Prąd i opór elektryczny

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prąd i opór elektryczny"

Transkrypt

1 Prąd i opór elektryczny Prąd elektryczny to przepływ ładunków elektrycznych Ilustracją jest rysunek przedstawiający strumieo ładunków płynących prostopadle do powierzchni A Natężenie prądu elektrycznego definiuje się jako szybkośd/tempo, w którym nośniki prądu/ładunki płyną/przemieszczają się/przepływają przez dany przekrój powierzchni (patrz rysunek) Zatem jeśli ilośd ładunku przepływa w czasie, to średnie natężenie prądu wynosi Jednostką natężenia prądu jest w Si amper (A); 1A = 1C/sek Wartości natężeo zmieniają się od megaamperów w błyskawicy do nanoamperów w układzie nerwowym człowieka Chwilowe natężenie prądu definiujemy jako Jako kierunek przepływu prądu przyjmuje się kierunek płynięcia ładunku dodatniego W przewodach nośnikami prądu są elektrony, które płyną w kierunku przeciwnym Prądy elektronowe płyną w przewodnikach: metalach, półprzewodnikach, cieczach (w elektrolitach, w zjonizowanych cieczach), zjonizowanych gazach (świetlówki, plazma)

2 Wektor gęstości prądu W celu powiązania prądu elektrycznego z mikroskopowymi wielkościami (ładunkiem nośników prądu) rozpatrzymy przewodnik o polu przekroju poprzecznego A (patrz rysunek) Przedstawimy teraz prąd elektryczny (przepływ ładunków) jako strumieo nowego wektora przez powierzchnię A, gdzie Si jest A/m 2 jest wektorem gęstości prądu elektrycznego Jego wymiarem w Niechaj ładunek nośnika prądu wynosi, koncentracja nośników, wtedy całkowity ładunek płynący w objętości przewodnika pokazanej na rysunku wyniesie Załóżmy, że prędkośd nośników prądu jest równa ładunki przebędą drogę Wtedy w czasie Całkowite średnie natężenie prądu, który w tym czasie płynął przez przewodnik jest równe

3 Prędkośd, z jaką nośniki prądu płyną w przewodniku przyjęto nazywad prędkością dryfu (prędkośd dryfowania, prędkośd unoszenia przez pole elektryczne) Z fizycznego punktu widzenia prędkośd jest średnią prędkością nośników prądu w objętości przewodnika, gdy w przewodniku istnieje pole elektryczne (tak jest po podłączeniu przewodnika do źródła prądu) Zauważmy, że w objętości przewodnika nośniki prądu nie poruszają się po liniach prostych lecz wykonują pewnego rodzaju błądzenie losowe, co ilustruje kolejny rysunek W metalach dzieje się tak wskutek zderzania się prawie swobodnych elektronów gazu elektronowego z jądrami atomów metalu Zestawienie dwóch ostatnich wzorów prowadzi nas do ważnego wyrażenia dla wektora gęstości prądu elektrycznego Zauważmy, że zatem

4 Jeśli teraz założymy, że wszystkie nośniki prądu mają identyczne wektory dryfu a wektor gęstości prądu jest stały w każdym punkcie pola przekroju poprzecznego przewodnika, to dryfu Jak widzimy wektor ma ten sam kierunek i zwrot co wektor prędkości nośników prądu! Jak wyznaczamy średnią wartośd dryfu nośników prądu? Odnotujmy, że na elektron umieszczony w polu elektrycznym działa siła, gdzie położono, że Niechaj prędkośd danego elektronu tuż po zderzeniu z innym lub jadrem atomowym wynosi Wtedy prędkośd elektronu tuż przed kolejnym zderzeniem wyniesie Prędkośd średnia elektronu w czasie między zderzeniami, czyli prędkośc dryfu jest równa Pod nieobecnośd pola elektrycznego, więc

5 Niechaj średni czas gęstości prądu elektrycznego między zderzeniami wynosi Wtedy wektor Zauważmy, że wektory oraz mają te same kierunki i zwroty Prawo Ohma W wielu przypadkach, tak jest w metalach, wektor gęstości prądu jest proporcjonalny do natężenie pola elektrycznego, które oddziaływuje na nośniki prądu elektrycznego znajdujące się w objętości przewodnika Zapisujemy to w postaci gdzie nosi nazwę przewodności materiału przewodnika W Si jednostką przewodnictwa jest simens, przy czym 1S = (A/m 2 )/(N/C) = (A/m 2 )/(V/m) = A/(m V) Powyższe równanie nosi nazwę mikroskopowego prawa Ohma Materiał spełniający to prawo nazywamy opornikiem ohmowym Porównując dwa ostatnie wzory dochodzimy do związku Wyprowadzimy obecnie inna tzw całkową postad prawa Ohma dla prostoliniowego przewodnika o długości, polu przekroju poprzecznego, co pokazuje rysunek

