Prąd elektryczny. 1. Z czego są zbudowane ciała? 2. Jaka jest wewnętrzna budowa przewodników? obojętny atom jon dodatni elektron

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prąd elektryczny. 1. Z czego są zbudowane ciała? 2. Jaka jest wewnętrzna budowa przewodników? obojętny atom jon dodatni elektron"

Transkrypt

1 Prąd elektryczny 1. Z czego są zbudowane ciała? Każde ciało składa się z atomów, a każdy atom z ujemnie naładowanych ów i dodatnio naładowanego jądra, które z kolei składa się z dodatnio naładowanych protonów i obojętnych (czyli nienaładowanych) neutronów. Elektrony krążą wokół jądra. Jako całość atom jest obojętny elektrycznie ładunki ujemne i dodatnie idealnie się równoważą. Atomy łączą się w większe całości zwane cząsteczkami. one jako całość są obojętne. Z takich atomów lub cząsteczek składają się wszystkie ciała: stałe, gazy i ciecze. Jednak czasami pod wpływem zderzeń a to atom utraci stając się dodatnio naładowanym jonem, a to cząsteczka się rozpadnie na jon dodatni i ujemny, bo jeden albo więcej ów przejdzie z jednego atomu na drugi. Tak jak to widzimy na poniższych rysunkach. obojętny atom jon dodatni obojętna cząsteczka jon dodatni jon ujemny Tu jest niedomiar ów Tu jest nadmiar ów 2. Jaka jest wewnętrzna budowa przewodników? W odcinku poświęconym elektrostatyce podzieliłem ciała na przewodniki i izolatory. Przyjrzyjmy się uważniej budowie przewodników. Najczęściej wykorzystywanymi przewodnikami są metale. Atomy są w nich poustawiane porządnie niczym wojsko podczas musztry. Nie mają one swobody ruchu. Siła ich wzajemnego oddziaływania trzyma je na miejscu i pozwala tylko na niewielkie drgania. Elektrony, które znajdują się najdalej od jądra atomowego (tak zwane y walencyjne) łatwo odrywają się od swych atomów, a ponieważ siły działające na te y ze strony wszystkich atomów metalu mniej więcej się równoważą, y te mogą swobodnie sobie hasać po całym przewodniku. Stają się jak gdyby wspólną własnością całego przewodnika, a nie tylko macierzystych atomów. Pozostałe y, te które są bliżej jąder atomowych, nie są w stanie się wyrwać i pozostają przy swych macierzystych atomach.

2 Jeśli nie działa na te swobodne y zewnętrzna siła, ich ruch jest bezładny, chaotyczny. Tak jest w metalach. Ale nie tylko w nich ładunki mają swobodę ruchu. nnym przykładem przewodników są elektrolity, czyli roztwory kwasów, zasad i soli. Cząsteczki wody działają na cząsteczki kwasów zasad i soli jak nożyce rozcinają je na części, z których jedna jest jonem dodatnim a druga ujemnym. Tak jak cząsteczki wody mają one swobodę ruchu. W cieczy (inaczej niż w metalach) nie ma sił, które mogłyby unieruchomić cząsteczki. 3. Co to jest prąd elektryczny? Wiemy już, że ciała, które jako całość są elektrycznie obojętne, kryją w swym wnętrzu ładunki obydwu znaków. Wiemy też, że istnieją ciała zwane przewodnikami, w których niektóre z tych ładunków (ów lub jonów) mają swobodę ruchu. Ruch tych nośników ładunku jest chaotyczny. Jeżeli jednak jakiś czynnik zewnętrzny uporządkuje ruch ładunków, mamy do czynienia z prądem elektrycznym. Co to jest ruch uporządkowany? W jeziorze woda jakoś się porusza, ale w różnych miejscach robi to w różnym kierunku. W rzece woda porusza się w jednym kierunku. To jest właśnie ruch uporządkowany. Mówi się czasem nurt rzeczny albo nawet prąd rzeczny. Podobnie jest z prądem elektrycznym. Albo jeszcze jedna analogia. Wyobraź sobie, że jesteś w hiszpańskim mieście na ulicy. Trwa festyn. Ludzie chodzą chaotycznie z miejsca na miejsce potrącając się wzajemnie. Wreszcie następuje główna atrakcja dnia: wypuszczono byki. Tłum zaczyna się poruszać w jedną stronę, byle dalej od byków biegnących ulicą. Zanim puszczono byki ulica przypomina przewodnik, w którym nie płynie prąd. Ludzie to swobodne nośniki ładunku. Byki wymuszają uporządkowany ruch tłumu. Z takim uporządkowanym ruchem ładunków mamy do czynienia w czasie przepływu prądu przez przewodnik. Trzeba podkreślić, że podczas przepływu prądu ładunki nie poruszają się aż tak porządnie jak wojsko na defiladzie, ale raczej jak popędzany, biegnący tłum. Jest to na dodatek bieg z przeszkodami, bo przecież na drodze om stoją nieruchome dodatnie jony metalu.

3 Podsumujmy: prąd elektryczny to uporządkowany ruch ładunków elektrycznych. 4. Jaki jest kierunek prądu elektrycznego? Kierunek prądu określa się umownie jako kierunek ruchu ładunków dodatnich. Jeśli nośnikami prądu są ładunki ujemne, to kierunek prądu jest przeciwny do kierunku ruchu ładunków. Tak ludzie umówili się określać kierunek przepływu prądu. kierunek przepływu prądu kierunek przepływu prądu 5. Jaka wielkość fizyczna opisuje ilościowo przepływ prądu elektrycznego? Tą wielkością jest natężenie prądu. Często gdy rozważamy intensywność jakiegoś zjawiska, mówimy o natężeniu, np. o natężeniu ruchu ulicznego. Natężenie ruchu ulicznego jest tym większe, im więcej samochodów przejedzie ulicą w jednostce czasu. Podobnie jest z natężeniem prądu. Jeśli w ciągu sekundy przez przewodnik przepłynie duży ładunek mówimy, że w przewodniku jest duże natężenie prądu. Jeśli zaś w ciągu jednostki czasu przepłynie niewielki ładunek, to i natężenie prądu jest nieduże. Możemy więc powiedzieć, że natężenie prądu to ładunek elektryczny przepływający przez przewodnik w jednostce czasu. Jak obliczyć natężenie prądu? Jeżeli na przykład w czasie t = 7 s przepłynie ładunek 14 kulombów, to na jedną sekundę przypada 2 kulomby. By dowiedzieć się ile kulombów przypada na jednostkę czasu, należy ładunek który przepłynął podzielić przez czas przepływu. Zatem natężenie prądu to stosunek przepływającego ładunku do czasu jego przepłynięcia. Ta sama definicja w postaci wzoru: q = t Jednostką natężenia prądu jest amper. Prąd ma natężenie jednego ampera, gdy ładunek jednego kulomba przepływa przez przewodnik w czasie jednej sekundy. C 1 A = 1 s Natężenie prądu mierzy się za pomocą przyrządu zwanego amperomierzem. 6. Co wiesz o prawie Kirchhoffa? Pierwsze prawo Kirchhoffa wynika z zasady zachowania ładunku, która mówi, że nie jest możliwe, by ładunek powstawał lub ginął. Często przewody, którymi płynie prąd trzeba połączyć. Punkt, w którym się przewody łączą nazwiemy węzłem. Część prądów do węzła wpływa, a część wypływa. Pierwsze prawo Kirchhoffa mówi, że gdy zsumujemy natężenia prądów wpływających i oddzielnie natężenia prądów wypływających z dowolnego węzła, to wyjdzie tyle samo. Korzystając z wodnej analogii można powiedzieć, że jeśli połączymy ze sobą kilka rur i niektórymi będziemy tłoczyć wodę, to pozostałymi woda będzie odpływać w dokładnie takiej ilości jaka będzie wtłaczana.

4 Przykład 3 = 4 A 4 = 7 A 2 = 5 A 5 = 3 A 1 = 1 A 6 = 2 A = Jaka jest przyczyna przepływu prądu? Prąd to uporządkowany ruch ładunków. Pytanie: jak można ruch ładunków uporządkować? Trzeba je jakoś do tego zmusić, tak jak byki uporządkowały ruch tłumu. Przypominacie pewnie sobie, ze ładunki jednoimienne się odpychają a różnoimienne się przyciągają. Jeśli na jednym końcu przewodnika zgromadzi się ładunek ujemny a na drugim dodatni, to y będą poruszać się jak na rysunku. Elektryzowanie końców przewodnika nie zda się jednak na wiele, bo dopływające y zobojętniałyby ładunki i siła przestałaby działać. Trzeba więc ten stan jakoś podtrzymywać. Do tego służy źródło prądu. Ma ono dwa bieguny, albo inaczej zaciski (to są te blaszki w płaskiej bateryjce) do których podłącza się przewody. Ono powoduje separację ładunku. Ono męczy się, wykonuje pracę, by rozdzielić ładunki i je w takim stanie utrzymywać. Rozdzielone ładunki działają siłami na y znajdujące się w przewodnikach podłączonych do źródła. Siły te wprawiają je w ruch i prąd płynie. Zderzenia z atomami psują nieustannie ten uporządkowany ruch ładunków, ale siły elektryczne na powrót porządek przywracają. 8. Jak można zobrazować rolę źródła prądu w przepływie prądu? Wyobraźcie sobie dwa zbiorniki wodne. Między nimi może przepływać woda. Może ale nie musi. Zastanówmy się kiedy będzie przepływać. Kiedy będzie różnica poziomów między zbiornikami. Będzie przepływać, ale w trakcie przepływu w jednym zbiorniku poziom się będzie obniżał, a w drugim wzrastał i w końcu się wyrównają. Przepływ się skończy. Jak zmusić wodę, by znów zaczęła płynąć? Należy wytworzyć różnicę poziomów. Jak to zrobić. Należy podłączyć pompę i przepompowywać nieustannie wodę z jednego zbiornika do drugiego. Wytworzy to różnicę poziomów wody między zbiornikami a już siła grawitacji zmusi wodę do płynięcia od wyższego do niższego poziomu. W przepływie prądu jest podobnie. Zamiast zbiorników mamy przewodnik lub odbiornik prądu (na przykład żelazko), rury, którymi płynie woda to przewody, a pompa to źródło prądu. Pompa ma za zadanie dostarczać wodzie energii, która nieustannie tracona jest w wyniku tarcia (zmienia się w ciepło). Źródło prądu ma podobne zadanie. Ma uzupełniać zasób energii w obwodzie elektrycznym. Jest ona tracona, a dokładnie zamieniana w ciepło w wyniku zderzeń ów z atomami. Dlaczego źródło prądu może dostarczać prądowi energii? Bo ma jej własne zasoby. Jaka to jest energia? To zależy z jakim źródłem prądu mamy do czynienia.

5 Zaś różnica poziomów między zbiornikami przypomina pewną ważną wielkość fizyczną: napięcie. 9. Co to jest napięcie? Różnica poziomów między zbiornikami sprawia, że woda spada na niższy poziom. Dlaczego spada? Bo działa siła grawitacji. Siła ta działając na porcję wody wykonuje pewną pracę. Pracę liczymy mnożąc siłę przez przesunięcie nią spowodowane. Mamy tu siłę i mamy przesunięcie więc siła grawitacji wykonuje pracę nad porcją wody. Podobnie jest w przypadku prądu. Na y w przewodniku działa siła elektryczna (już o tym mówiłem). Siła ta przesuwa ładunki w przewodniku. Zatem siła ta wykonuje pewną pracę. Napięcie elektryczne między końcami przewodnika to praca jaką wykonują siły elektryczne przy przesunięciu wewnątrz przewodnika ładunku jednego kulomba. Definicja napięcia w postaci wzoru: praca napięcie = ladunek W U = q Jednostką napięcia jest wolt. J 1 V = 1 C Jeden wolt to takie napięcie na między końcami przewodnika, że przejście jednego kulomba ładunku z jednego końca przewodnika na drugi wymaga wykonania pracy jednego dżula przez siły elektryczne. Napięcie elektryczne mierzy się za pomocą woltomierza.

6 10. Jakie są skutki przepływu prądu? Kilka skutków przepływu prądu pokazano na rysunku. 11. Jak obliczyć pracę wykonaną przez prąd elektryczny i jego moc? By obliczyć jaką pracę wykona prąd lub jaka energia się w wyniku jego przepływu wydzieli, należy skorzystać z prawa Joule a Lenza. Mówi ono, że energia prądu wydzielana w jakimś odbiorniku prądu czy to w postaci ciepła, czy pracy, lub innych jeszcze form, jest równa iloczynowi napięcia na tym odbiorniku, natężenia prądu przezeń płynącego i czasu jego przepływu. W = Ut W Moc to, jak pamiętacie praca podzielona przez czas jej wykonywania ( P = ). Zatem moc prądu wyraża się wzorem t P = U Jak sobie przypomnimy prawo Ohma, to poznacie jeszcze inne wzory na moc i pracę prądu. 12. Jakie mogą być elementy obwodu elektrycznego? Obwód elektryczny, czyli zbiór połączonych przewodów i rozmaitych odbiorników prądu, musi być zamknięty. naczej mówiąc musi być możliwość przejścia przez wszystkie przewody i odbiorniki prądu tak, by nie natrafić na

7 izolator, przez który prąd nie jest w stanie płynąć. To zupełnie tak samo jak obieg wody. Ten też musi być zamknięty, bo się woda wyleje i przestanie krążyć. Są różne rodzaje odbiorników prądu. Mają one swoje schematyczne oznaczenia, by łatwo można było rysować projekty obwodów elektrycznych. Oto one w poniższej tabeli. Symbol Znaczenie symbolu Symbol Znaczenie symbolu przewód odbiornik (opornik) zwojnica wyłącznik A V + _ żarówka amperomierz (do mierzenia natężenia prądu) woltomierz (do mierzenia napięcia) źródło prądu stałego 13. Czy ruch ładunków w przewodniku natrafia na jakieś przeszkody? Wyobraźcie sobie las i uczniów, którzy mają przejść na drugą jego stronę. Ze względu na cel, ruch uczniów musi być uporządkowany. Drzewa i krzewy lasu powodują, że nie da się dążyć prosto do celu. Trzeba zboczyć, ominąć drzewo. Ruch uczniów jest przez to spowolniony. Natężenie strumienia uczniów jest mniejsze niż gdyby lasu nie było. W lesie nie można się zanadto rozpędzić. Las stawia opór. Podobnie jest z prądem elektrycznym. Ciągłe zderzenia z atomami psują uporządkowany ruch ów lub innych nośników prądu. Jak zapewne pamiętacie w przewodniku prąd płynie wtedy, gdy na nośniki prądu działają siły elektryczne. zasada dynamiki mówi, że gdy na ciało działa stała siła to porusza się ono ze stałym przyspieszeniem proporcjonalnym do tej siły. Ładunki powinny się więc rozpędzać, a natężenie prądu powinno rosnąć mimo, że nie zwiększamy napięcia. Z doświadczenia wynika, że tak nie jest. Dlaczego? Dlatego, że co się ładunek rozpędzi, to zderzenia powodują, że wytraca swą prędkość, przekazując część energii atomowi, z którym się zderzył. Dzięki tym zderzeniom prędkość ładunku pozostaje średnio rzecz biorąc stała. Oznacza to, że przez przewodnik przepływa stała ilość ładunku w jednostce czasu czyli stałe jest natężenie prądu, dopóki źródło prądu nie wykona nad porcjami ładunku dodatkowej pracy, czyli dopóki nie zwiększymy napięcia na końcach przewodnika. m więcej tych zderzeń, tym trudniej ładunkom przecisnąć się na drugą stronę przewodnika. Tym trudniej płynie się prądowi. Tym większy opór stawia przewodnik przepływowi prądu. To tak, jak w naszym przykładzie z uczniami. m gęstszy las, im więcej drzew trzeba ominąć, tym przedzieranie się uczniów jest powolniejsze, tym mniejszy jest strumień uczniów. 14. Jaka jest miara oporu, jaki materiał przewodnika stawia przepływowi prądu? Wyobraźcie sobie, że wykonujecie jakąś pracę, na przykład przesuwacie szafę. Albo lepiej dwie szafy, najpierw jedną a później drugą. Pierwsza szafa porusza się łatwo. Wykonujecie pewną pracę i efekt jest widoczny szafa szybko się przesuwa. Oznacza to, że opory ruchu są niewielkie. Gorzej jest z drugą szafą. Wykonujecie tę samą

8 pracę co za pierwszym razem, ale szafa porusza się bardzo powoli. Opory ruchu są duże. Jako miarę oporów ruchu można uznać szybkość, z jaką przesuwa się szafa w czasie gdy wykonujemy ustaloną pracę. Czy nie można byłoby podobnie mierzyć oporu stawianego przez przewodnik przepływowi prądu? Zamiast szafy mamy porcję ładunku elektrycznego. Teraz musicie sobie przypomnieć wiadomości z poprzedniego odcinka. Pracę wykonaną przez siły elektryczne nad porcją ładunku o wielkości jednego kulomba nazywamy napięciem, natomiast szybkości szafy odpowiada ilość przepływającego na sekundę ładunku czyli natężenie prądu. Zatem miarą oporu elektrycznego może być natężenie prądu uzyskane pod wpływem danego napięcia. Zwiększenie napięcia (czyli zwiększenie wykonywanej pracy) spowoduje zwiększenie ilości przepływającego w jednostce czasu ładunku, czyli natężenia prądu, ale opory pozostają te same. To tak jakbyśmy bardziej przyłożyli się do przesuwania szafy i uzyskali większą jej szybkość. Opory ruchu się jednak przez to nie zmienią. Zatem miarą oporu elektrycznego może być stosunek przyłożonego do przewodnika napięcia do uzyskanego w ten sposób natężenia prądu przepływającego przez przewodnik. opór przewodnika = napięcie na końcach przewodnika natężenie prądu pynącego przez przewodnik Jeśli opór przewodnika oznaczymy R, to będziemy mogli zapisać definicję oporu elektrycznego krócej, bo symbolicznie: U R = Jak każda wielkość fizyczną, opór wyrażamy w pewnych jednostkach. Jednostka oporu elektrycznego to om. Cóż to takiego? Otóż om to opór takiego przewodnika, że napięcie o wartości 1 wolt wywołuje w nim prąd o natężeniu 1 ampera. 1 wolt 1om = 1amper 1V 1Ω = 1A Jeżeli ten sam jeden wolt wywoła prąd mniejszy niż 1 amper to znaczy, że opór jest większy niż 1, bo ta sama przyczyna wywołuje słabszy skutek. 15. Jaka jest zależność między napięciem elektrycznym i natężeniem prądu? Różnie to bywa z tą zależnością. W przypadku wielu przewodników zależność ta jest najprostsza: natężenie prądu (skutek) jest proporcjonalne do przyłożonego napięcia (przyczyna). Jeśli napięcie na końcach przewodnika zwiększymy, powiedzmy cztery razy, to i natężenie prądu płynącego przez ten przewodnik wzrośnie czterokrotnie. Taka zależność między napięciem i natężeniem prądu nosi nazwę prawa Ohma. Zapiszmy to prawo porządnie. Natężenie prądu płynącego przez przewodnik jest wprost proporcjonalne od napięcia panującego na końcach tego przewodnika. jest proporcjonalne do U Współczynnik proporcjonalności jest odwrotnością oporu elektrycznego. By się o tym przekonać wystarczy przekształcić nieco wzór na opór elektryczny (definicję oporu). 1 = U R albo U = R Jest to dość oczywiste. m większe napięcie przyłożymy tym większy prąd popłynie. m większy opór stawia przewodnik tym prąd będzie mniejszy. Przypomnijcie analogię z przesuwaniem szafy: im większą pracę będziecie wykonywać, tym większy będzie efekt: szafa szybciej się będzie przesuwać. m większe będą opory ruchu tym ten efekt będzie słabszy szafa będzie poruszać się wolniej.

9 Trzeba tu koniecznie dodać, że są takie przewodniki, dla których zależność między natężeniem i napięciem jest bardziej skomplikowana niż mówi to prawo Ohma, ale takimi nie będziemy się zajmować. 16. Jak zależność między natężeniem i napięciem wygląda na wykresie? Jeśli przewodnik spełnia prawo Ohma, to zależność ta jest taka jak na poniższym rysunku. Czy pamiętacie jak wygląda wykres proporcjonalności? natężenie w amperach napięcie zwiększyło sie trzykrotnie natężenie też wzrosło trzykrotnie napięcie w woltach Zadanie Przez czajnik elektryczny płynie prąd o natężeniu 4 A, pod napięciem 220 V. Przez 10 minut w czajniku gotuje się woda. Jakie ciepło pochłonie woda, jeżeli całe ciepło wydzielone w spirali czajnika poszło na ogrzanie wody? Rozwiązanie Należy skorzystać z prawa Joule a Lenza. Przedtem zamieńmy minuty na sekundy. 10 min = s = 600 s Teraz wystarczy podstawić do wzoru W = Ut. Praca wykonana przez prąd zamienia się w ciepło. W = 220 V 4 A 600 s = J Sprawdźmy, czy to rzeczywiście wyjdzie w dżulach. J C V A s = s = J C s Zgadza się. Zadanie Wykres przedstawia zależność natężenia prądu od napięcia dla pewnego przewodnika. natężenie w amperach B A napięcie w woltach 9 Jaki jest opór elektryczny przewodnika?

10 A) 0,5 Ω B) 1 Ω C) 2 Ω D) 4 Ω Rozwiązanie Jak już wiecie opór przewodnika to stosunek napięcia na końcach przewodnika do natężenia prądu przezeń płynącego. U R = Wystarczy z wykresu odczytać jakieś napięcie i odpowiadające mu natężenie. Weźmy na przykład punkt A wykresu. Napięcie wynosi 10 V, a natężenie (łatwo to odczytać) 5 A. Podstawmy to teraz do wzoru określającego opór. 10 V R = = 2 Ω 5 A Prawdziwa jest więc odpowiedź C. Łatwo zauważyć, że opór byłby taki sam, gdybyśmy wybrali inny punkt wykresu. Na przykład B. 6 V R = = 2 Ω 3 A Jest to charakterystyczne dla przewodników spełniających prawo Ohma opór jest stały, niezależny od napięcia i natężenia. Sławomir Jemielity

Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych.

Prądem elektrycznym nazywamy uporządkowany ruch cząsteczek naładowanych. Prąd elektryczny stały W poprzednim dziale (elektrostatyka) mówiliśmy o ładunkach umieszczonych na przewodnikach, ale na takich, które są odizolowane od otoczenia. W temacie o prądzie elektrycznym zajmiemy

Bardziej szczegółowo

Prąd elektryczny 1/37

Prąd elektryczny 1/37 Prąd elektryczny 1/37 Prąd elektryczny Prądem elektrycznym w przewodniku metalowym nazywamy uporządkowany ruch elektronów swobodnych pod wpływem sił pola elektrycznego. Prąd elektryczny może również płynąć

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych Ładunek elektryczny Ładunek elektryczny jedna z własności cząstek elementarnych http://pl.wikipedia.org/wiki/%c5%81a dunek_elektryczny ładunki elektryczne o takich samych znakach się odpychają a o przeciwnych

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

MATERIAŁY Z KURSU KWALIFIKACYJNEGO

MATERIAŁY Z KURSU KWALIFIKACYJNEGO Wszystkie materiały tworzone i przekazywane przez Wykładowców NPDN PROTOTO są chronione prawem autorskim i przeznaczone wyłącznie do użytku prywatnego. MATERIAŁY Z KURSU KWALIFIKACYJNEGO www.prototo.pl

Bardziej szczegółowo

Przykłady zadań. Gimnazjum im. Jana Pawła II w Sułowie

Przykłady zadań. Gimnazjum im. Jana Pawła II w Sułowie 4. Moc i praca Przykłady zadań 10 Przykład 4.1 Oblicz moc silnika elektrycznego, przez który przepływa prąd o natężeniu I = 5 A, przy napięciu U = 230 V. Dane: Szukane Wzór U = 230 V P P= U I I = 5 A Rozwiązanie

Bardziej szczegółowo

Scenariusz lekcji fizyki w klasie drugiej gimnazjum

Scenariusz lekcji fizyki w klasie drugiej gimnazjum Scenariusz lekcji fizyki w klasie drugiej gimnazjum Temat: Opór elektryczny, prawo Ohma. Czas trwania: 1 godzina lekcyjna Realizowane treści podstawy programowej Przedmiot fizyka matematyka Realizowana

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego -  - zadania fizyka, wzory fizyka, matura fizyka 6. Prąd elektryczny zadania z arkusza I 6.7 6.1 6.8 6.9 6.2 6.3 6.10 6.4 6.5 6.11 Na zmieszczonym poniżej wykresie przedstawiono charakterystykę prądowo-napięciową żarówki. 600 500 400 I, ma 300 200 6.6

Bardziej szczegółowo

Test 4. 1. (4 p.) 2. (1 p.) Wskaż obwód, który umożliwi wyznaczenie mocy żarówki. A. B. C. D. 3. (1 p.) str. 1

Test 4. 1. (4 p.) 2. (1 p.) Wskaż obwód, który umożliwi wyznaczenie mocy żarówki. A. B. C. D. 3. (1 p.) str. 1 Test 4 1. (4 p.) Na lekcji fizyki uczniowie (w grupach) wyznaczali opór elektryczny opornika. Połączyli szeregowo zasilacz, amperomierz i opornik. Następnie do opornika dołączyli równolegle woltomierz.

Bardziej szczegółowo

symbol miernika amperomierz woltomierz omomierz watomierz mierzona

symbol miernika amperomierz woltomierz omomierz watomierz mierzona ZADANIA ELEKTROTECHNIKA KLASA II 1. Uzupełnij tabelkę: nazwa symbol miernika amperomierz woltomierz omomierz ----------------- watomierz ----------------- wielkość mierzona jednostka - nazwa symbol jednostki

Bardziej szczegółowo

PODSTAWOWE WIADOMOŚCI O PRĄDZIE ELEKTRYCZNYM

PODSTAWOWE WIADOMOŚCI O PRĄDZIE ELEKTRYCZNYM PODSTAWOWE WADOMOŚC O PĄDZE ELEKTYCZNYM. Co to jest prąd elektryczny? Prąd elektryczny polega na uporządkowanym ruchu nośników ładunku elektrycznego. Nie należy jednak sobie wyobrażać, że gdy płynie w

Bardziej szczegółowo

6. Oryginalny bezpiecznik można w razie potrzeby zastąpić kawałkiem grubego drutu. a) prawda, b) fałsz. 8. Przyrządem do pomiaru napięcia jest:...

6. Oryginalny bezpiecznik można w razie potrzeby zastąpić kawałkiem grubego drutu. a) prawda, b) fałsz. 8. Przyrządem do pomiaru napięcia jest:... 1. Jeśli obojętnej elektrycznie kulce odbierzemy część elektronów, stanie się ona naelektryzowana:.. 2. Powłoki elektronowe atomu tlenu zawierają 8 elektronów. Ile protonów zawiera jądro tlenu?... 3. Przedstaw

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM. ENERGIA I. NIEDOSTATECZNY - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce.

KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM. ENERGIA I. NIEDOSTATECZNY - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. KRYTERIA OCEN Z FIZYKI DLA KLASY II GIMNAZJUM ENERGIA - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, kiedy jest wykonywana praca mechaniczna. - Wie, że każde urządzenie

Bardziej szczegółowo

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe)

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Pieczęć KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego i życzymy powodzenia. Maksymalna liczba

Bardziej szczegółowo

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Sprawdzanie prawa Joule'a

Sprawdzanie prawa Joule'a Sprawdzanie prawa Joule'a 1. Po co to robimy? czyli cel ćwiczenia Prawo Joule'a pozwala nam wyznaczyć ilość ciepła wydzielonego podczas przepływu prądu przez przewodnik. Wydzielone ciepło w jednostce czasu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia zna pojęcia pracy

Bardziej szczegółowo

ELEKTROSTATYKA. Ze względu na właściwości elektryczne ciała dzielimy na przewodniki, izolatory i półprzewodniki.

ELEKTROSTATYKA. Ze względu na właściwości elektryczne ciała dzielimy na przewodniki, izolatory i półprzewodniki. ELEKTROSTATYKA Ładunkiem elektrycznym nazywamy porcję elektryczności. Ładunkiem elementarnym e nazywamy najmniejszą wartość ładunku zaobserwowaną w przyrodzie. Jego wartość jest równa wartości ładunku

Bardziej szczegółowo

10.2. Źródła prądu. Obwód elektryczny

10.2. Źródła prądu. Obwód elektryczny rozdział 10 o prądzie elektrycznym 62 10.2. Źródła prądu. Obwód elektryczny W doświadczeniu 10.1 obserwowaliśmy krótkotrwałe przepływy ładunków elektrycznych w przewodzie łączącym dwa elektroskopy. Żeby

Bardziej szczegółowo

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II Oblicz wartość prędkości średniej samochodu, który z miejscowości A do B połowę drogi jechał z prędkością v 1 a drugą połowę z prędkością v 2. Pociąg o długości

Bardziej szczegółowo

S16. Elektryzowanie ciał

S16. Elektryzowanie ciał S16. Elektryzowanie ciał ZADANIE S16/1: Naelektryzowanie plastikowego przedmiotu dodatnim ładunkiem polega na: a. dostarczeniu protonów, b. odebraniu części elektronów, c. odebraniu wszystkich elektronów,

Bardziej szczegółowo

Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych

Podstawy elektrotechniki V1. Na potrzeby wykładu z Projektowania systemów pomiarowych Podstawy elektrotechniki V1 Na potrzeby wykładu z Projektowania systemów pomiarowych 1 Elektrotechnika jest działem nauki zajmującym się podstawami teoretycznymi i zastosowaniami zjawisk fizycznych z dziedziny

Bardziej szczegółowo

Maria Rozenbajgier, Ryszard Rozenbajgier. Małgorzata Godlewska, Danuta Szot-Gawlik. Świat fizyki

Maria Rozenbajgier, Ryszard Rozenbajgier. Małgorzata Godlewska, Danuta Szot-Gawlik. Świat fizyki Maria Rozenbajgier, Ryszard Rozenbajgier Małgorzata Godlewska, Danuta Szot-Gawlik Świat fizyki Zeszyt przedmiotowo-ćwiczeniowy dla uczniów gimnazjum Część 3A Właścicielem tego zeszytu jest: Klasa Gimnazjum

Bardziej szczegółowo

25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY

25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY 25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III Hydrostatyka Gazy Termodynamika Elektrostatyka Prąd elektryczny stały POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

Badanie krzywej rozładowania kondensatora. Pojemność zastępcza układu kondensatorów.

Badanie krzywej rozładowania kondensatora. Pojemność zastępcza układu kondensatorów. E Badanie krzywej rozładowania kondensatora Pojemność zastępcza układu kondensatorów elem ćwiczenia jest obserwacja rozładowywania kondensatorów o różnej pojemności, powiązanie wyników tych obserwacji

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

Klucz odpowiedzi. Konkurs Fizyczny Etap Rejonowy

Klucz odpowiedzi. Konkurs Fizyczny Etap Rejonowy Klucz odpowiedzi Konkurs Fizyczny Etap Rejonowy Zadania za 1 p. TEST JEDNOKROTNEGO WYBORU (łącznie 20 p.) Nr zadania 1 2 3 4 5 6 7 8 9 10 Odpowiedź B C C B B D C A D B Zadania za 2 p. Nr zadania 11 12

Bardziej szczegółowo

umieszczenie rdzenia wewnątrz zwojnicy IV. ruch wirnika w silniku elektrycznym dostarczenie energii elektrycznej

umieszczenie rdzenia wewnątrz zwojnicy IV. ruch wirnika w silniku elektrycznym dostarczenie energii elektrycznej Test 3 1. (2 p.) Do zawieszonej naelektryzowanej szklanej kulki zbliżano naelektryzowaną szklaną laskę. Na którym rysunku przedstawiono poprawne położenie kulki i laski? Zaznacz właściwą odpowiedź, a jej

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania 1 Rozkład materiału nauczania Temat lekcji i główne treści nauczania Liczba godzin na realizację Osiągnięcia ucznia R treści nadprogramowe Praca eksperymentalno-badawcza Przykłady rozwiązanych zadań (procedury

Bardziej szczegółowo

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła Spotkania z fizyką, część 3 Test 1 1. ( p.) Do zawieszonej naelektryzowanej szklanej kulki zbliżano naelektryzowaną szklaną laskę. Na którym rysunku przedstawiono poprawne położenie kulki i laski? Zaznacz

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

ZADANIA DLA CHĘTNYCH na 6 (seria II) KLASA III

ZADANIA DLA CHĘTNYCH na 6 (seria II) KLASA III ZADANIA DLA CHĘTNYCH na 6 (seria I) KLASA III Ciało rusza miejsca z przyspieszeniem 1[m/s 2 ]. Oblicz drogę przebytą przez to ciało w 5 sekundzie ruchu. Oblicz drogę przebytą przez to ciało w ciągu 6 sekund.

Bardziej szczegółowo

Prąd elektryczny stały

Prąd elektryczny stały Rozdział 3 Prąd elektryczny stały 3.1 Natężenie i gęstość prądu. Równanie ciągłości W poprzednich rozdziałach były rozpatrywane zjawiska związane z nieruchomymi ładunkami elektrycznymi. Omówimy obecnie

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II

Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Szczegółowe kryteria oceniania z fizyki w gimnazjum kl. II Semestr I Elektrostatyka Ocenę dopuszczającą otrzymuje uczeń, który: Wie że materia zbudowana jest z cząsteczek Wie że cząsteczki składają się

Bardziej szczegółowo

Elektryczność i magnetyzm cz. 2 powtórzenie 2013/14

Elektryczność i magnetyzm cz. 2 powtórzenie 2013/14 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Czajnik elektryczny o mocy 1000 W pracuje przez 5 minut. Oblicz, ile energii elektrycznej uległo przemianie w inne formy energii. Zadanie

Bardziej szczegółowo

2 K A T E D R A F I ZYKI S T O S O W AN E J

2 K A T E D R A F I ZYKI S T O S O W AN E J 2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność

Bardziej szczegółowo

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r

1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r 1. Dwa ładunki punktowe q znajdujące się w odległości 1 m od siebie odpychają się siłą o wartości F r. Sporządź wykres zależności F(r) dla tych ładunków. 2. Naelektryzowany płatek waty zbliża się do przeciwnie

Bardziej szczegółowo

Wykład 2. 4. Ładunki elektryczne

Wykład 2. 4. Ładunki elektryczne Wykład 2 4. Ładunki elektryczne Czym są ładunki elektryczne? Odpowiedź na to pytanie jest tak trudne, jak odpowiedź na pytanie, czym jest masa. Istnienie ładunków w przyrodzie jest faktem, który musimy

Bardziej szczegółowo

R o z d z i a ł 9 PRĄD ELEKTRYCZNY

R o z d z i a ł 9 PRĄD ELEKTRYCZNY R o z d z i a ł 9 PRĄD ELEKTRYCZNY 9.1. Natężenie prądu elektrycznego Przez przepływ prądu elektrycznego rozumiemy ruch ładunków elektrycznych. Czynnikiem wywołującym ten ruch jest istnienie napięcia,

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

Witam na teście z działu ELEKTROSTATYKA

Witam na teście z działu ELEKTROSTATYKA Witam na teście z działu ELEKTROSTATYKA Masz do rozwiązania 22 zadania oto jaką ocenę możesz uzyskać: dopuszczająca jeśli rozwiążesz 6 zadań z zakresu pytań od 1 7 dostateczna jeśli rozwiążesz zadania

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania Szczegółowe wymagania na poszczególne oceny 1 Elektrostatyka R treści nadprogramowe wskazuje w otaczającej rzeczywistości planuje doświadczenie związane z badaniem wyodrębnia

Bardziej szczegółowo

Mierzymy opór elektryczny rezystora i żaróweczki. czy prawo Ohma jest zawsze spełnione?

Mierzymy opór elektryczny rezystora i żaróweczki. czy prawo Ohma jest zawsze spełnione? 1 Mierzymy opór elektryczny rezystora i żaróweczki czy prawo Ohma jest zawsze spełnione? Czas trwania zajęć: 1h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć:

Bardziej szczegółowo

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013

Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Rozkład materiału i wymagania edukacyjne na poszczególne oceny z fizyki i astronomii dla klasy II TE, IITI, II TM w roku szkolnym 2012/2013 Lp. Temat lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą

Bardziej szczegółowo

LVI Olimpiada Fizyczna Zawody III stopnia

LVI Olimpiada Fizyczna Zawody III stopnia LVI Olimpiada Fizyczna Zawody III stopnia ZADANIE DOŚIADCZALNE Praca wyjścia wolframu Masz do dyspozycji: żarówkę samochodową 12V z dwoma włóknami wolframowymi o mocy nominalnej 5 oraz 2, odizolowanymi

Bardziej szczegółowo

Wymagania edukacyjne fizyka kl. 3

Wymagania edukacyjne fizyka kl. 3 Wymagania edukacyjne fizyka kl. 3 Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające dopuszczająca dostateczna dobra bardzo dobra Rozdział 1. Elektrostatyka wymienia dwa rodzaje

Bardziej szczegółowo

Badanie charakterystyki diody

Badanie charakterystyki diody Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,

Bardziej szczegółowo

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N.

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N. Wersja A KONKURS FIZYCZNY DLA UCZNIÓW KLAS 3 GIMNAZJUM Masz przed sobą zestaw 20 zadań. Na ich rozwiązanie masz 45 minut. Czytaj uważnie treści zadań. Tylko jedna odpowiedź jest prawidłowa. Za każde prawidłowo

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

WOJEWÓDZKI KONKURS FIZYCZNY

WOJEWÓDZKI KONKURS FIZYCZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STOPIEŃ SZKOLNY 12. 11. 2013 R. 1. Test konkursowy zawiera 23 zadania. Są to zadania

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 18 stycznia 2013 r. 90 minut Informacje dla ucznia

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Między

Bardziej szczegółowo

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy.

Magnetostatyka. Bieguny magnetyczne zawsze występują razem. Nie istnieje monopol magnetyczny - samodzielny biegun północny lub południowy. Magnetostatyka Nazwa magnetyzm pochodzi od Magnezji w Azji Mniejszej, gdzie już w starożytności odkryto rudy żelaza przyciągające żelazne przedmioty. Chińczycy jako pierwsi (w IIIw n.e.) praktycznie wykorzystywali

Bardziej szczegółowo

A. istnieniu siły elektrodynamicznej C. zjawisku indukcji elektromagnetycznej B. zjawisku indukcji magnetycznej D. namagnesowaniu zwojnicy

A. istnieniu siły elektrodynamicznej C. zjawisku indukcji elektromagnetycznej B. zjawisku indukcji magnetycznej D. namagnesowaniu zwojnicy PRĄD PRZEMIENNY Grupa A Imię i nazwisko... Klasa... 1. Prądnica działa dzięki: A. istnieniu siły elektrodynamicznej C. zjawisku indukcji elektromagnetycznej B. zjawisku indukcji magnetycznej D. namagnesowaniu

Bardziej szczegółowo

Przedmiotowe ocenianie z fizyki klasa III Kursywą oznaczono treści dodatkowe.

Przedmiotowe ocenianie z fizyki klasa III Kursywą oznaczono treści dodatkowe. Przedmiotowe ocenianie z fizyki klasa III Kursywą oznaczono treści dodatkowe. Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry

Bardziej szczegółowo

Plan wynikowy. Elektrostatyka (6-7 godz. + 2 godz. (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian) R treści nadprogramowe

Plan wynikowy. Elektrostatyka (6-7 godz. + 2 godz. (łącznie) na powtórzenie materiału (podsumowanie działu) i sprawdzian) R treści nadprogramowe Plan wynikowy Plan wynikowy (propozycja), obejmujący treści nauczania zawarte w podręczniku Spotkania z fizyką, część 3" (a także w programie nauczania), jest dostępny na stronie internetowej www.nowaera.pl

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Analiza i czytanie wykresów Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Aby dobrze odczytać wykres zaczynamy od opisu

Bardziej szczegółowo

Wojewódzki Konkurs Fizyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Fizyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok ETAP REJONOWY Rok szkolny 2016/2017 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny brak stron lub inne usterki zgłoś Komisji.

Bardziej szczegółowo

ĆWICZENIE 66 BADANIE SPRAWNOŚCI GRZEJNIKA ELEKTRYCZNEGO

ĆWICZENIE 66 BADANIE SPRAWNOŚCI GRZEJNIKA ELEKTRYCZNEGO ĆWICZENIE 66 BADANIE SPRAWNOŚCI GRZEJNIKA EEKTRYCZNEGO Wprowadzenie Uporządkowany ruch ładunków nazywamy prądem elektrycznym. Warunkiem koniecznym przepływu prądu jest obecność nośników (ładunków elektrycznych)

Bardziej szczegółowo

46 POWTÓRKA 8 PRĄD STAŁY. Włodzimierz Wolczyński. Zadanie 1. Oblicz i wpisz do tabeli R 2 = 2 Ω R 4 = 2 Ω R 3 = 6 Ω. E r = 1 Ω U [V] I [A] P [W]

46 POWTÓRKA 8 PRĄD STAŁY. Włodzimierz Wolczyński. Zadanie 1. Oblicz i wpisz do tabeli R 2 = 2 Ω R 4 = 2 Ω R 3 = 6 Ω. E r = 1 Ω U [V] I [A] P [W] Włodzimierz Wolczyński 46 POWTÓRKA 8 PRĄD STAŁY Zadanie 1 Oblicz i wpisz do tabeli R 1 = 4 Ω RR 22 = = 22 Ω I 2 = 1,5 A R 4 = 2 Ω R 3 = 6 Ω R 1 = 4 Ω R 2 = 2 Ω R 3 = 6 Ω R 4 = 2 Ω r = 1 Ω SEM ogniwa wynosi

Bardziej szczegółowo

Wyznaczanie wielkości oporu elektrycznego różnymi metodami

Wyznaczanie wielkości oporu elektrycznego różnymi metodami Wyznaczanie wielkości oporu elektrycznego różnymi metodami Obowiązkowa znajomość zagadnień: Co to jest prąd elektryczny, napięcie i natężenie prądu? Co to jest opór elektryczny i od czego zależy? Prawo

Bardziej szczegółowo

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r ) Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

Prąd elektryczny. 1.1.Pojęcie prądu elektrycznego

Prąd elektryczny. 1.1.Pojęcie prądu elektrycznego Prąd elektryczny 1.1.Pojęcie prądu elektrycznego Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych. Czynnikiem wywołującym ten ruch jest różnica potencjałów, czyli istnienie napięcia.

Bardziej szczegółowo

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)

Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p) 1 Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie 375 Badanie zależności mocy promieniowania cieplnego od temperatury = U [V] I [ma] [] / T [K] P [W] ln(t) ln(p) 1.. 3. 4. 5.

Bardziej szczegółowo

Przedmiotowy system oceniania (propozycja)

Przedmiotowy system oceniania (propozycja) Przedmiotowy system oceniania (propozycja) Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra 1 2 3 4 wymienia

Bardziej szczegółowo

36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej)

36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Włodzimierz Wolczyński 36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

1. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających w funkcji ciepła Q dostarczonego gazom.

1. Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających w funkcji ciepła Q dostarczonego gazom. . Wykres przedstawia zależność wzrostu temperatury T dwóch gazów zawierających i N N w funkcji ciepła Q dostarczonego gazom. N N T I gaz II gaz Molowe ciepła właściwe tych gazów spełniają zależność: A),

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

Czego można się nauczyć z prostego modelu szyny magnetycznej

Czego można się nauczyć z prostego modelu szyny magnetycznej Czego można się nauczyć z prostego modelu szyny magnetycznej 1) Hamowanie magnetyczne I B F L m v L Poprzeczka o masie m może się przesuwać swobodnie po dwóch równoległych szynach, odległych o L od siebie.

Bardziej szczegółowo

Pole przepływowe prądu stałego

Pole przepływowe prądu stałego Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012

Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012 Wojewódzki Konkurs Przedmiotowy z Fizyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 011/01 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 19 stycznia 01 r. 90 minut Informacje dla ucznia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

E12. Wyznaczanie parametrów użytkowych fotoogniwa

E12. Wyznaczanie parametrów użytkowych fotoogniwa 1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych

Bardziej szczegółowo

Lekcja 6. Metody pracy: pogadanka, wykład, pokaz z instruktarzem, ćwiczenia praktyczne

Lekcja 6. Metody pracy: pogadanka, wykład, pokaz z instruktarzem, ćwiczenia praktyczne Lekcja 6 Temat: Równoległe łączenie diod Cele operacyjne uczeń: umie dobrać rezystancję rezystorów do diod połączonych równolegle, umie wyjaśnić, dlaczego do źródła zasilania nie można podłączyć równolegle

Bardziej szczegółowo

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru

Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru Wstęp Celem ćwiczenia jest zaznajomienie się z podstawowymi przyrządami takimi jak: multimetr, oscyloskop, zasilacz i generator. Poznane zostaną również podstawowe prawa fizyczne a także metody opracowywania

Bardziej szczegółowo

Co się stanie, gdy połączymy szeregowo dwie żarówki?

Co się stanie, gdy połączymy szeregowo dwie żarówki? Różne elementy układu elektrycznego można łączyć szeregowo. Z wartości poszczególnych oporów, można wyznaczyć oporność całkowitą oraz całkowite natężenie prądu. Zadania 1. Połącz szeregowo dwie identyczne

Bardziej szczegółowo

ROZWIĄZUJEMY ZADANIA Z FIZYKI

ROZWIĄZUJEMY ZADANIA Z FIZYKI ROZWIĄZUJEMY ZADANIA Z FIZYKI Rozwiązując zadnia otwarte PAMIĘTAJ o: wypisaniu danych i szukanych, zamianie jednostek na podstawowe, wypisaniu potrzebnych wzorów, w razie potrzeby przekształceniu wzorów,

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody II stopnia (rejonowe)

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody II stopnia (rejonowe) KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego. Przed przystąpieniem do rozwiązywania zadań

Bardziej szczegółowo

Plan wynikowy (propozycja)

Plan wynikowy (propozycja) Plan wynikowy (propozycja) Wymagania Temat lekcji ele operacyjne - uczeń: Kategoria celów podstawowe ponad podstawowe konieczne podstawowe rozszerzające dopełniające 1 2 3 4 5 6 7 Rozdział I. Elektrostatyka

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

Zajęcia pozalekcyjne z fizyki

Zajęcia pozalekcyjne z fizyki 189 - Fizyka - zajęcia wyrównawcze. Jesteś zalogowany(a) jako Recenzent (Wyloguj) Kreatywna szkoła ZP_189 Osoby Uczestnicy Certificates Fora dyskusyjne Głosowania Quizy Zadania Szukaj w forum Zaawansowane

Bardziej szczegółowo

średnia droga swobodna L

średnia droga swobodna L PĄD STAŁY. Na czym polega przepływ prądu elektrycznego. Natężenie prądu i opór; źródła oporu elektrycznego 3. Prawo Ohma; temperaturowa zależność oporu elektrycznego 4. Siła elektromotoryczna 5. Prawa

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

BADANIE AMPEROMIERZA

BADANIE AMPEROMIERZA BADANIE AMPEROMIERZA 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metod pomiaru prądu, nabycie umiejętności łączenia prostych obwodów elektrycznych, oraz poznanie warunków i zasad sprawdzania amperomierzy

Bardziej szczegółowo

XXXIII OOWEE 2010 Grupa Elektryczna

XXXIII OOWEE 2010 Grupa Elektryczna 1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,

Bardziej szczegółowo

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła Test 2 1. (4 p.) Wskaż zdania prawdziwe i zdania fałszywe, wstawiając w odpowiednich miejscach znak. I. Zmniejszenie liczby żarówek połączonych równolegle powoduje wzrost natężenia II. III. IV. prądu w

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo