METODY EMISYJNE CHEMIA ANALITYCZNA Metody emisyjne. Energia wzbudzenia. Szerokość atomowych linii widmowych. Poszerzenie dopplerowskie

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODY EMISYJNE CHEMIA ANALITYCZNA Metody emisyjne. Energia wzbudzenia. Szerokość atomowych linii widmowych. Poszerzenie dopplerowskie"

Transkrypt

1 CHEMIA ANALITYCZNA METODY EMISYJNE Metody emisyjne Pierwiastki odpowiednio wzbudzone emitują promieniowanie o charakterystycznej długości fali (Bunsen, Kirchhoff, 1860). Obserwacje natężenia światła emitowanego przez substancję wprowadzaną do płomienia na platynowym drucie. Pierwszy przyrząd do ilościowego oznaczania sodu na podstawie wizualnej obserwacji płomienia (spektronatrometr), koniec XIX w. Optyczny elektron w atomie wzbudzonym przechodząc z wyższego poziomu energetycznego na niższy emituje foton hν: hc E Em En h Przejściu elektronów z pierwszego stanu wzbudzenia do stanu podstawowego odpowiadają w widmie emisyjnym tzw. linie rezonansowe. Energia wzbudzenia Energię przeniesienia elektronu z poziomu podstawowego na poziom wyższy, ale jeszcze w obrębie atomu, nazywa się energią wzbudzenia lub potencjałem wzbudzenia. Energia jonizacji to w konsekwencji energia niezbędna do zjonizowania atomu. Energię wzbudzenia i jonizacji mierzy się w elektronowoltach (ev). 1 ev odpowiada energii elektron w polu elektrostatycznym 1 V. Pierwiastki w zależności od wielkości energii wzbudzenia linii rezonansowych dzieli się na trzy grupy: - o niskiej energii wzbudzenia od 1.4 do 3 ev - o średniej energii wzbudzenia od 3 do 10 ev - o wysokiej energii wzbudzenia od 10 do 35 ev. Źródła wzbudzenia: płomień, iskra i łuk elektryczny oraz plazma. Szerokość atomowych linii widmowych Widmowe (spektralne) linie atomowe charakteryzują się skończoną szerokością. W spektrofotometrach obserwowana szerokość linii nie wynika z ich poziomów atomowych lecz z charakterystyki optyki. Szerokość naturalna linii - jest konsekwencją czasu pozostawania atomów w stanie wzbudzonym i wynika z zasady nieoznaczoności Heisenberga, im krótszy jest ten czas, tym większa szerokość linii i vice versa. Dla czasów wzbudzenia ~10-8 s naturalna szerokość linii wynosi 10-5 nm. Poszerzenie ciśnieniowe linii - jest efektem zderzeń między atomami i cząsteczkami w fazie gazowej przyspieszona dezaktywacja wzbudzonych atomów - jest tym większe im większe jest ciśnienie (stężenie) innych składników fazy gazowej, zależy od rodzaju gazu i jego temperatury. Poszerzenie dopplerowskie - wynika z dużej prędkości poruszania się atomów emitujących lub absorbujących promieniowanie, ma największy wpływ na rzeczywistą szerokość linii. Jest tym większe im wyższa jest temperatura. Promieniowanie emitowane przez atomy poruszające się w kierunku detektora jest przesunięte w kierunku fal krótszych,. Promieniowanie emitowane przez atomy poruszające się w kierunku przeciwnym jest przesunięte w kierunku fal dłuższych. Szerokość linii sodu wynikająca z poszerzenia Dopplera jest rzędu do nm. 1

2 Wytwarzanie atomów i jonów Wytwarzanie atomów i jonów Bez względu na stosowaną technikę spektroskopii atomowej próbka musi zostać poddana procesowi atomizacji, czyli przekształceniu w postać atomów lub jonów w fazie gazowej. Do atomizera próbka może być wprowadzana w formie roztworu, w postaci gazowej lub stałej. Atomizery mogą pracować w trybie ciągłym lub dyskretnym. Najczęściej stosuje się bezpośrednie rozpylanie roztworu nebulizację który jest w sposób ciągły wprowadzany do atomizera w postaci mgły złożonej z drobnych kropelek, czyli aerozolu. W układach przepływowo-wstrzykowych rozpyleniu ulega określona, zmienna w czasie objętość roztworu, a liczba wytworzonych w fazie gazowej indywiduów zależy od czasu. Dyskretne wprowadzanie próbki polega na dostarczaniu do atomizera określonej objętości (porcji) roztworu próbki. Najszerzej stosowanym atomizerem pracującym w trybie nieciągłym jest atomizer elektrotermiczny. Wytwarzana w atomizerze elektotermicznym liczba indywiduów w fazie gazowej charakteryzuje się zmienną w czasie liczbą tych indywiduów, co wynika z ograniczonej objętości wprowadzanej próbki. Schemat procesów zachodzących w płomieniu Interferencje w spektrometrii emisyjnej - mogą być addytywne, związane najczęściej ze ślepą próbą, oraz proporcjonalne związane z analitem. Interferencje związane ze ślepą próbą (spektralne) - emisja promieniowania przez pierwiastek inny niż analit, w zakresie szerokości spektralnej stosowanego układu rozdzielczego, lub promieniowanie rozproszone. Przykład emisji atomów sodu przy nm na oznaczanie magnezu przy nm. - obecność pasm cząsteczkowych (np. MgOH, CaOH), szczególnie w metodzie płomieniowej, ze względu na niską temperaturę płomienia i konieczność stosowania gazu podtrzymującego spalanie. - mierzony efekt interferencji spektralnych nie zależy od stężenia analitu. Interferencje związane z analitem Interferencje fizyczne - spowodowane są procesami zachodzącymi przy wprowadzaniu próbki, rozpylaniu, desolwatacji i odparowaniu - o ich poziomie decydują m.in. fizyczne właściwości roztworu (lepkość, gęstość, napięcie powierzchniowe), stosowanie palnych rozpuszczalników, itd. - mają miejsce przede wszystkim w metodach wykorzystujących bezpośrednie rozpylenie roztworu nebulizację. (Próbki stałe można rozpylać przez odparowanie w iskrze elektrycznej lub za pomocą wiązki laserowej ablacja laserowa). - jedynym skutecznym sposobem ich eliminacji jest dobór wzorców o właściwościach fizyczne zbliżonych do właściwości roztworu próbki. Interferencje związane z analitem Interferencje chemiczne w fazie stałej - są specyficzne dla danego analitu. Mają wpływ na procesy zachodzące w czasie reakcji, których celem jest wytworzenie wolnych atomów lub jonów elementarnych. - to m.in. reakcje asocjacji, które obniżają stężenie atomów (jonów) oznaczanego pierwiastka poprzez tworzenie trudno-dysocjujących połączeń (tlenki, wodorotlenki, fosforany, siarczany czy krzemiany) - w praktyce stosuje się trzy sposoby eliminacji: - podnosząc temperaturę atomizacji - stosując substancje uwalniające, tzn. dodając do roztworu próbki substancje, które w procesie atomizacji będą wiązać przeszkadzające składniki - wykonując analizę metodą dodatku wzorca 2

3 Interferencje związane z analitem Interferencje chemiczne w fazie gazowej - to procesy jonizacji oznaczanego atomu. Widmo atomów pierwiastka różni się całkowicie od widma jego jonów. - jonizacja atomów w płomieniu jest procesem, którego stan równowagi może być opisany za pomocą prawa działania mas - obecność pierwiastków łatwo ulegających jonizacji, np. potasu, może zmniejszyć efektywność jonizacji pierwiastków trudniej jonizujących, np. wapnia - w celu ich eliminacji stosuje się bufory jonizacyjne. Bufory jonizacyjne to substancje łatwo jonizujące, zawierają najczęściej: K, Na, Li, Cs lub Rb, których obecność w płomieniu powoduje wytworzenie dużej liczby elektronów i cofnięcie jonizacji atomów analitu. FOTOMETRIA PŁOMIENIOWA - nazywana także emisyjną spektrometrią atomów pobudzanych termicznie (Flame Atomic Emission Spektrometry - FAES). Prace Lundegardhta (1929) nad wzbudzeniem pierwiastków w płomieniu palnika. Empiryczna zależność Łomakina - Scheibego I c Ogólna charakterystyka metody - niska temperatura płomienia jest przyczyną prostego widma to rezonansowe linie pierwiastków o potencjale wzbudzenia < 3 ev - oznaczane są metale alkaliczne i ziem alkalicznych, które emitują promieniowanie z zakresu VIS wywołują charakterystyczne zabarwienie płomienia - liczba atomów wzbudzonych w płomieniu jest mała, ok. 1%, nawet dla najłatwiej wzbudzalnych pierwiastków jak sód czy potas Mieszaniny: gaz świetlny-powietrze ( º C) propan-powietrze (1920ºC) acetylen-powietrze ( ºC) acetylen -podtlenek azotu (do 3000ºC) 1) stożek wewnętrzny 2) obszar przejściowy 3) stożek zewnętrzny. Linie rezonansowe i energie wzbudzenia wybranych metali Pierwiastek Linia rezonansowa [nm] Energia wzbudzenia [ev] Wykrywalność [ g/ml] Barwa płomienia Bar zielona Cez fioletoworóżowa Lit karminowa Potas bladofioletowa Rubid 0.1 bladofioletowa Stront karminowa Sód żółta Wapń ceglasta Przebieg procesu wzbudzenia Proces wzbudzenia atomów i emisji kwantów promieniowania jest poprzedzony, względnie zachodzi równocześnie z szeregiem innych procesów, które limitują czułość i dokładność metody: 1) odparowanie rozpuszczalnika z cząstek aerozolu ciecz - gaz 2) przejście jonów w obojętne cząsteczki na skutek odparowania rozpuszczalnika 3) powstanie aerozolu ciało stałe - gaz, którego cząstki po dalszym ogrzaniu wyparowują tworząc pary soli 4) dysocjacja termiczna cząsteczek soli na wolne atomy 5) wzbudzenie atomów metalu, w wyniku zderzeń z cząstkami gazu płomienia 6) emisja kwantów energii. Procesy przeszkadzające - rzutujące na czułość, precyzję i odtwarzalność metody to głównie: - samoabsorpcja - łączenie się wolnych atomów metalu oznaczanego z innymi atomami lub grupami atomów - jonizacja termiczna oznaczanych atomów metalu, Me Me + + e - wzbudzenie jonów metalu oraz powstałych jego tlenków i soli - wzbudzenie i emisja kwantów promieniowania przez atomy oraz jony i sole innych pierwiastków obecnych w płomieniu. Procesy te mogą być powodem zarówno obniżenia intensywność wiązki promieniowania jak i dodatkowego wzrostu emisji sygnału tła. 3

4 Podstawowe elementy fotometru płomieniowego 1) naczynko z badanym roztworem, 2) rozpylacz, 3) łapacz kropel, 4) mieszalnik gazów, 5) palnik, 6) zwierciadło wklęsłe, 7) układ soczewek, 8) filtr, 9) obrotowa tarcza, 10) przysłona irysowa, 11) układ soczewek, 12) detektor. Przebieg analizy metodą fotometrii płomieniowej - przeprowadzenie próbki do roztworu (max. stężenie soli 1-5%) - usunięcie części nierozpuszczalnych i pierwiastków interferujących - rozcieńczenie roztworu, ewentualnie buforowanie roztworu - przygotowanie fotometru do pracy i ustalenie ciśnienia gazów - wykonanie pomiarów. Metody oznaczenia pierwiastków - metoda krzywej wzorcowej - metoda dodatku wzorca - metoda roztworów ograniczających - rejestruje się sygnał emisji dla roztworu próbki i dwóch roztworów wzorcowych, o nieco większym i mniejszym odczycie w porównaniu z sygnałem próbki. Główne przyczyny błędów w fotometrii płomieniowej - zakłócony dopływ roztworu (aerozolu) do głowicy palnika - zmiany temperatury (charakteru) płomienia - powstawanie związków trudno dysocjujących (spinele, tlenki, itd.) - efekty anionowe, obecność grup: Cl -, NO 3-, SO nakładanie się widm: gazu palnego, pasmowych tlenków, itd. - zmiany stężenia wolnych elektronów w płomieniu - kontaminacja - ługowanie sodu i potasu ze szkła laboratoryjnego Podstawowe sposoby eliminacji - wielokrotne rozcieńczenie próbki - zastosowanie metody buforowania - zastosowanie metody dodatku wzorca wewnętrznego Zalet metody fotometrii płomieniowej - prosta i stosunkowo tania aparatura - niski koszt wykonania pojedynczego oznaczenia - dobra czułość i wykrywalność - zadowalająca dokładność i precyzja (2-3%) - duża szybkość wykonywania pojedynczych oznaczeń, <1 min - możliwości automatyzacji i stosowania naczyń przepływowych - zastosowanie metody ogranicza się głównie do analizy pierwiastków alkalicznych i ziem alkalicznych. SPEKTROGRAFIA EMISYJNA - rejestracja widma promieniowania pierwiastka wzbudzonego przez wysokoenergetyczne źródło wzbudzenia jak łuk elektryczny czy iskra. Podstawowe zalety: - możliwość analizy wielo-pierwiastkowej - możliwość analizy ilościowej w szerokim zakresie stężeń (od zawartości śladowych po procentowe). Podstawowe elementy układu pomiarowego źródło wzbudzenia z próbką łuk elektryczny (prądu stałego lub zmiennego) lub iskra elektryczna układ optyczny soczewki i diafragmy monochromator pryzmat lub siatka dyfrakcyjna z układem kolimatora detektor i układ pomiarowy klisza fotograficzna (spektrografia) fotopowielacz z rejestratorem (spektrometria) 4

5 Łuk prądu zmiennego Gęstość prądu: A/cm 2 Czas trwania: 2-10 s Temperatura: K Łuk prądu stałego Bardzo duża gęstość prądu ~10 6 A/cm 2 Temperatura: K Granica oznaczalności: % Elektrody wykonane są ze spektralnie czystego grafitu. Zapewniają atmosferę redukującą i dają się łatwo formować. Jedna z elektrod jest nośnikiem próbki, druga o stożkowym zakończeniu pracuje jako przeciwelektroda. Iskra elektryczna Napięcie: kilka - kilkadziesiąt tysięcy woltów Gęstość prądu: A/cm 2 Czas trwania: 10-7 s Częstotliwość: Hz Temperatura: K Źródło bardzo stabilne Każde wyładowanie elektryczne uderza w inne miejsce elektrody, w ten sposób uzyskuje się doskonałe uśrednienie emitowanego promieniowania w odniesieniu do powierzchni elektrody (próbki). Wysoka czułość dla pierwiastków trudnowzbudzalnych przede wszystkim na wyższą niż w łuku elektrycznym temperaturę wzbudzenia. Wzbudzenie jarzeniowe (Lampa Grimma) - ma miejsce przy ciśnieniu Tr, napięciu V i natężeniu prądu ma. - mechanizm wzbudzenia próbki polega na bombardowaniu zimnej, płaskiej katody przez zjonizowane atomy argonu w efekcie dochodzi do równomiernego rozpylenia katodowego próbki. Zalety: - wysoka stabilność wyładowania - minimalne efekty matrycowe - niewielkie tło ciągłe - małe natężenie widma (odpowiednio 6 i 12-krotnie słabsze niż widmo iskrowe i łukowe). - szeroki zakres stężeń % Metoda umożliwia bezpośrednią analizę substancji w różnych stanach skupienia: metale i stopy w postaci litej, proszki, roztwory i gazy. Linie analityczne oznaczanych pierwiastków winny się znajdować w zakresie widma o długości fali od 200 do nm. Oznaczane są wszystkie pierwiastki metaliczne, niemetale jak: Se, Te, Si, B, C, S, P i fluorowce. Przykładowe widma AES izotopów Hg i U Wady: - usuwanie rozpylonego materiału próbki z lampy Fluorescencja rentgenowska - w efekcie oddziaływania promieniowania rentgenowskiego dochodzi do wybijania elektronów z orbit bliższych jądra atomu, nawet orbity K. - następnie, w czasie krótszym niż s, elektron z powłoki bardziej odległej od jądra przeskakuje na nieobsadzony poziom czemu towarzyszy emisja kwantu promieniowania X. -wartość energii emitowanego kwantu zależy od różnicy energii pomiędzy poziomem, na którym powstała wakancja, E j a poziomem, z którego następuje przeskok elektronu, E i : Przykładowe widmo emisyjne żelaza h c h E j E i 5

6 Długość fali emitowanego kwantu, która zależy od liczby atomowej pierwiastka Z, wyraża prawo Moseley a: Fluorescencja rentgenowska dyspersji długości fali Wavelength Dispersive X-ray Fluorescence, WDXRF c 2 2 k ( Z ) k -stała charakterystyczna dla serii, σ -stała ekranowania Przejścia elektronów z orbit L, M i N na orbitę K powodujące emisję serii kwantów K α i K β Ze względu na możliwość osłabienia promieniowania zasadnicza część analizatora jest umieszczona w próżni. Fluorescencja rentgenowska dyspersji energii Energy Dispersive X-ray Fluorescence, EDXRF - strumień wzbudzonego w próbce promieniowania X kierowany jest na układ pomiarowy, który dokonuje separacji dyspersji tego promieniowania w zależności od jego energii. Dyspersję energii umożliwia liniowa zależność amplitudy impulsu napięcia generowanego przez czujnik (detektor P/A) od wartości energii tego promieniowania: du D U de du - dyspersja amplitudy impulsu, E - energią kwantów hν Zakresy stosowania fluorescencji rentgenowskiej Metoda znajduje zastosowanie do oznaczania pierwiastków o liczbie atomowej Z od 4 (beryl) do 92 (uran). Zakres pomiaru: % (ślady) - 100% (składniki główne). Ponadto: - możliwości jednoczesnego oznaczania kilku pierwiastków - metoda nieniszcząca - możliwość stosowania w ruchu ciągłym on-line - nie jest metodą specjacyjną - koszty zakupu to ok. 250 tys. $ spektrometru WDXRF i 100 tys. $ spektrometru EDXRF Spektrometria mas plazmy indukcyjnie sprzężonej ICP MS - pierwsza dekada XX w. Thomson prototyp spektrometru mas, który umożliwia pomiar stosunku masy do ładunku jonu (Nobel 1906r.) r. W. Aston spektrograf masowy rozdzielający jony ze względu na ich masę i prędkość przelotu (Nobel 1922r.) r. J. Dempster jednosektorowy spektrometr magnetyczny ogniskujący jony według ich pędu. 1940r. pierwsze spektrometry z podwójnym ogniskowaniem r. Stephens zasada analizy przez pomiar czasu przelotu jonów po określonym odcinku (ang. Time of Flight TOF) r. kwadrupolowy spektrometr mas r. S. Houk jonizacja w plazmie argonowej Układy pomiarowe spektrometrii mas - w spektrometrii mas wykorzystywane jest zjawisko powstawania jonów naładowanych dodatnio z obojętnych cząsteczek badanej próbki, które rozdzielane są według wartości stosunku masy do ładunku (m/z) i zliczane przez detektor. - rejestrowane widmo mas dostarcza informacji o masie cząsteczkowej wytworzonych jonów, a także o naturze i strukturze cząsteczki - bez względu na rodzaj spektrometru mas wyróżnia się: - układa wprowadzenia próbki - źródło jonów - system utrzymujący próżnię - analizator mas - układ wykrywania i zliczania jonów 6

7 Schemat budowy spektrometru mas Wartość m/z to liczba określająca stosunek masy jonu [w daltonach] do ładunku [wielokrotności ładunku elementarnego]. Stąd, m/z = 56 może odpowiadać jonom: ( 56 Fe) +, ( 40 Ar 16 O) + i ( 112 Cd) 2+. Dla jedno-dodatnich jonów często podaje się wartość masy w daltonach lub jednostkach masy atomowej [j.m.a.] Plazma wzbudzona indukcyjnie Palnik, w którym powstaje plazma, jest otoczony cewką indukcyjną, przez którą przepływa prąd zmienny o częstotliwości radiowej. Prąd zmienny wzbudza przez indukcję pole elektromagnetyczne, które oddziałuje na obecne w plazmie jony i obojętne cząsteczki, które ulegają jonizacji z wydajnością bliską 100%. Palnik składa się z trzech współosiowych rurek kwarcowych, pomiędzy którymi wymuszony jest przepływ gazu (argonu). Zakres temperatury plazmy argonowej to: do K, co pozwala na atomizację większości związków chemicznych i jonizację poszczególnych atomów w ponad 90% z wyjątkiem (As 52%; Se 33%; S 14%; F 10-3 %) O efektywności tworzenia jonów decyduje m.in.: moc generatora ( W) i szybkość przepływu argonu (12-17 l/min). Palnik plazmowy Metoda ICP-AES - możliwość analizy roztworów, gazów, a także ciał stałych rozdrobnionych na cząstki poniżej 10 μm. Próbka w gorącej plazmie rozpada się na atomy, które ulegają wzbudzeniu i emitują pochłoniętą energię w postaci promieniowania charakterystycznego dla danego pierwiastka. Budowa (a) i rozkład temperatur (b) w palniku plazmowym Wiązka promieniowania z palnika przechodzi przez szczelinę S 1 i pada na siatkę dyfrakcyjną G. Po rozszczepieniu przechodzi przez szczeliny wyjściowe S 2 położone na tzw. okręgu Rowlanda. Naprzeciw szczelin znajdują się fotopowielacze. Schemat polichromatora Paschen-Runge a Zalety metody ICP-AES - umożliwia analizę zarówno jednego pierwiastka, jak i analizę wielopierwiastkową - wysoka temperatura plazmy umożliwia oznaczanie pierwiastków o wysokich energiach wzbudzenia (np. U, W) - duży zakres prostoliniowości wskazań, obejmujący 4-5 rzędów wielkości stężenia (składniki główne i śladowe) - do wzbudzenia nie używa się elektrod, co eliminuje zanieczyszczenia - wysoka precyzja i dokładność - granica wykrywalności dla większości pierwiastków: 0.1 do 1 ppb - dla urządzeń z polichromatorem, możliwość jednoczesnej detekcji wielu linii widmowych (do 60 pierwiastków) w ciągu kilku minut. Analizator mas - w nim następuje rozdzielenie jonów w zależności od masy i ładunku jonów oraz określenie wartości tych mas. Jony są zwykle rozdzielane przez pole magnetyczne, elektryczne lub na podstawie pomiaru czasu jaki potrzebny jest im na pokonanie określonego dystansu. Parametry charakterystyczne dla analizatora mas to: zakres mas są to graniczne możliwe do zmierzenia wartości m/z przepuszczalność stosunek liczby jonów docierających do detektora do liczby jonów wytworzonych w źródle zdolność rozdzielcza to zdolność rozróżniania sygnałów pochodzących od dwóch jonów o sąsiadujących wartościach m/z 7

8 Analizatory kwadrupolowe są zbudowane z czterech walcowych lub hiperbolicznych elektrod (dł. 25 cm; śr. 1.2 cm) rozmieszczonych na planie kwadratu. Naprzeciwległe elektrody, o przeciwnej polaryzacji są ze sobą połączone. Polaryzacja dotyczy dwóch składowych: wartości napięcia stałego, i wartości amplitudy napięcia zmiennego z pulsacją. Przyspieszone jony wprowadzone między pręty kwadrupola o określonym stosunku m/z przyjmują trajektorię równoległą do osi prętów lub mają trajektorię niestabilną kolizyjną. Rozdzielczość analizatora mas Zwykle spektrum mas jest mocno skomplikowane, widoczne są piki pochodzące od połączeń atomów poszczególnych izotopów, składników próbki i gazu plazmy (argonu). Typowe granice wykrywalności dla ICP-MS Przykładowe spektrum wody dejonizowanej w zakresie mas Podsumowanie - szerokość atomowych linii widmowych - poszerzenie ciśnieniowe - poszerzenie dopplerowskie - interferencje w spektrometrii emisyjnej - interferencje spektralne - interferencje fizyczne - Interferencje chemiczne - fotometria płomieniowa - spektrografia emisyjna - fluorescencja rentgenowska - spektrometria masowa z jonizacją w palniku plazmowym 8

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

SPEKTROSKOPIA CHEMICZNA ANALIZA INSTRUMENTALNA Właściwości falowe promieniowania. Promieniowanie elektromagnetyczne

SPEKTROSKOPIA CHEMICZNA ANALIZA INSTRUMENTALNA Właściwości falowe promieniowania. Promieniowanie elektromagnetyczne CHEMICZNA ANALIZA INSTRUMENTALNA SPEKTROSKOPIA - jest nauką zajmującą się oddziaływaniem promieniowania elektromagnetycznego z materią. W metodach spektroanalitycznych wykorzystuje się pomiar natężenia

Bardziej szczegółowo

Metody spektroskopowe:

Metody spektroskopowe: Katedra Chemii Analitycznej Metody spektroskopowe: Absorpcyjna Spektrometria Atomowa Fotometria Płomieniowa Gdańsk, 2010 Opracowała: mgr inż. Monika Kosikowska 1 1. Wprowadzenie Spektroskopia to dziedzina

Bardziej szczegółowo

SPEKTROSKOPIA SPEKTROMETRIA

SPEKTROSKOPIA SPEKTROMETRIA SPEKTROSKOPIA Spektroskopia to dziedzina nauki, która obejmuje metody badania materii przy użyciu promieniowania elektromagnetycznego, które może być w danym układzie wytworzone (emisja) lub może z tym

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

Nowoczesne metody analizy pierwiastków

Nowoczesne metody analizy pierwiastków Nowoczesne metody analizy pierwiastków Techniki analityczne Chromatograficzne Spektroskopowe Chromatografia jonowa Emisyjne Absorpcyjne Fluoroscencyjne Spektroskopia mas FAES ICP-AES AAS EDAX ICP-MS Prezentowane

Bardziej szczegółowo

ANALIZA SPECJACYJNA WYKŁAD 7 ANALIZA SPECJACYJNA

ANALIZA SPECJACYJNA WYKŁAD 7 ANALIZA SPECJACYJNA WYKŁAD 7 ANALIZA SPECJACYJNA ANALIZA SPECJACYJNA Specjacja - występowanie różnych fizycznych i chemicznych form danego pierwiastka w badanym materiale. Analiza specjacyjna - identyfikacja i ilościowe oznaczenie

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 2 ANALIZA ŚLADÓW

ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 2 ANALIZA ŚLADÓW ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 2 ANALIZA ŚLADÓW 100% - 1% składnik główny 1% - 0.01% składnik uboczny poniżej 0.01% składnik śladowy Oznaczenie na poziomie 1 ppm (0.0001%) odpowiada w przybliżeniu

Bardziej szczegółowo

SPEKTROSKOPIA METODY BADAŃ SKŁADU CHEMICZNEGO 2013-10-25. Właściwości falowe promieniowania. Promieniowanie elektromagnetyczne

SPEKTROSKOPIA METODY BADAŃ SKŁADU CHEMICZNEGO 2013-10-25. Właściwości falowe promieniowania. Promieniowanie elektromagnetyczne METODY BADAŃ SKŁADU CHEMICZNEGO SPEKTROSKOPIA - jest nauką zajmującą się oddziaływaniem promieniowania elektromagnetycznego z materią. W metodach spektroanalitycznych wykorzystuje się pomiar natężenia

Bardziej szczegółowo

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS PROMIENIOWANIE ELEKTROMAGNETYCZNE Promieniowanie X Ultrafiolet Ultrafiolet

Bardziej szczegółowo

ET AAS 1 - pierwiastkowa, GW ppb. ICP OES n - pierwiastkowa, GW ppm n - pierwiastkowa, GW <ppb

ET AAS 1 - pierwiastkowa, GW ppb. ICP OES n - pierwiastkowa, GW ppm n - pierwiastkowa, GW <ppb Analiza instrumentalna Spektrometria mas F AAS 1 - pierwiastkowa, GW ppm ET AAS 1 - pierwiastkowa, GW ppb ICP OES n - pierwiastkowa, GW ppm ICP MS n - pierwiastkowa, GW

Bardziej szczegółowo

Efekty interferencyjne w atomowej spektrometrii absorpcyjnej

Efekty interferencyjne w atomowej spektrometrii absorpcyjnej Uniwersytet w Białymstoku Wydział Biologiczno-Chemiczny Efekty interferencyjne w atomowej spektrometrii absorpcyjnej Beata Godlewska-Żyłkiewicz Elżbieta Zambrzycka Ślesin 26-28.IX.2014 Jak oznaczyć zawartość

Bardziej szczegółowo

PODSTAWY LABORATORIUM PRZEMYSŁOWEGO. ĆWICZENIE 3a

PODSTAWY LABORATORIUM PRZEMYSŁOWEGO. ĆWICZENIE 3a PODSTAWY LABORATORIUM PRZEMYSŁOWEGO ĆWICZENIE 3a Analiza pierwiastkowa podstawowego składu próbek z wykorzystaniem techniki ASA na przykładzie fosforanów paszowych 1 I. CEL ĆWICZENIA Zapoznanie studentów

Bardziej szczegółowo

Atomowa spektrometria absorpcyjna i emisyjna

Atomowa spektrometria absorpcyjna i emisyjna Nowoczesne techniki analityczne w analizie żywności Zajęcia laboratoryjne Atomowa spektrometria absorpcyjna i emisyjna Cel ćwiczenia: Celem ćwiczenia jest oznaczenie zawartości sodu, potasu i magnezu w

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Jonizacja plazmą wzbudzaną indukcyjnie (ICP)

Jonizacja plazmą wzbudzaną indukcyjnie (ICP) Jonizacja plazmą wzbudzaną indukcyjnie (ICP) Inductively Coupled Plasma Ionization Opracowane z wykorzystaniem materiałów dr Katarzyny Pawlak z Wydziału Chemicznego PW Schemat spektrometru ICP MS Rozpylacz

Bardziej szczegółowo

Techniki atomowej spektroskopii absorpcyjnej (AAS) i możliwości ich zastosowania do analizy próbek środowiskowych i geologicznych

Techniki atomowej spektroskopii absorpcyjnej (AAS) i możliwości ich zastosowania do analizy próbek środowiskowych i geologicznych Zn Fe Cu Techniki atomowej spektroskopii absorpcyjnej (AAS) i możliwości ich zastosowania do analizy próbek środowiskowych i geologicznych Dr Artur Michalik Artur.Michalik@ujk.edu.pl Podstawy teoretyczne,

Bardziej szczegółowo

Spektrometr ICP-AES 2000

Spektrometr ICP-AES 2000 Spektrometr ICP-AES 2000 ICP-2000 to spektrometr optyczny (ICP-OES) ze wzbudzeniem w indukcyjnie sprzężonej plazmie (ICP). Wykorztystuje zjawisko emisji atomowej (ICP-AES). Umożliwia wykrywanie ok. 70

Bardziej szczegółowo

Widmo promieniowania

Widmo promieniowania Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,

Bardziej szczegółowo

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH 13.01.2015 SPIS TREŚCI WSTĘP ZJAWISKO FLUORESCENCJI FLUORESCENCJA RENTGENOWSKA

Bardziej szczegółowo

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

Różne dziwne przewodniki

Różne dziwne przewodniki Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

SPEKTROMETRIA ATOMOWA

SPEKTROMETRIA ATOMOWA SPEKTROMETRIA ATOMOWA AAS- absorpcyjna spektrometria atomowa opiera się na zjawisku absorpcji promieniowania elektromagnetycznego przez swobodne atomy. Absorpcję promieniowania elektromagnetycznego wykryto

Bardziej szczegółowo

Deuterowa korekcja tła w praktyce

Deuterowa korekcja tła w praktyce Str. Tytułowa Deuterowa korekcja tła w praktyce mgr Jacek Sowiński jaceksow@sge.com.pl Plan Korekcja deuterowa 1. Czemu służy? 2. Jak to działa? 3. Kiedy włączyć? 4. Jak/czy i co regulować? 5. Jaki jest

Bardziej szczegółowo

Aparatura w absorpcyjnej spektrometrii atomowej

Aparatura w absorpcyjnej spektrometrii atomowej Lidia Kozak, Przemysław Niedzielski Lidia Kozak, Przemysław Niedzielski Spektrometry absorpcji atomowej zbudowane są z następujących podstawowych części: źródła promieniowania, atomizera, monochromatora,

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Spektrofotometria ( SPF I, SPF II ) Spektralna analiza emisyjna ( S ) Fotometria Płomieniowa ( FP )

Spektrofotometria ( SPF I, SPF II ) Spektralna analiza emisyjna ( S ) Fotometria Płomieniowa ( FP ) Spektrofotometria ( SPF I, SPF II ) 1. Rodzaje energii opisujące całkowity stan energetyczny cząsteczki. 2. Długości fal promieniowania elektromagnetycznego odpowiadające zakresom: UV, VIS i IR. 3. Energia

Bardziej szczegółowo

ATOMOWA SPEKTROMETRIA ABSORPCYJNA (ASA)

ATOMOWA SPEKTROMETRIA ABSORPCYJNA (ASA) ATOMOWA SPEKTROMETRIA ABSORPCYJNA (ASA) 1. PODSTAWY FIZYCZNE Dyskretne poziomy energetyczne elektronów w atomie dyskretny charakter absorpcji i emisji energii przez atom. E n = Z me hc 2 4 2 = RZ 2 2 2

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X

XRF - Analiza chemiczna poprzez pomiar energii promieniowania X PJLab_XRF.doc Promieniowanie jonizujące - ćwiczenia 1 XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego substancji

Bardziej szczegółowo

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6)

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007 r. Kierownik

Bardziej szczegółowo

Próżnia w badaniach materiałów

Próżnia w badaniach materiałów Próżnia w badaniach materiałów Pomiary ciśnień parcjalnych Konstanty Marszałek Kraków 2011 Analiza składu masowego gazów znajduje coraz większe zastosowanie ze względu na liczne zastosowania zarówno w

Bardziej szczegółowo

SPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu.

SPRAWDZIAN NR 1. wodoru. Strzałki przedstawiają przejścia pomiędzy poziomami. Każde z tych przejść powoduje emisję fotonu. SRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUA A 1. Uzupełnij tekst. Wpisz w lukę odpowiedni wyraz. Energia, jaką w wyniku zajścia zjawiska fotoelektrycznego uzyskuje elektron wybity z powierzchni metalu,

Bardziej szczegółowo

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

Źródła błędów i ich eliminacja w technice ICP.

Źródła błędów i ich eliminacja w technice ICP. Źródła błędów i ich eliminacja w technice ICP. Irena Jaroń Centralne Laboratorium Chemiczne Państwowy Instytut Geologiczny, Rakowiecka 4, 05-975 Warszawa Atomowa spektrometria emisyjna ze wzbudzeniem w

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Theory Polish (Poland)

Theory Polish (Poland) Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące

Bardziej szczegółowo

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali.

Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Analiza aktywacyjna składu chemicznego na przykładzie zawartości Mn w stali. Projekt ćwiczenia w Laboratorium Fizyki i Techniki Jądrowej na Wydziale Fizyki Politechniki Warszawskiej. dr Julian Srebrny

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

ABSORPCYJNA SPEKTROMETRIA ATOMOWA

ABSORPCYJNA SPEKTROMETRIA ATOMOWA ABSORPCYJNA SPEKTROMETRIA ATOMOWA Ćwiczenie 1. Badanie wpływu warunków pomiaru na absorbancję oznaczanego pierwiastka Ustalenie składu gazów płomienia i położenia palnika Do dwóch kolbek miarowych o pojemności

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

II. KWANTY A ELEKTRONY

II. KWANTY A ELEKTRONY II. KWANTY A ELEKTRONY II.1. PROMIENIE KATODOWE Promienie katodowe są przyczyną fluorescencji. Odegrały one bardzo ważną rolę w odkryciu elektronów. Skład promieniowania katodowego stanowią cząstki elektrycznie

Bardziej szczegółowo

Model Bohra budowy atomu wodoru - opis matematyczny

Model Bohra budowy atomu wodoru - opis matematyczny Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na

Bardziej szczegółowo

ANALIZA ŚLADÓW 4/30/2018 ANALITYKA W KONTROLI JAKOŚCI ŹRÓDŁA BRAKU DOKŁADNOŚCI. Międzylaboratoryjne porównanie oznaczenie ołowiu w winie

ANALIZA ŚLADÓW 4/30/2018 ANALITYKA W KONTROLI JAKOŚCI ŹRÓDŁA BRAKU DOKŁADNOŚCI. Międzylaboratoryjne porównanie oznaczenie ołowiu w winie ANALITYKA W KONTROLI JAKOŚCI Międzylaboratoryjne porównanie oznaczenie ołowiu w winie ANALIZA ŚLADÓW [Bulska, Ślesin 2004] DLACZEGO TAK SIĘ DZIEJE? -Niski poziom świadomości analitycznej i podstaw procesów

Bardziej szczegółowo

dobry punkt wyjściowy do analizy nieznanego związku

dobry punkt wyjściowy do analizy nieznanego związku spektrometria mas dobry punkt wyjściowy do analizy nieznanego związku cele: wyznaczenie masy cząsteczkowej związku wyznaczenie wzoru empirycznego określenie fragmentów cząsteczki określenie niedoboru wodoru

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Proteomika. Spektrometria mas. i jej zastosowanie do badań białek

Proteomika. Spektrometria mas. i jej zastosowanie do badań białek Proteomika Spektrometria mas i jej zastosowanie do badań białek Spektrometria mas (MS) Metoda pozwalająca na pomiar stosunku masy do ładunku jonów (m/z) m/z można przeliczyć na masę jednostką m/z jest

Bardziej szczegółowo

IM-20. XRF - Analiza chemiczna poprzez pomiar energii promieniowania X

IM-20. XRF - Analiza chemiczna poprzez pomiar energii promieniowania X IM-20 Jakościowa i ilościowa analiza składu materiałów za pomocą XRF XRF - Analiza chemiczna poprzez pomiar energii promieniowania X 1. Cel ćwiczenia Student zapoznaje się z metodą analizy składu pierwiastkowego

Bardziej szczegółowo

Wykład Budowa atomu 1

Wykład Budowa atomu 1 Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa

Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa Zachodniopomorski Uniwersytet Technologiczny Instytut Inżynierii Materiałowej Zakład Metaloznawstwa i Odlewnictwa Przedmiot: Inżynieria Powierzchni / Powłoki Ochronne / Powłoki Metaliczne i Kompozytowe

Bardziej szczegółowo

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Ćwiczenie 1 Zastosowanie statystyki do oceny metod ilościowych Błąd gruby, systematyczny, przypadkowy, dokładność, precyzja, przedział

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

SPEKTROMETRIA IRMS. (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S)

SPEKTROMETRIA IRMS. (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S) SPEKTROMETRIA IRMS (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S) R = 2 H/ 1 H; 13 C/ 12 C; 15 N/ 14 N; 18 O/ 16 O ( 17 O/ 16 O), 34 S/ 32 S Konstrukcja

Bardziej szczegółowo

Metody badania kosmosu

Metody badania kosmosu Metody badania kosmosu Zakres widzialny Fale radiowe i mikrofale Promieniowanie wysokoenergetyczne Detektory cząstek Pomiar sił grawitacyjnych Obserwacje prehistoryczne Obserwatorium słoneczne w Goseck

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

Właściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1

Właściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1 Wykład 8 Właściwości materii Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka 18 listopada 2014 Biophysics 1 Właściwości elektryczne Właściwości elektryczne zależą

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa - wiązki pompująca & próbkująca oddziaływanie selektywne

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

Źródła światła. W lampach płomieniowych i jarzeniowych źródłem promieniowania jest wzbudzony gaz. Widmo lamp jarzeniowych nie jest ciągłe!

Źródła światła. W lampach płomieniowych i jarzeniowych źródłem promieniowania jest wzbudzony gaz. Widmo lamp jarzeniowych nie jest ciągłe! Źródła światła W lampach płomieniowych i jarzeniowych źródłem promieniowania jest wzbudzony gaz. Widmo ciągłe: ciało doskonale czarne Widmo emisyjne: linie emisyjne Linie absorpcyjne Widmo lamp jarzeniowych

Bardziej szczegółowo

uczeń opanował wszystkie wymagania podstawowe i ponadpodstawowe

uczeń opanował wszystkie wymagania podstawowe i ponadpodstawowe 1 Agnieszka Wróbel nauczyciel biologii i chemii Plan pracy dydaktycznej na chemii w klasach pierwszych w roku szkolnym 2015/2016 Poziom wymagań Ocena Opis wymagań podstawowe niedostateczna uczeń nie opanował

Bardziej szczegółowo

ANALIZA INSTRUMENTALNA

ANALIZA INSTRUMENTALNA ANALIZA INSTRUMENTALNA TECHNOLOGIA CHEMICZNA STUDIA NIESTACJONARNE Sala 522 ul. Piotrowo 3 Studenci podzieleni są na cztery zespoły laboratoryjne. Zjazd 5 przeznaczony jest na ewentualne poprawy! Możliwe

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 3 Tomasz Kwiatkowski 2010-10-20 Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 3 1/22 Plan wykładu Linie widmowe Linie Fraunhofera Prawa Kirchhoffa Analiza widmowa Zjawisko

Bardziej szczegółowo

Reakcje jądrowe. Podstawy fizyki jądrowej - B.Kamys 1

Reakcje jądrowe. Podstawy fizyki jądrowej - B.Kamys 1 Reakcje jądrowe Reakcje w których uczestniczą jądra atomowe nazywane są reakcjami jądrowymi Mogą one zachodzić w wyniku oddziaływań silnych, elektromagnetycznych i słabych Nomenklatura Reakcje, w których

Bardziej szczegółowo

Łukowe platerowanie jonowe

Łukowe platerowanie jonowe Łukowe platerowanie jonowe Typy wyładowania łukowego w zależności od rodzaju emisji elektronów z grzaną katodą z termoemisyjną katodą z katodą wnękową łuk rozłożony łuk z wędrującą plamką katodową dr K.Marszałek

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Wykład Budowa atomu 2

Wykład Budowa atomu 2 Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie

Bardziej szczegółowo

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący

Bardziej szczegółowo

Analiza środowiskowa, żywności i leków CHC l

Analiza środowiskowa, żywności i leków CHC l Analiza środowiskowa, żywności i leków CHC 0307 l Ćwiczenie : Analiza próbek pochodzenia roślinnego - metale; analiza statystyczna Dobra Praktyka Laboratoryjna w analizie śladowej Oznaczanie całkowitych

Bardziej szczegółowo

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A)

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A) PRZYKŁADOW SPRAWDZIANY WIADOMOŚCI l UMIJĘTNOŚCI Współczesny model budowy atomu (wersja A) 1. nuklid A. Zbiór atomów o tej samej wartości liczby atomowej. B. Nazwa elektrycznie obojętnej cząstki składowej

Bardziej szczegółowo

Szczegółowy opis treści programowych obowiązujących na etapie szkolnym konkursu przedmiotowego z chemii 2018/2019

Szczegółowy opis treści programowych obowiązujących na etapie szkolnym konkursu przedmiotowego z chemii 2018/2019 Szczegółowy opis treści programowych obowiązujących na etapie szkolnym konkursu przedmiotowego z chemii 2018/2019 I. Eliminacje szkolne (60 minut, liczba punktów: 30). Wymagania szczegółowe. Cele kształcenia

Bardziej szczegółowo

Litowce i berylowce- lekcja powtórzeniowa, doświadczalna.

Litowce i berylowce- lekcja powtórzeniowa, doświadczalna. Doświadczenie 1 Tytuł: Badanie właściwości sodu Odczynnik: Sód metaliczny Szkiełko zegarkowe Metal lekki o srebrzystej barwie Ma metaliczny połysk Jest bardzo miękki, można kroić go nożem Inne właściwości

Bardziej szczegółowo

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut Szkolny konkurs chemiczny Grupa B Czas pracy 80 minut Piła 1 czerwca 2017 1 Zadanie 1. (0 3) Z konfiguracji elektronowej atomu (w stanie podstawowym) pierwiastka X wynika, że w tym atomie: elektrony rozmieszczone

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya. LABOATOIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.. Wprowadzenie Proces rozpadu drobin związków chemicznych

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne śródroczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020

Wymagania edukacyjne na poszczególne śródroczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020 Wymagania edukacyjne na poszczególne śródroczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 209/2020 Ocenę niedostateczną otrzymuje uczeń, który nie opanował wymagań na ocenę dopuszczającą.

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018. Eliminacje szkolne

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018. Eliminacje szkolne ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW 2017/2018 Eliminacje szkolne Podczas rozwiązywania zadań

Bardziej szczegółowo

IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH

IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH I. Cel ćwiczenia Zapoznanie się z fotoelektryczną optyczną metodą wyznaczania energii przerwy wzbronionej w półprzewodnikach na przykładzie

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego

Bardziej szczegółowo