6 Załóżmy, że różnica potencjałów dzieli kooce przewodnika, co generuje pole elektryczne w przewodniku o natężeniu i przepływ prądu o natężeniu Jeśli pole jest jednorodne, to Wartośd wektora gęstości prądu elektrycznego wynosi co po prostym przekształceniu pozwala otrzymad gdzie jest oporem prostoliniowego przewodnika z prądem Makroskopowe równanie Ohma zapisujemy w postaci W układzie SI jednostką oporu elektrycznego jest Ohm ( ), przy czym 1 = 1V/(1A) Materiał spełniający ostatnie z podanych wyżej równao nosi nazwę ohmowego Tuta rozpatrujemy tylko takie materiały W tej klasie

7 znajdują się metale Kolejny rysunek przedstawia materiał ohmowy i nieohmowy (po prawej stronie) Opornośd właściwą definiujemy jako odwrotnośd przewodnictwa Zwiążemy obecnie z oporem R i ostatecznie opór prostoliniowego przewodnika z prądem jest równy Warto dodad, że opornośd właściwa zależy od temperatury materiałów ohmowych gdzie jest temperaturowym współczynnikiem oporu elektrycznego,

8 Tabela przedstawia typowe wartości wprowadzonych do tej pory wielkości Legenda: Tungsten wolfram, Iron żelazo, Alloys stopy, Brass mosiądz, Manganin - stop miedzi z manganem i niklem, Nichrome niemagnetyczny stop niklu I chromu (80% niklu i 20% chromu), Carbon (grafit) forma/faza grafitowa węgla, Glass szkło, Sulfur siarka, Quartz kwarc, Germanium german, Silicon krzem, Semiconductors półprzewodniki, Insulators izolatory, Elements pierwiastki

9 Praca i moc prądu elektrycznego Rozpatrzmy zamknięty układ elektryczny przedstawiony na rysunku Układ zawiera opór Napięcie między okładkami baterii wynosi Niech ładunek zostanie przemieszczony przez baterię, to jego energia wzrośnie o Z drugiej strony ten sam ładunek płynący przez opornik w obwodzie traci swoją energię wskutek zderzeo z atomami opornika Jeśli zaniedbamy oporności baterii i przewodów łączących, to płynący ładunek nie traci dodatkowo energii Zatem strata energii ładunku wynosi Otrzymany wzór określa także moc dostarczaną obwodowi przez baterię!

10 Stały prąd elektryczny Obwód elektryczny łączy, za pomocą przewodów elektrycznych, źródło prądu elektrycznego z tzw obciążeniem, którym mogą byd: rezystory (oporniki), silniki, grzejniki, lampy Energia elektryczna płynie natychmiast po uruchomieniu włącznika (włączenie kontaktu) Elementy obciążenia mogą byd połączone równolegle (lewa częśd rysunku) lub szeregowo Poniżej pokazujemy schematyczne oznaczenia elementów obwodów elektrycznych Legenda: Voltage Source źródło napięcia, resistor opornik (rezystor), Switch przełącznik (kontakt) Odnotujmy, że tzw uziemienie, to element lub punkt obwodu elektrycznego, którego potencjał jest umownie przyjmowany jako zerowy Potencjał dowolnego punktu obwodu jest liczony (odnoszony) do potencjału uziemionego elementu Siła elektromedyczna (SEM=EMF) Źródło energii np bateria, akumulator, generator, komórka fotowoltaiczna płynącej w każdym obwodzie elektrycznym nazywane jest źródłem siły elektromotorycznej SEM Możemy o źródle tej energii jako o

11 pompie ładunków, która powoduje przemieszczanie się ładunków elektrycznych z punktu o mniejszym potencjale do punktu o potencjale wyższym Przypomnijmy, że prąd elektryczny płynie od punktów o wyższym potencjale do punktów o potencjale niższym Wartośd siły elektromotorycznej, oznaczanej symbolem, definiuje się za pomocą wzoru Powyższe wyrażenie oznacza więc pracę konieczną do przeniesienia jednostkowego ładunku w kierunku rosnącego potencjału W SI jednostką siły elektromotorycznej jest wolt (V) Rozpatrzymy teraz obwód elektryczny przedstawiony na kolejnym rysunku Załóżmy najpierw, że bateria ma zerowy opór wewnętrzny oraz, że różnica potencjałów między dodatnim i ujemnym jej zaciskiem jest równa Oznacza to, że Uruchomienie przepływu prądu w obwodzie elektrycznym jest wynikiem procesu zamiany energii chemicznej na elektryczną Zauważmy, że SEM to ilośd energii chemicznej potrzebnej do uwolnienia jednostkowego ładunku elektrycznego Proces ten zachodzi w baterii

12 Ze względu na zachowawczy charakter pola elektrostatycznego praca W potrzebna do przemieszczenia ładunku po krzywej zamkniętej, tj po obwodzie zamkniętym wynosi zero Rozważmy pkt a na poniższym rysunku Obchodzimy obwód zamknięty zgodnie z ruchem wskazówek zegara zaczynając od punktu a Przejście przez SEM oznacza wzrost potencjału o wartośd Przejście przez rezystor oznacza spadek napięcia równy Jeśli opory przewodników i opór wewnętrzny zaniedbamy, to zatem

13 W rzeczywistości bateria ma niezerowy opór elektryczny, więc rzeczywisty obwód ma postad Na tej podstawie możemy przedstawid (patrz poniżej) graficznie spadek napięcia w powyższym obwodzie Zauważmy, że najwyższy potencjał ma w obwodzie dodatni zacisk baterii

14 Różnica potencjałów na zaciskach baterii jest teraz równa Ponieważ pole jest zachowawcze, więc otrzymujemy prawo Ohma dla układu zamkniętego i Moc prądu w obwodzie zamkniętym wynosi Baterie oporników Połączenie szeregowe dwóch oporników tworzących najmniejszą z możliwych baterię przedstawia poniższy rysunek; po jego prawej stronie opornik zastępczy (ekwiwalentny) Spadek napięcia między punktami a i c obwodu Układ 2 rezystorów można zastąpid w obwodzie jednym opornikiem którym spadek napięcia jest, na Porównanie dwóch ostatnich wzorów

15 prowadzi nas do wniosku o dodawaniu się oporów połączonych szeregowo, tj, W ogólnym przypadku takie same rozważania dają wynik koocowy na opór zastępczy baterii N oporów połączonych szeregowo Połączenie równoległe dwóch oporników tworzących najmniejszą z możliwych baterię przedstawia poniższy rysunek; po jego prawej stronie opornik zastępczy (ekwiwalentny) Z prawa zachowania ładunku elektrycznego wynika, że w punkcie a obwodu natężenie prądu I dzieli się na prądy oraz płynące odpowiednio przez oraz, czyli Oporniki są ohmowe więc spadki napięd na nich są równe oraz, co pozwala zapisad, z uwzględnieniem równości spadków napięd na każdym z oporników, kolejną równośd,

16 co oznacza, że Tak więc przy równoległym połączeniu 2 rezystorów w jedną baterię oporników, jej równoważną (zastępcza) opornośd liczymy zgodnie z ostatnim wzorem W ogólnym przypadku takie same rozważania dają wynik koocowy na opór zastępczy baterii N oporów połączonych równolegle Prawa Kirchhoffa Pierwsze prawo Kirchhoffa: Suma natężeo wpływających do danego węzła obwodu jest równa sumie natężeo prądów wypływających z niego W ostatnim wzorze przyjęto, że do węzła obwodu wpływa prądów (natężeo) oraz wypływa; w ogólności Prostą sytuację przedstawia poniższy rysunek gdzie oraz

17 Drugie prawo Kirchhoffa: Suma spadków napięd w zamkniętym oczku obwodu elektrycznego jest równa zeru (*) Reguły znaków obowiązujące dla składników powyższej sumy zawiera poniższa tabela Komentarze: 1 Aby zastosowad II prawo Kirchhoffa wybieramy kierunek obchodzenia zamkniętego oczka W tabeli wybrano kierunek obchodzenia zgodny z ruchem wskazówek zegara Przyjęcie przeciwnego kierunku obchodu nie zmienia wyników koocowych Dlaczego? 2 Jeśli przechodząc przez opornik z prądem wstępnie wybrany kierunek przepływu prądu jest zgodny z kierunkiem obchodzenia oczka, to spadek potencjału (napięcia) równy bierzemy do wyżej przytoczonej sumy ze znakiem ujemnym W przeciwnym przypadku ze znakiem dodatnim; patrz górny wiersz tabeli 3 Jeśli obchodząc oczko przy wybranym kierunku obchodzenia natrafiamy na zacisk ujemny (niższy potencjał) źródła prądu, to spadek napięcia, tj siłę elektromotoryczną źródła bierzemy, do sumy ze znakiem dodatnim W przeciwnym przypadku ze znakiem ujemnym; patrz dolny wiersz tabeli

18 Regułę drugą oraz drugi komentarz, którym odpowiada lewy górny róg tabeli łatwo zapamiętad i zrozumied Prąd elektryczny płynie od miejsc o wyższym potencjale do miejsc o mniejszym potencjale Przechodząc w obchodzie oczka opornik (kierunek obchodzenia i kierunek przepływu prądu są zgodne) zauważamy, że różnica potencjałów między jego koocem i początkiem jest ujemna; dlatego spadek napięcia ma wartośd ujemną, tj ; oznacza to, że Dlatego do sumy (*) spadek napięcie wpisujemy ze znakiem ujemnym Jeśli jednak kierunek obchodu oczka i kierunek prądu w oporniku są przeciwne (patrz prawy górny róg tabeli), to spadek napięcia ma wartośd dodatnią, tj Obowiązuje tutaj zasada podwójnego minusa Otóż przyjmując kierunek przepływu prądu w lewo (patrz prawy górny róg tabeli) uważamy, że potencjał punktu a jest niższy niż punktu b Zatem Ale kierunek obchodu jest przeciwny do kierunku prądu Dlatego spadek napięcia na w tym przypadku wyniesie Oznacza to więc, że do sumy (*) spadek napięcie wpisujemy ze znakiem dodatnim Regułę drugą oraz trzeci komentarz jest również stosunkowo łatwo zrozumied i zapamiętad Obchodząc oczko i przechodząc przez źródło prądu zgodnie z wybranym kierunkiem obchodzenia od bieguna ujemnego do dodatniego (patrz lewy dolny róg tabeli) wartośd SEM wpisujemy do sumy (*) ze znakiem dodatnim Wędrówka ładunku dodatniego od ujemnego do dodatniego zacisku oznacza przejście od miejsca o potencjale niższym do miejsca o potencjale wyższym Wtedy zamiast spadku potencjału mamy jego wzrost równy Jeśli jednak obchodząc oczko zgodnie z przyjętym kierunkiem przechodzimy przez źródło w ten sposób, że najpierw natrafiamy na dodatni biegun źródła (patrz dolny prawy ród tabeli), to Dlatego w tym przypadku do sumy (*) SEM wpisujemy ze znakiem ujemnym

19 Przykład przedstawia poniższy rysunek, na którym widzimy układ zwany dzielnikiem napięcia Napięcie na wyjściu, tj spadek napięcia na oporniku jest mniejszy od napięcia na wejściu Stosując II prawo Kirchhoffa do zamkniętego oczka otrzymujemy więc,, a szukane napięcie na wyjściu dzielnika jest równe, tj

20 W ostatnim wzorze przyjęto, że do węzła obwodu wpływa prądów (natężeo) oraz wypływa; w ogólności Prostą sytuację przedstawia poniższy rysunek gdzie oraz Strategia rozwiązywania zadao z wykorzystaniem praw Kirchhoffa 1 Narysuj schemat układu elektrycznego Wskaż i nanieś na rysunek wielkości znane i nieznane Liczba niewiadomych powinna byd równa liczbie niezależnych równao 2 Przypisz/przyporządkuj każdemu oczku w analizowanym obwodzie kierunek obchodzenie Jeśli wybierzesz kierunek obchodzenia niezgodnie z rzeczywistym płynięciem prądu, to otrzymasz wartości ujemne wyznaczanych niewiadomych 3 Zastosuje I regułę Kirchhoffa do węzłów układu 4 Zastosuj II i III regułę Kirchhoffa do zamkniętych oczek w układzie Pozwoli to na sformułowanie odpowiedniej liczby niezależnych równao (patrz pkt 1) Przestrzegaj przy tym następujących reguł znaków:

21 5 Rozwiąż otrzymany układ równao liniowych Przykład W poniższym układzie znane są, oraz opory, i Mamy wyznaczyd natężenia prądów, oraz

22 Rozwiązanie 1 Opatrzony symbolami schemat układu elektrycznego jest przedstawiony poniżej Niewiadomymi są natężenia prądów, oraz 2 Na rysunku przyporządkowano każdemu z dwóch oczku kierunek obchodzenie 3 Stosujemy I regułę Kirchhoffa do węzła b i otrzymujemy 4 Stosujemy II i III regułę Kirchhoffa do zamkniętych oczek 1 i 2 w analizowanym układzie Pozwala to nam sformułowad dwa dodatkowe niezależne równania Przestrzegamy podanych wyżej reguł znaków Dla oczka befcb

23 Podobnie dla oczka abcda otrzymujemy 5 Rozwiązujemy układ 3 równao liniowych i wyznaczamy szukane natężenia prądu,

24 Obwód RC prądu stałego Ładowanie kondensatora Rozpatrzymy obecnie proces ładowania kondensatora umieszczonego w obwodzie pokazanym na rysunku Po zwarciu klucza (rys prawy) w układzie płynie prąd Mówimy, że następuje ładowanie kondensatora W chwili początkowej, kondensator nie jest naładowany, więc początkowa wartośd prądu wyniesie W chwilę potem napięcie na kondensatorze, początkowo równe zeru zaczyna narastad i w chwili t wyniesie Zastosujemy teraz reguły Kirchhoffa do obwodu zamkniętego pokazanego na prawym rysunku W poniższej tabeli zamieszczono znaki spadków napięd na kondensatorze umieszczonym w obwodzie prądu stałego Lewa kolumna pokazuje, że przechodzenie przez kondensator oznacza wzrost lub spadek potencjału liczony tak, jakby był on źródłem prądu (bo jest)

25 Zauważmy, że podczas ładowania kondensatora rośnie napięcie między jego okładkami, aż osiągnie po pewnym czasie wartośd SEM, tj Od tego momentu natężenie prądu jest równe zeru Dynamikę ładowania, czyli zależnośd oraz wyznaczymy rozwiązując równanie ruchu, tj równanie różniczkowe o postaci Po rozseparowaniu zmiennych mamy którego scałkowanie pozwala napisad Z ostatniego wyrażenia otrzymujemy ostatecznie, gdzie jest maksymalnym ładunkiem zgromadzonym na kondensatorze Wyprowadzona zależnośd graficznie ilustruje kolejny rysunek

26 Z rysunku widad, że maksymalny ładunek zostanie zgromadzony na kondensatorze po czasie równym nieskooczoności Podobnie ma się sprawa z potencjałem kondensatora, którego zależnośd o d czasu zadaje równanie Natężenie prądu w układzie podczas ładowania kondensatora także zależy od czasu

27 Poniżej graficzna ilustracja ostatniego związku Często wprowadza się pojęcie stałej czasowej obwodu RC, która jest równa Wtedy Jaki jest wymiar stałej czasowej obwodu?

28 Dla mamy (patrz rysunek poniżej) Zauważmy, że po czasie wartośd napięcie na okładkach kondensatora osiąga Rozładowanie kondensatora Rozpatrzymy obecnie proces odwrotny do ładowania, czyli rozładowania kondensatora umieszczonego w obwodzie pokazanym na rysunku Przed zwarciem klucza (rys lewy) w układzie nie płynie prąd Mówimy, że kondensator jest naładowany Po zwarciu klucza (rys prawy) kondensator zaczyna rozładowywad się poprzez opornik Początkowa wartośd napięcia na koocówkach oporu wynosi Po zainicjowaniu rozładowywania

29 kondensator działa w rozpatrywanym obwodzie jak źródło prądu Stosując reguły Kirchhoffa otrzymujemy teraz (patrz rys prawy) Prąd płynący w obwodzie gdzie użyto znak minus w celu wskazania tego, że szybkośd zmiany ładunku jest proporcjonalna do ujemnej wartości ładunku zgromadzonego na kondensatorze Zauważmy, że ładunek na okładce dodatniej maleje! Zatem równanie ruchu teraz przyjmuje postad równania różniczkowego Po rozseparowaniu zmiennych otrzymujemy równanie które jest łatwo całkowalne co po odwróceniu funkcji logarytmicznej prowadzi do równania na zależnośd ładunku zgromadzonego na rozładowywanym kondensatorze Napięcie na kondensatorze zależy również od czasu

30 Ilustracją graficzną ostatniej zależności jest Zauważmy, że również natężenie prądu w rozpatrywanym obwodzie maleje wraz z czasem jak Wyprowadzoną zależnośd graficznie ilustruje kolejny rysunek Z rysunku widad, że natężenie prądu w obwodzie maleje do wartości po czasie równym stałej czasowej obwodu RC

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

Klasyczny efekt Halla

Klasyczny efekt Halla Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,

Bardziej szczegółowo

Człowiek najlepsza inwestycja

Człowiek najlepsza inwestycja Człowiek najlepsza inwestycja Fizyka ćwiczenia F6 - Prąd stały, pole magnetyczne magnesów i prądów stałych Prowadzący: dr Edmund Paweł Golis Instytut Fizyki Konsultacje stałe dla projektu; od Pn. do Pt.

Bardziej szczegółowo

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Lp. Temat lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Maria Rozenbajgier, Ryszard Rozenbajgier. Małgorzata Godlewska, Danuta Szot-Gawlik. Świat fizyki

Maria Rozenbajgier, Ryszard Rozenbajgier. Małgorzata Godlewska, Danuta Szot-Gawlik. Świat fizyki Maria Rozenbajgier, Ryszard Rozenbajgier Małgorzata Godlewska, Danuta Szot-Gawlik Świat fizyki Zeszyt przedmiotowo-ćwiczeniowy dla uczniów gimnazjum Część 3A Właścicielem tego zeszytu jest: Klasa Gimnazjum

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

PODSTAWOWE WIADOMOŚCI O PRĄDZIE ELEKTRYCZNYM

PODSTAWOWE WIADOMOŚCI O PRĄDZIE ELEKTRYCZNYM PODSTAWOWE WADOMOŚC O PĄDZE ELEKTYCZNYM. Co to jest prąd elektryczny? Prąd elektryczny polega na uporządkowanym ruchu nośników ładunku elektrycznego. Nie należy jednak sobie wyobrażać, że gdy płynie w

Bardziej szczegółowo

Prąd elektryczny. 1.1.Pojęcie prądu elektrycznego

Prąd elektryczny. 1.1.Pojęcie prądu elektrycznego Prąd elektryczny 1.1.Pojęcie prądu elektrycznego Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych. Czynnikiem wywołującym ten ruch jest różnica potencjałów, czyli istnienie napięcia.

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Między

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

Prawo Gaussa. Jeśli pole elektryczne jest prostopadłe do powierzchni A, to strumieo pola elektrycznego wynosi

Prawo Gaussa. Jeśli pole elektryczne jest prostopadłe do powierzchni A, to strumieo pola elektrycznego wynosi Prawo Gaussa Tekst jest wolnym tłumaczeniem pliku guide04.pdf kursu dostępnego na stronie http://web.mit.edu/8.02t/www/802teal3d/visualizations/coursenotes/index.htm Wszystkie rysunki i animacje zaczerpnięto

Bardziej szczegółowo

Plan wynikowy. Elektrostatyka (6-7 godz. + 2 godz. (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian) R treści nadprogramowe

Plan wynikowy. Elektrostatyka (6-7 godz. + 2 godz. (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian) R treści nadprogramowe Plan wynikowy Plan wynikowy (propozycja), obejmujący treści nauczania zawarte w podręczniku Spotkania z fizyką, część 3" (a także w programie nauczania), jest dostępny na stronie internetowej www.nowaera.pl

Bardziej szczegółowo

3.1 Temperaturowa zależność oporu przewodników(e3)

3.1 Temperaturowa zależność oporu przewodników(e3) 126 Elektryczność 3.1 Temperaturowa zależność oporu przewodników(e3) Celem ćwiczenia jest zbadanie temperaturowej zależności oporu i wyznaczenie temperaturowego współczynnika oporu właściwego α dla kilku

Bardziej szczegółowo

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy. Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt

Bardziej szczegółowo

Elektryczność i magnetyzm cz. 2 powtórzenie 2013/14

Elektryczność i magnetyzm cz. 2 powtórzenie 2013/14 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Czajnik elektryczny o mocy 1000 W pracuje przez 5 minut. Oblicz, ile energii elektrycznej uległo przemianie w inne formy energii. Zadanie

Bardziej szczegółowo

Test 4. 1. (4 p.) 2. (1 p.) Wskaż obwód, który umożliwi wyznaczenie mocy żarówki. A. B. C. D. 3. (1 p.) str. 1

Test 4. 1. (4 p.) 2. (1 p.) Wskaż obwód, który umożliwi wyznaczenie mocy żarówki. A. B. C. D. 3. (1 p.) str. 1 Test 4 1. (4 p.) Na lekcji fizyki uczniowie (w grupach) wyznaczali opór elektryczny opornika. Połączyli szeregowo zasilacz, amperomierz i opornik. Następnie do opornika dołączyli równolegle woltomierz.

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Czego można się nauczyć z prostego modelu szyny magnetycznej

Czego można się nauczyć z prostego modelu szyny magnetycznej Czego można się nauczyć z prostego modelu szyny magnetycznej 1) Hamowanie magnetyczne I B F L m v L Poprzeczka o masie m może się przesuwać swobodnie po dwóch równoległych szynach, odległych o L od siebie.

Bardziej szczegółowo

Przestrzenne układy oporników

Przestrzenne układy oporników Przestrzenne układy oporników Bartosz Marchlewicz Tomasz Sokołowski Mateusz Zych Pod opieką prof. dr. hab. Janusza Kempy Liceum Ogólnokształcące im. marsz. S. Małachowskiego w Płocku 2 Wstęp Do podjęcia

Bardziej szczegółowo

Wymagania edukacyjne fizyka kl. 3

Wymagania edukacyjne fizyka kl. 3 Wymagania edukacyjne fizyka kl. 3 Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające dopuszczająca dostateczna dobra bardzo dobra Rozdział 1. Elektrostatyka wymienia dwa rodzaje

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

R o z d z i a ł 9 PRĄD ELEKTRYCZNY

R o z d z i a ł 9 PRĄD ELEKTRYCZNY R o z d z i a ł 9 PRĄD ELEKTRYCZNY 9.1. Natężenie prądu elektrycznego Przez przepływ prądu elektrycznego rozumiemy ruch ładunków elektrycznych. Czynnikiem wywołującym ten ruch jest istnienie napięcia,

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła Spotkania z fizyką, część 3 Test 1 1. ( p.) Do zawieszonej naelektryzowanej szklanej kulki zbliżano naelektryzowaną szklaną laskę. Na którym rysunku przedstawiono poprawne położenie kulki i laski? Zaznacz

Bardziej szczegółowo

Pojemnośd elektryczna

Pojemnośd elektryczna Pojemnośd elektryczna Tekst jest wolnym tłumaczeniem pliku guide05pdf kursu dostępnego na stronie http://webmitedu/802t/www/802teal3d/visualizations/coursenotes/indexhtm Wszystkie rysunki i animacje zaczerpnięto

Bardziej szczegółowo

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem Pole magnetyczne Własność przestrzeni polegającą na tym, że na umieszczoną w niej igiełkę magnetyczną działają siły, nazywamy polem magnetycznym. Pole takie wytwarza ruda magnetytu, magnes stały (czyli

Bardziej szczegółowo

ĆWICZENIE 66 BADANIE SPRAWNOŚCI GRZEJNIKA ELEKTRYCZNEGO

ĆWICZENIE 66 BADANIE SPRAWNOŚCI GRZEJNIKA ELEKTRYCZNEGO ĆWICZENIE 66 BADANIE SPRAWNOŚCI GRZEJNIKA EEKTRYCZNEGO Wprowadzenie Uporządkowany ruch ładunków nazywamy prądem elektrycznym. Warunkiem koniecznym przepływu prądu jest obecność nośników (ładunków elektrycznych)

Bardziej szczegółowo

10.2. Źródła prądu. Obwód elektryczny

10.2. Źródła prądu. Obwód elektryczny rozdział 10 o prądzie elektrycznym 62 10.2. Źródła prądu. Obwód elektryczny W doświadczeniu 10.1 obserwowaliśmy krótkotrwałe przepływy ładunków elektrycznych w przewodzie łączącym dwa elektroskopy. Żeby

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna ruge, elgium, May 2005 W-14 (Jaroszewicz) 19 slajdów Indukcja elektromagnetyczna Prawo indukcji Faraday a Indukcja wzajemna i własna Indukowane pole magnetyczna prawo Amper a-maxwella Dywergencja prądu

Bardziej szczegółowo

Witam na teście z działu ELEKTROSTATYKA

Witam na teście z działu ELEKTROSTATYKA Witam na teście z działu ELEKTROSTATYKA Masz do rozwiązania 22 zadania oto jaką ocenę możesz uzyskać: dopuszczająca jeśli rozwiążesz 6 zadań z zakresu pytań od 1 7 dostateczna jeśli rozwiążesz zadania

Bardziej szczegółowo

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET

Ćwiczenie 4. Parametry statyczne tranzystorów polowych JFET i MOSFET Ćwiczenie 4 Parametry statyczne tranzystorów polowych JFET i MOSFET Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie charakterystyk statycznych tranzystorów polowych złączowych oraz z izolowaną

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

XXXIII OOWEE 2010 Grupa Elektryczna

XXXIII OOWEE 2010 Grupa Elektryczna 1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie,

Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie, Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział. Składanie ruchów... 11 Rozdział 3. Modelowanie zjawisk fizycznych...43 Rozdział 4. Numeryczne całkowanie, czyli obliczanie pracy w polu grawitacyjnym

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

Elektrostatyka, część pierwsza

Elektrostatyka, część pierwsza Elektrostatyka, część pierwsza ZADANIA DO PRZEROBIENIA NA LEKJI 1. Dwie kulki naładowano ładunkiem q 1 = 1 i q 2 = 3 i umieszczono w odległości r = 1m od siebie. Oblicz siłę ich wzajemnego oddziaływania.

Bardziej szczegółowo

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Wprowadzenie do fizyki pola magnetycznego

Wprowadzenie do fizyki pola magnetycznego Wprowadzenie do fizyki pola magnetycznego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/magnetostatics/index.htm Powszechnym źródłem pola magnetycznego

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe)

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Pieczęć KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego i życzymy powodzenia. Maksymalna liczba

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia zna pojęcia pracy

Bardziej szczegółowo

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium Wybrane zagadnienia teorii obwodów Osoba odpowiedzialna za przedmiot (wykłady): dr hab. inż. Ryszard Pałka prof. PS ćwiczenia i projekt: dr inż. Krzysztof Stawicki e-mail: ks@ps.pl w temacie wiadomości

Bardziej szczegółowo

4. OBWODY LINIOWE PRĄDU STAŁEGO 4.1. ŹRÓDŁA RZECZYWISTE

4. OBWODY LINIOWE PRĄDU STAŁEGO 4.1. ŹRÓDŁA RZECZYWISTE OODY I SYGNŁY 1 4. OODY LINIOE PRĄDU STŁEGO 4.1. ŹRÓDŁ RZECZYISTE Z zależności (2.19) oraz (2.20) wynika teoretyczna możliwość oddawania przez źródła idealne do obwodu dowolnie dej mocy chwilowej. by uniknąć

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRĄDNICE I SILNIKI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prądnice i silniki (tzw. maszyny wirujące) W każdej maszynie można wyróżnić: - magneśnicę

Bardziej szczegółowo

1. Obwody prądu stałego

1. Obwody prądu stałego Obwody prądu stałego 3 1. Obwody prądu stałego 1.1. Źródła napięcia i źródła prądu. Symbol źródła pokazuje rys. 1.1. Pokazane źródła są źródłami idealnymi bezrezystancyjnymi i charakteryzują się jedynie

Bardziej szczegółowo

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy.

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy. Magnetostatyka Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty. Chińczycy jako pierwsi (w IIIw n.e.) praktycznie wykorzystywali

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) Wymagania Temat lekcji ele operacyjne - uczeń: Kategoria celów podstawowe ponad podstawowe konieczne podstawowe rozszerzające dopełniające 1 2 3 4 5 6 7 Rozdział I. Elektrostatyka

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

CZUJNIK ŁADUNKU ELEKTRYCZNEGO 1

CZUJNIK ŁADUNKU ELEKTRYCZNEGO 1 CZUJNIK ŁADUNKU ELEKTRYCZNEGO 1 D 0361i Ryc. 1. Czujnik ładunku elektrycznego Opis skrócony Czujnik służy do pomiaru ładunku elektrostatycznego i może być używany zamiast elektroskopu. Może on również

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) 9. Pole elektryczne (17 godzin) Zagadnienie (treści podręcznika) 9.1. Ładunki elektryczne i ich oddziaływanie (Jednostka ładunku. Ładunek elementarny. R Kwarki. Oddziaływanie

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

Przedmiotowy system oceniania (propozycja)

Przedmiotowy system oceniania (propozycja) Przedmiotowy system oceniania (propozycja) Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra 1 2 3 4 wymienia

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

6. Oryginalny bezpiecznik można w razie potrzeby zastąpić kawałkiem grubego drutu. a) prawda, b) fałsz. 8. Przyrządem do pomiaru napięcia jest:...

6. Oryginalny bezpiecznik można w razie potrzeby zastąpić kawałkiem grubego drutu. a) prawda, b) fałsz. 8. Przyrządem do pomiaru napięcia jest:... 1. Jeśli obojętnej elektrycznie kulce odbierzemy część elektronów, stanie się ona naelektryzowana:.. 2. Powłoki elektronowe atomu tlenu zawierają 8 elektronów. Ile protonów zawiera jądro tlenu?... 3. Przedstaw

Bardziej szczegółowo

S16. Elektryzowanie ciał

S16. Elektryzowanie ciał S16. Elektryzowanie ciał ZADANIE S16/1: Naelektryzowanie plastikowego przedmiotu dodatnim ładunkiem polega na: a. dostarczeniu protonów, b. odebraniu części elektronów, c. odebraniu wszystkich elektronów,

Bardziej szczegółowo

Przewodniki, półprzewodniki i izolatory

Przewodniki, półprzewodniki i izolatory Przewodniki, półprzewodniki i izolatory Według współczesnego poglądu na budowę materii zawiera ona w stanie normalnym albo inaczej - obojętnym, równe ilości elektryczności dodatniej i ujemnej. JeŜeli takie

Bardziej szczegółowo

AC/DC. Jedno połówkowy, jednofazowy prostownik

AC/DC. Jedno połówkowy, jednofazowy prostownik AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Lekcja 3 Temat: Budowa obwodu prądu stałego i jego elementy

Lekcja 3 Temat: Budowa obwodu prądu stałego i jego elementy Lekcja 3 Temat: Budowa obwodu prądu stałego i jego elementy Obwód elektryczny tworzą elementy połączone ze sobą w taki sposób, że istnieje co najmniej jedna droga zamknięta dla przepływu prądu. Odwzorowaniem

Bardziej szczegółowo

mgr inŝ. TADEUSZ MAŁECKI MASZYNY ELEKTRYCZNE Kurs ELEKTROMECHANIK stopień pierwszy Zespół Szkół Ogólnokształcących i Zawodowych

mgr inŝ. TADEUSZ MAŁECKI MASZYNY ELEKTRYCZNE Kurs ELEKTROMECHANIK stopień pierwszy Zespół Szkół Ogólnokształcących i Zawodowych mgr inŝ. TADEUSZ MAŁECKI MASZYNY ELEKTRYCZNE Kurs ELEKTROMECHANIK stopień pierwszy Zespół Szkół Ogólnokształcących i Zawodowych Mosina 2001 Od autora Niniejszy skrypt został opracowany na podstawie rozkładu

Bardziej szczegółowo

Prosty model silnika elektrycznego

Prosty model silnika elektrycznego Prosty model silnika elektrycznego Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6\Elektronika\Silniczek2.cma Cel ćwiczenia Pokazanie zasady

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

1. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających w funkcji ciepła Q dostarczonego gazom.

1. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających w funkcji ciepła Q dostarczonego gazom. . Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających i N N w funkcji ciepła Q dostarczonego gazom. N N T I gaz II gaz Molowe ciepła właściwe tych gazów spełniają zależność: A),

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

Wykłady z Fizyki. Elektromagnetyzm

Wykłady z Fizyki. Elektromagnetyzm Wykłady z Fizyki 08 Zbigniew Osiak Elektromagnetyzm OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

Temat: Ruch cząstek naładowanych w polu magnetycznym. 1. Cele edukacyjne. a) kształcenia. Scenariusz lekcji

Temat: Ruch cząstek naładowanych w polu magnetycznym. 1. Cele edukacyjne. a) kształcenia. Scenariusz lekcji Scenariusz lekcji Klasa: II LP Czas lekcji: 1 godzina lekcyjna Temat: Ruch cząstek naładowanych w polu 1. Cele edukacyjne a) kształcenia Wiadomości: zna pojęcie siły Lorentza wskazuje wielkości, od których

Bardziej szczegółowo

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab. Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych

Bardziej szczegółowo

Prąd ą d s t s ały ał

Prąd ą d s t s ały ał Prąd stały Pod względem elektrycznym wszystkie ciała występujące w przyrodzie dzieli się na: przewodniki, izolatory (dielektryki), półprzewodniki. Przewodniki są to ciała, przez które może przepływać prąd

Bardziej szczegółowo

Finał IV edycji konkursu ELEKTRON zadania ver.0

Finał IV edycji konkursu ELEKTRON zadania ver.0 ul. Janiszewskiego 11/17, 50-372 Wrocław www.wemif.pwr.wroc.pl www.wemif.pwr.wroc.pl/elektron.dhtml Finał IV edycji konkursu ELEKTRON zadania ver.0 1. Połącz w pary: A. Transformator B. Prądnica C. Generator

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna Rozdział 6 ndukcja elektromagnetyczna 6.1 Zjawisko indukcji elektromagnetycznej 6.1.1 Prawo Faraday a i reguła Lenza W rozdziale tym rozpatrzymy niektóre zagadnienia, związane ze zmiennymi w czasie polami

Bardziej szczegółowo

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego.

MAGNETYZM. 1. Pole magnetyczne Ziemi i magnesu stałego. MAGNETYZM 1. Pole magnetyczne Ziemi i magnesu stałego. Źródła pola magnetycznego: Ziemia, magnes stały (sztabkowy, podkowiasty), ruda magnetytu, przewodnik, w którym płynie prąd. Każdy magnes posiada dwa

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo