszczyński Adam Sosnowski Michał Winiarski. Projekt UCYF Krzysztof Leszczyński Adam Sosnowski Michał Winiarski Projekt UCYF Temat: Dekodowanie kodów 2D. 1. Opis zagadnienia Kody dwuwymiarowe nazywane często kodami 2D stanowią uporządkowany zbiór jasnych i ciemnych

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Opracowanie na postawie: Frank Karlsen, Nordic VLSI, Zalecenia projektowe dla tanich systemów, bezprzewodowej transmisji danych cyfrowych, EP

Bardziej szczegółowo

Modulacja i kodowanie - labolatorium. Modulacje cyfrowe. Kluczowane częstotliwości (FSK)

Modulacja i kodowanie - labolatorium. Modulacje cyfrowe. Kluczowane częstotliwości (FSK) Modulacja i kodowanie - labolatorium Modulacje cyfrowe Kluczowane częstotliwości (FSK) Celem ćwiczenia jest zbudowanie systemu modulacji: modulacji polegającej na kluczowaniu częstotliwości (FSK Frequency

Bardziej szczegółowo

Odbiorniki superheterodynowe

Odbiorniki superheterodynowe Odbiorniki superheterodynowe Odbiornik superheterodynowy (z przemianą częstotliwości) został wynaleziony w 1918r przez E. H. Armstronga. Jego cechą charakterystyczną jest zastosowanie przemiany częstotliwości

Bardziej szczegółowo

Z twierdzenia Nyquista wynika konieczność kodowania bitów za pomocą sygnałów w celu przesłania większej liczby bitów w jednostce czasu.

Z twierdzenia Nyquista wynika konieczność kodowania bitów za pomocą sygnałów w celu przesłania większej liczby bitów w jednostce czasu. C 60dB = 0,333 3000 60 = 60 kbps Z twierdzenia Nyquista wynika konieczność kodowania bitów za pomocą sygnałów w celu przesłania większej liczby bitów w jednostce czasu. Z twierdzenia Shannona wynika, że

Bardziej szczegółowo

Łącza WAN. Piotr Steć. 28 listopada 2002 roku. P.Stec@issi.uz.zgora.pl. Rodzaje Łącz Linie Telefoniczne DSL Modemy kablowe Łącza Satelitarne

Łącza WAN. Piotr Steć. 28 listopada 2002 roku. P.Stec@issi.uz.zgora.pl. Rodzaje Łącz Linie Telefoniczne DSL Modemy kablowe Łącza Satelitarne Łącza WAN Piotr Steć P.Stec@issi.uz.zgora.pl 28 listopada 2002 roku Strona 1 z 18 1. Nośniki transmisyjne pozwalające łączyć sieci lokalne na większe odległości: Linie telefoniczne Sieci światłowodowe

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 7

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 7 Politechnika Białostocka WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Modulacja amplitudy. Numer ćwiczenia: 7 Laboratorium

Bardziej szczegółowo

Teoria przetwarzania A/C i C/A.

Teoria przetwarzania A/C i C/A. Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych

Bardziej szczegółowo

Przetwornik analogowo-cyfrowy

Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy Przetwornik analogowo-cyfrowy A/C (ang. A/D analog to digital; lub angielski akronim ADC - od słów: Analog to Digital Converter), to układ służący do zamiany sygnału analogowego

Bardziej szczegółowo

TEMAT: SYSTEMY CYFROWE: MODULACJA DEMODULACJA FSK, PSK, ASK

TEMAT: SYSTEMY CYFROWE: MODULACJA DEMODULACJA FSK, PSK, ASK SYSTEMY TELEINFORMATYCZNE INSTRUKCJA DO ĆWICZENIA NR 7 LAB 7 TEMAT: SYSTEMY CYFROWE: MODULACJA DEMODULACJA FSK, PSK, ASK SYSTEMY TELEINFORMATYCZNE I. CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się

Bardziej szczegółowo

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 11

WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ. Instrukcja do zajęć laboratoryjnych. Numer ćwiczenia: 11 Politechnika Białostocka WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I APARATURY ELEKTRONICZNEJ Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Cyfrowa transmisja pasmowa kluczowanie amplitudy. Numer

Bardziej szczegółowo

Spis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1

Spis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1 Spis treści 1. Cyfrowy zapis i synteza dźwięku... 2 2. Schemat blokowy i zadania karty dźwiękowej... 4 UTK. Karty dźwiękowe. 1 1. Cyfrowy zapis i synteza dźwięku Proces kodowania informacji analogowej,

Bardziej szczegółowo

Opis przedmiotu. Karta przedmiotu - Podstawy telekomunikacji Katalog ECTS Politechniki Warszawskiej

Opis przedmiotu. Karta przedmiotu - Podstawy telekomunikacji Katalog ECTS Politechniki Warszawskiej Kod przedmiotu TR.SIS403 Nazwa przedmiotu Podstawy telekomunikacji Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów

Bardziej szczegółowo

Aparat telefoniczny POTS i łącze abonenckie

Aparat telefoniczny POTS i łącze abonenckie Aparat telefoniczny POTS i łącze abonenckie Z. Serweciński 22-10-2011 Struktura łącza abonenckiego okablowanie centrali kable magistralne kable rozdzielcze kable abonenckie centrala telefoniczna przełącznica

Bardziej szczegółowo

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017

Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017 Algebra liniowa Zadanie 1 Czy jeśli wektory x, y i z, należące do binarnej przestrzeni wektorowej nad ciałem Galois GF (2), są liniowo niezależne, to można to samo orzec o następujących trzech wektorach:

Bardziej szczegółowo

PL B1. Sposób i układ do modyfikacji widma sygnału ultraszerokopasmowego radia impulsowego. POLITECHNIKA GDAŃSKA, Gdańsk, PL

PL B1. Sposób i układ do modyfikacji widma sygnału ultraszerokopasmowego radia impulsowego. POLITECHNIKA GDAŃSKA, Gdańsk, PL PL 219313 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 219313 (13) B1 (21) Numer zgłoszenia: 391153 (51) Int.Cl. H04B 7/00 (2006.01) H04B 7/005 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Systemy i Sieci Telekomunikacyjne laboratorium. Modulacja amplitudy

Systemy i Sieci Telekomunikacyjne laboratorium. Modulacja amplitudy Systemy i Sieci Telekomunikacyjne laboratorium Modulacja amplitudy 1. Cel ćwiczenia: Celem części podstawowej ćwiczenia jest zbudowanie w środowisku GnuRadio kompletnego, funkcjonalnego odbiornika AM.

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 01/015 Kierunek studiów: Transport Forma sudiów:

Bardziej szczegółowo

PODSTAWY TELEKOMUNIKACJI

PODSTAWY TELEKOMUNIKACJI Wyższa Szkoła Informatyki Stosowanej i Zarządzania PODSTAWY TELEKOMUNIKACJI FUNKCJE, STRUKTURA I ELEMENTY SYSTEMU 1 Cel wykładu Przedstawienie podstawowych pojęć stosowanych w dziedzinie wiedzy i techniki,

Bardziej szczegółowo

BER = f(e b. /N o. Transmisja satelitarna. Wskaźniki jakości. Transmisja cyfrowa

BER = f(e b. /N o. Transmisja satelitarna. Wskaźniki jakości. Transmisja cyfrowa Transmisja satelitarna Wskaźniki jakości Transmisja cyfrowa Elementowa stopa błędów (Bit Error Rate) BER = f(e b /N o ) Dostępność łącza Dla żądanej wartości BER. % czasu w roku, w którym założona jakość

Bardziej szczegółowo

Niezawodność i diagnostyka systemów cyfrowych projekt 2015

Niezawodność i diagnostyka systemów cyfrowych projekt 2015 Niezawodność i diagnostyka systemów cyfrowych projekt 2015 Jacek Jarnicki jacek.jarnicki@pwr.edu.pl Zajęcia wprowadzające 1. Cel zajęć projektowych 2. Etapy realizacji projektu 3. Tematy zadań do rozwiązania

Bardziej szczegółowo

Kody splotowe. Zastosowanie

Kody splotowe. Zastosowanie Kody splotowe Zastosowanie Niekiedy potrzeba buforowania fragmentu wiadomości przed zakodowaniem, tak jak to ma miejsce w koderze blokowym, jest przeszkodą, gdyż dane do zakodowania napływają strumieniem.

Bardziej szczegółowo

Przesył mowy przez internet

Przesył mowy przez internet Damian Goworko Zuzanna Dziewulska Przesył mowy przez internet organizacja transmisji głosu, wybrane kodeki oraz rozwiązania podnoszące jakość połączenia głosowego Telefonia internetowa / voice over IP

Bardziej szczegółowo

Technika audio część 1

Technika audio część 1 Technika audio część 1 Wykład 9 Technologie na urządzenia mobilne Łukasz Kirchner Lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie technologii audio Próbkowanie Twierdzenie

Bardziej szczegółowo

System trankingowy. Stacja wywołująca Kanał wolny Kanał zajęty

System trankingowy. Stacja wywołująca Kanał wolny Kanał zajęty SYSTEMY TRANKINGOWE Systemy trankingowe Tranking - automatyczny i dynamiczny przydział kanałów (spośród wspólnego i ograniczone do zbioru kanałów) do realizacji łączności pomiędzy dużą liczbę użytkowników

Bardziej szczegółowo

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe

Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo analogowe oraz analogowo - cyfrowe Przetworniki cyfrowo / analogowe W cyfrowych systemach pomiarowych często zachodzi konieczność zmiany sygnału cyfrowego na analogowy, np. w celu

Bardziej szczegółowo

Cechy karty dzwiękowej

Cechy karty dzwiękowej Karta dzwiękowa System audio Za generowanie sygnału dźwiękowego odpowiada system audio w skład którego wchodzą Karta dźwiękowa Głośniki komputerowe Większość obecnie produkowanych płyt głównych posiada

Bardziej szczegółowo

Bezprzewodowa transmisja danych. Paweł Melon

Bezprzewodowa transmisja danych. Paweł Melon Bezprzewodowa transmisja danych Paweł Melon pm209273@students.mimuw.edu.pl Spis treści Krótka historia komunikacji bezprzewodowej Kanał komunikacyjny, duplex Współdzielenie kanałów komunikacyjnych Jak

Bardziej szczegółowo

Przygotowali: Bartosz Szatan IIa Paweł Tokarczyk IIa

Przygotowali: Bartosz Szatan IIa Paweł Tokarczyk IIa Przygotowali: Bartosz Szatan IIa Paweł Tokarczyk IIa Dźwięk wrażenie słuchowe, spowodowane falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które

Bardziej szczegółowo

Sieci Komórkowe naziemne. Tomasz Kaszuba 2013 kaszubat@pjwstk.edu.pl

Sieci Komórkowe naziemne. Tomasz Kaszuba 2013 kaszubat@pjwstk.edu.pl Sieci Komórkowe naziemne Tomasz Kaszuba 2013 kaszubat@pjwstk.edu.pl Założenia systemu GSM Usługi: Połączenia głosowe, transmisja danych, wiadomości tekstowe I multimedialne Ponowne użycie częstotliwości

Bardziej szczegółowo

Podstawy Transmisji Cyfrowej

Podstawy Transmisji Cyfrowej Politechnika Warszawska Wydział Elektroniki I Technik Informacyjnych Instytut Telekomunikacji Podstawy Transmisji Cyfrowej laboratorium Ćwiczenie 4 Modulacje Cyfrowe semestr zimowy 2006/7 W ramach ćwiczenia

Bardziej szczegółowo

Światłowody. Telekomunikacja światłowodowa

Światłowody. Telekomunikacja światłowodowa Światłowody Telekomunikacja światłowodowa Cechy transmisji światłowodowej Tłumiennośd światłowodu (około 0,20dB/km) Przepustowośd nawet 6,875 Tb/s (2000 r.) Standardy - 10/20/40 Gb/s Odpornośd na działanie

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

Detekcja i korekcja błędów w transmisji cyfrowej

Detekcja i korekcja błędów w transmisji cyfrowej Detekcja i korekcja błędów w transmisji cyfrowej Błędy w transmisji cyfrowej pojedyncze wielokrotne. całkowita niepewność względem miejsca zakłóconych bitów oraz czy w ogóle występują paczkowe (grupowe)

Bardziej szczegółowo

Interfejs transmisji danych

Interfejs transmisji danych Interfejs transmisji danych Model komunikacji: RS232 Recommended Standard nr 232 Specyfikacja warstw 1 i 2 Synchroniczna czy asynchroniczna DTE DCE DCE DTE RS232 szczegóły Uproszczony model komunikacyjny

Bardziej szczegółowo

NOWOCZESNE METODY EMISJI UCYFROWIONEGO SYGNAŁU TELEWIZYJNEGO

NOWOCZESNE METODY EMISJI UCYFROWIONEGO SYGNAŁU TELEWIZYJNEGO dr inż. Bogdan Uljasz Wojskowa Akademia Techniczna, Wydział Elektroniki, Instytut Telekomunikacji ul. Gen. S.Kaliskiego 2, 00-908 Warszawa tel.: 0-22 6837696, fax: 0-22 6839038, e-mail: bogdan.uljasz@wel.wat.edu.pl

Bardziej szczegółowo

Bezprzewodowe Sieci Komputerowe Wykład 3,4. Marcin Tomana marcin@tomana.net WSIZ 2003

Bezprzewodowe Sieci Komputerowe Wykład 3,4. Marcin Tomana marcin@tomana.net WSIZ 2003 Bezprzewodowe Sieci Komputerowe Wykład 3,4 Marcin Tomana WSIZ 2003 Ogólna Tematyka Wykładu Telefonia cyfrowa Charakterystyka oraz zasada działania współczesnych sieci komórkowych Ogólne zasady przetwarzania

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 9 1/5 ĆWICZENIE 9. Kwantowanie sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 9 1/5 ĆWICZENIE 9. Kwantowanie sygnałów Andrzej Leśnicki Laboratorium CP Ćwiczenie 9 1/5 ĆWICZEIE 9 Kwantowanie sygnałów 1. Cel ćwiczenia ygnał przesyłany w cyfrowym torze transmisyjnym lub przetwarzany w komputerze (procesorze sygnałowym) musi

Bardziej szczegółowo

Wybrane algorytmu kompresji dźwięku

Wybrane algorytmu kompresji dźwięku [1/28] Wybrane algorytmu kompresji dźwięku [dr inż. Paweł Forczmański] Katedra Systemów Multimedialnych, Wydział Informatyki, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie [2/28] Podstawy kompresji

Bardziej szczegółowo

Sieci Komputerowe Modele warstwowe sieci

Sieci Komputerowe Modele warstwowe sieci Sieci Komputerowe Modele warstwowe sieci mgr inż. Rafał Watza Katedra Telekomunikacji AGH Al. Mickiewicza 30, 30-059 Kraków, Polska tel. +48 12 6174034, fax +48 12 6342372 e-mail: watza@kt.agh.edu.pl Wprowadzenie

Bardziej szczegółowo

Wykład II. Reprezentacja danych w technice cyfrowej. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład II. Reprezentacja danych w technice cyfrowej. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład II Reprezentacja danych w technice cyfrowej 1 III. Reprezentacja danych w komputerze Rodzaje danych w technice cyfrowej 010010101010 001010111010

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

FDM - transmisja z podziałem częstotliwości

FDM - transmisja z podziałem częstotliwości FDM - transmisja z podziałem częstotliwości Model ten pozwala na demonstrację transmisji jednoczesnej dwóch kanałów po jednym światłowodzie z wykorzystaniem metody podziału częstotliwości FDM (frequency

Bardziej szczegółowo

Sygnały, media, kodowanie

Sygnały, media, kodowanie Sygnały, media, kodowanie Warstwa fizyczna Częstotliwość, widma, pasmo Pojemności kanałów komunikacyjnych Rodzaje danych i sygnałów Zagrożenia transmisji Rodzaje i charakterystyka mediów Techniki kodowania

Bardziej szczegółowo

Szerokopasmowy dostęp do Internetu Broadband Internet Access. dr inż. Stanisław Wszelak

Szerokopasmowy dostęp do Internetu Broadband Internet Access. dr inż. Stanisław Wszelak Szerokopasmowy dostęp do Internetu Broadband Internet Access dr inż. Stanisław Wszelak Rodzaje dostępu szerokopasmowego Technologia xdsl Technologie łączami kablowymi Kablówka Technologia poprzez siec

Bardziej szczegółowo

Parametry i technologia światłowodowego systemu CTV

Parametry i technologia światłowodowego systemu CTV Parametry i technologia światłowodowego systemu CTV (Światłowodowe systemy szerokopasmowe) (c) Sergiusz Patela 1998-2002 Sieci optyczne - Parametry i technologia systemu CTV 1 Podstawy optyki swiatlowodowej:

Bardziej szczegółowo

Przygotowała: prof. Bożena Kostek

Przygotowała: prof. Bożena Kostek Przygotowała: prof. Bożena Kostek Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do ponad 10 Pa) wygodniej

Bardziej szczegółowo

Architektura komputerów. Układy wejścia-wyjścia komputera

Architektura komputerów. Układy wejścia-wyjścia komputera Architektura komputerów Układy wejścia-wyjścia komputera Wspópraca komputera z urządzeniami zewnętrznymi Integracja urządzeń w systemach: sprzętowa - interfejs programowa - protokół sterujący Interfejs

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Opracowanie na postawie: Islam S. K., Haider M. R.: Sensor and low power signal processing, Springer 2010 http://en.wikipedia.org/wiki/modulation

Bardziej szczegółowo

Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j

Według raportu ISO z 1988 roku algorytm JPEG składa się z następujących kroków: 0.5, = V i, j. /Q i, j Kompresja transformacyjna. Opis standardu JPEG. Algorytm JPEG powstał w wyniku prac prowadzonych przez grupę ekspertów (ang. Joint Photographic Expert Group). Prace te zakończyły się w 1991 roku, kiedy

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 4. Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 4. Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 4 Wybrane telekomunikacyjne zastosowania algorytmów adaptacyjnych 1. CEL ĆWICZENIA Celem niniejszego ćwiczenia jest zapoznanie studentów z dwoma

Bardziej szczegółowo

Kanał telekomunikacyjny

Kanał telekomunikacyjny TELEKOMUNIKACJA Dr inż. Małgorzata Langer Pokój 310 budynek B9 (Lodex) Malgorzata.langer@p.lodz.pl Informacje na stronie internetowej www.tele.p.lodz.pl Kanał telekomunikacyjny Kanał to szeregowe połączenie

Bardziej szczegółowo

5. Model komunikujących się procesów, komunikaty

5. Model komunikujących się procesów, komunikaty Jędrzej Ułasiewicz str. 1 5. Model komunikujących się procesów, komunikaty Obecnie stosuje się następujące modele przetwarzania: Model procesów i komunikatów Model procesów komunikujących się poprzez pamięć

Bardziej szczegółowo

Kwantyzacja wektorowa. Kodowanie różnicowe.

Kwantyzacja wektorowa. Kodowanie różnicowe. Kwantyzacja wektorowa. Kodowanie różnicowe. Kodowanie i kompresja informacji - Wykład 7 12 kwietnia 2010 Kwantyzacja wektorowa wprowadzenie Zamiast kwantyzować pojedyncze elementy kwantyzujemy całe bloki

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 marzec 2011 Modulacja i detekcja, rozwiązania

Bardziej szczegółowo