materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji

Wielkość: px
Rozpocząć pokaz od strony:

Download "materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji"

Transkrypt

1 Co to jest szkło? materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji Spełnia makroskopową definicję ciała stałego, chociaż może być też uważane za przechłodzoną ciecz. Nie jest plastyczne: może być odkształcone sprężyście lub pęknąć. Co to jest szkło? o Uwaga: Historycznie rzecz biorąc, termin szkło jest zarezerwowane do materiałów amorficznych otrzymanych wskutek szybkiego ochłodzenia cieczy. Materiał amorficzny, natomiast, oznacza dowolne ciało stałe o nieperiodycznej sieci atomów. 1

2 Jak otrzymać szkło: ciecz Objętość właściwa szkło Przechłodzona ciecz Krystaliczne ciało stałe Temperatura T g T m Historia o Początek był, być może, taki: w części Syrii (Phoenicia), blisko Judei, u podnóża góry Carmel i ujścia rzeki Bellus (koło Ptolemais) są mokradła. Piasek jest tam niezwykle czysty. Pewnego razu rozbił się tam statek kupiecki wiozący natron [węglan sodu]. 2

3 Historia o Kupcy znaleźli się na brzegu i aby ugotować posiłek użyli kawałków natronu ze statku (nie było w pobliżu kamieni i aby postawić garnek na ognisku, użyli kawałków natronu). Piasek na brzegu mieszał się z palącym się natronem i strumienie przezroczystej cieczy zaczęły wypływać z ogniska: był to początek technologii szkła. o (Isidore of Seville, Etymologies XVI.16. Translation by Charles Witke.) Historia o Technologia szkła została odkryta najprawdopodobniej w Mezopotamii, w rejonie obecnie znanym jako Irak i Syria. Około 3300 lat temu, tajemne "instrukcje" jak budować piece i jak wytapiać szkło zostały zapisane na glinianych tabliczkach pismem obrazkowym. Instrukcje te były później kopiowane przez całe wieki. 3

4 Historia ~ 3000 pne ~ 1480 pne ~ 630 pne ~ 900 pne ~ 250 pne Wytwarzanie szkła na Kaukazie, początki barwienia szkła Pojawienie się szkła w Egipcie Barwienie za pomocą domieszek takich jak Cu, Fe, Mn, Al Pierwszy podręcznik wytwarzania szkła (Asyria) Wprowadzenie przemysłu szklarskiego do Syrii i Mezopotamii Odkrycie technologii dmuchania szkła (Fenicjanie) Historia o 50 ne (czasy Juliusza Cezara): Rozwinięcie technologii wydmuchiwania szkła 4

5 Historia ~70 Rzymianie wprowadzają produkcję szkła do Europy (Hiszpania, Francja, Italia) 79 Pliniusz opisuje produkcję szkła oraz legendy jego odkrycia 100 odlewanie szkła w formach 591 Pierwsze wzmianki o szybach okiennych (w kościołach) 1180 Pierwsze szyby w domach mieszkalnych. Historia 1453 Tajemnice produkcji szkła docierają z Bizancjum do Wenecji 1834 Pierwsze teorie dotyczące szkła kwarcowego (Leng) 1859 Pierwsza półautomatyczna maszyna do produkcji butelek 1925 Metoda "Pittsburgh" wytwarzania szyb 1967 Metoda odlewania szyb na stopionej cynie 1970 Produkcja włókien optycznych 1983 Technologia sol-gel 5

6 Skład szkła o Głównym składnikiem szkła ( zwykłego) jest SiO 2 Si 4+ O 2- Nie tylko SiO 2 tworzy szkło: o Pierwiastki szkłotwórcze : te, które w związkach z tlenem tworzą sieć wielościanów; mają liczbę koordynacyjną 3 lub 4 (Si, B, P, Ge; As.). Szkło tworzą również inne tlenki, jak Bi 2 O 3,CuO. 6

7 Skład szkła (tlenkowego) o Szkło, oprócz pierwiastków szkłotwórczych, zawiera najczęściej jeszcze inne pierwiastki Glass Type Rough Percent Composition by Mass SiO 2 Na 2 O CaO B 2 O 3 Al 2 O 3 K 2 O PbO soda-lime bottles, windows (ancient and modern) inexpensive, limited resistance to heat and chemicals borosilicate lab glass, bakeware, industrial pipe good resistance to thermal shock and chemicals aluminosilicate fiberglass, top-of-stove ware excellent resistance to heat and chemicals lead silicate "crystal", art glass, TV tubes easy to form, cut, engrave, stops radiation high silica special uses high heat (1500 C) resistance, UV-transparency 7

8 Struktura szkła (tlenkowego) ciągła przypadkowa sieć Zachariesen 1933 Szkło jest zbudowane jak ciągła przypadkowa sieć, w której atomy są rozłożone tak jak w cieczy. Spełnione są zazwyczaj następujące cztery reguły: 1 ) atom tlenu może być połączony z najwyżej dwoma innymi atomami; 2 ) liczba koordynacyjna innych atomów jest zazwyczaj mała ( 4); 3 ) wielościany koordynacyjne Si-O (lub inne) połączone są między sobą narożami; 4 ) wielościany tworzą trójwymiarową strukturę. 8

9 Struktura szkła (tlenkowego) Elementem podstawowym szkła kwarcowego (podobnie jak krystalicznego kwarcu) jest czworościan SiO 4-4. Liczba koordynacyjna krzemu wynosi 4, zgodnie z 2 regułą Zachariesena. Si 4+ O 2- Czworościany są ze sobą połączone narożami: Struktura szkła (tlenkowego) uporządkowanie bliskiego zasięgu 9

10 Inne pierwiastki w strukturze szkła: o Modyfikatory: te, które przerywają sieć wielościanów (Na, Ca, Ba, K.) z liczbą koordynacyjną 6 o Stabilizatory sieci: te, które ani nie tworzą ani nie przerywają sieci (Al, Li, Zn, Mg, Pb..) liczba koordynacyjna 4 i 6 Przykład: szkło sodowe Na + Si 4+ O 2-10

11 Właściwości szkła Objętość właściwa szkło T g T g : Temperatura Temperatura przejścia do fazy szklistej ( temperatura zeszklenia ) jest to temperatura, w której ciało amorficzne wykazuje zmianę nachylenia zależności objętości właściwej od temperatury. Przykłady: o Szkło o T g o SiO 2 o GeO 2 o polistyren o Au 0.8 Si 2 o H 2 O o 1430 K o 820 K o 370 K o 290 K o 140 K 11

12 Lepkość szkła Powyżej tej lepkości szkło jest kruche Relaksują wewnętrzne naprężenia Szkło jeszcze zachowuje kształt W tym zakresie szkło jest formowane Powyżej 10 2 szklo jest cieczą KOLOR SZKŁA kolor jon metalu czerwone Se lub Au żółte Ni 2+ lub Cd 2+ + S 2- zielone Cr 3+ lub Fe 3+ Niebiesko-zielone Cu 2+ lub Fe 2+ niebieskie Co 2+ purpurowe Mn 2+ czarne Cr 2 O 3 lub MnO 2 + NiO bursztynowe Fe 3+ + S 2- + C białe (opal) CaF 2 lub NaCl rozdyspergowane w szkle 12

13 Wytwarzanie szkła (zwykłego) Wytwarzanie szkła: ogólnie czysty SiO 2 topi się powyżej 1700 O C Zmieszany z sodą (tlenek lub węglan sodu) topi się w 900 O C ale jest rozpuszczalne w wodzie! Zmieszany z CaO staje się nierozpuszczalne w wodzie. Dlatego właśnie SiO 2,CaOi Na 2 O są głównymi składnikami zwykłego szkła. 13

14 Wczesna technologia o Rdzeń z błota i gliny o kształcie np. dzbana; o Po wysuszeniu owijano go półpłynnymi włóknami szkła; o Następnie znowu go ogrzewano i ceramicznym narzędziem wygładzano; o Na koniec wydobywano rdzeń ze środka. Wytwarzanie szkła: nieco później Obecnie, przedmioty szklane są wytwarzane trzema głównymi metodami: 1. Wydmuchiwanie szkła 2. Prasowanie 3. Wytwarzanie szyb 4. Wytwarzanie włókien 14

15 Wytwarzanie szyb; Pitsburgh process : metoda Pitsburgh : Układ precyzyjnych wałków wyciąga warstwę szkła pionowo do góry. Po usunięciu roztopionej cieczy, wałki nadal się obracają i warstwa cała wędruje go góry, gdzie jest cięta na odpowiednie kawałki. Wytwarzanie szyb na stopionej cynie Stopione szkło o temperaturze 1500 o C, tworzy ciągłą warstwę, która wpływa na stopioną cynę. Warstwa szkła ma grubość od 2 do 12 mm. Temperatura szkła stopniowo maleje i warstwa przybiera kształt równoległościennej, wstęgi. 15

16 Wytwarzanie szyb Wzmacnianie szkła 1. Szkło wewnętrznie naprężone ma lepsze właściwości mechaniczne: zewnętrzna powierzchnia zostaje ściśnięta, wewnętrzna - rozciągnięta; 16

17 o Jak to się robi: Wzmacnianie szkła Szkło ogrzewa się do temperatury około Tg Ochładza się w powietrzu lub oleju Powierzchnia ochładza się szybciej niż części wewnętrzne Gdy wewnętrzne części się ochładzają do temperatury pokojowej, powierzchnia już jest zimna i sztywna. Rozmiary nie mogą się dopasować: wnętrze jest rozciągane przez powierzchnię, a powierzchnia ściskana przez wnętrze. Wzmacnianie szkła before cooling surface cooling cooler hot hot cooler further cooled compression tension compression Naprężenia hamują rozprzestrzenianie się pęknięcia 17

18 Wzmacnianie szkła Podobny efekt można uzyskać metodą chemiczną: Wymiana jonów Na + na K + na powierzchni. Większe K + powodują ściśnięcie zewnętrznej powierzchni. Wzmacnianie szkła o Szkło umieszcza się w stopionej soli zawierającej jony K + (np. KNO 3 przez 12 godzin w 500 C). o Dyfuzja powoduje wymianę jonów sodu na K + 18

19 Wzmacnianie szkła o Laminowanie szkła. Polega na umieszczeniu warstwy polimeru pomiędzy warstwami szkła (minimum dwie). Wzmacnianie szkła o Laminowanie szkła. Są dwa sposoby wytwarzania szkła laminowanego: 1. Jak na zdjęciach, czyli umieszczenie polimeru pomiędzy warstwy szkła i sprasowanie całego układu; polimer (PVB ma zazwyczaj grubość 0.38 mm, w szybach samochodowych: 0.76 mm) 2. Wlanie ciekłego polimeru między szyby (1-1.5mm) 19

20 Wzmacnianie szkła o o Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Kryształy o o o Proces cięcia szkła polega na dociskaniu szklanego przedmiotu do wirującego koła (kamienne lub stalowe). Koło wycina rowki o prostych, ostrych krawędziach. Dzięki temu szkło jest bardziej połyskujące (więcej powierzchni odbijających światło). Najlepszy efekt otrzymuje się w szkle zawierającym dużo tlenku ołowiu. wynalezione przez George a Ravenscrofta (Anglia, około 1676). 20

21 Butelki o Szklane butelki wytwarzano w czasach przed- Rzymskich, używając techniki owijania stopionego szkła wokół formy z gliny i trawy. o Rzymianie wynaleźli dmuchanie szkła i wytwarzali szklane butelki w wielkich ilościach. Szkło w bąbelki o Technika dekorowania szkła stosowana przez wielu wytwórców szkła. o Można bąbelki wprowadzać dodając do stopionego szkła związki chemiczne, które reagując wytwarzają bąble. o Pojedyncze bąble można wprowadzić za pomocą szpikulca. 21

22 Szkło fluoryzujące o Dowolne szkło, które zawiera uran. Szkło opalizujące o Szkło, które w tych miejscach, gdzie warstwa szkła jest gruba chłodzi się powoli, dzięki czemu zachodzi krystalizacja i szkło staje się matowe. 22

23 Szkło fotochromatyczne Szkło fotochromatyczne zawiera AgCl i CuCl. Są one równomiernie rozłożone w objętości szkła. Pod wpływem światła zachodzi utlenianie i redukcja AgCl: Cl - Cl + e - Ag + + e - Ag Szkło fotochromatyczne o Atomy srebra aglomerują tworząc grupy, które absorbują światło i powodują pociemnienie szkła. o Stopień zaciemnienia zależy od intensywności światła. Proces ten jest bardzo szybki. 23

24 Szkło fotochromatyczne o Aby proces foto-pociemnienia szkła był użyteczny, musi być odwracalny. Obecność CuCl powoduje odwracalność w następujący sposób: o Atomy Cl utworzone wskutek oświetlenia teraz ulegają redukcji, a srebro utlenianiu o Cl + Cu + Cl - + Cu 2+ o Cu 2+ + Ag Ag + + Cu + Witraże Wytwarzanie witraży prawie się nie zmieniło od 12-go wieku. Witraż składa się z fragmentów kolorowego szkła połączonych w całość za pomocą ołowiu. Szczegóły dodatkowo się maluje, a następnie wypala. 24

25 Witraże Figura namalowana na szkle (1340) Początkowo szczegóły twarzy, rąk, stroju i inne były malowane na szkle tylko czarną i brązową farbą. Witraże XV wiek Około roku 1300 odkryto żółty barwnik. To umożliwiło barwienie białego szkła na kolor żółty, niebieskiego na zielony i było bardzo pomocne w barwieniu włosów, koron i aureol. 25

26 Włókna optyczne o o Włókno optyczne: cienkie i giętkie włókno zdolne do przewodzenia światła. Składa się z bardzo cienkiego rdzenia otoczonego koncentrycznymi warstwami szkła i innych materiałów. Szkło musi być bardzo przezroczyste (a) Geometry of optical fiber Włókna optyczne light cladding jacket core (b) Reflection in optical fiber θ c Copyright 2000 The McGraw Hill Companies Leon-Garcia & Widjaja: Communication Networks Figure

27 Współczynnik załamania może się zmieniać w sposób skokowy bądź stopniowo: Przezroczystość szkła o Od 3000 pne Egipcjanie i Fenicjanie zaczęli poszukiwanie sposobów polepszenia przezroczystości szkła... Przed 1966 osiągnięto pewne plateau w rozwoju przezroczystości; 54 27

28 Przezroczystość szkła o o Dopiero prace prowadzone w latach (Bell Laboratories) spowodowały, że szkło stało się razy bardziej przezroczyste niż w Dzięki temu, włókno może mieć średnicę tylko 0.01 mm. 55 Wytwarzanie Szkła światłowodowego nie robi się z piasku. o SiCl 4 + O > SiO Cl 2 28

29 Wytwarzanie 2. Wyciąganie włókna: 1. wytwarzanie szkła i wstępna obróbka Z kolei zmianę współczynnika załamania osiąga się dzięki: o Dodaniu germanu (też jako czterochlorek). German ma o 18 elektronów więcej niż Si jest domieszką, która zwiększa n, nie zmieniając współczynnika absorpcji. o Dodatek boru lub fluoru zmniejsza współczynnik załamania. 29

30 Na marginesie: inne zaawansowane materiały w światłowodzie: Szkło metaliczne Stop amorficzny dwu- lub wieloskładnikowy, w którym metal jest głównym składnikiem, otrzymany przez bardzo szybkie chłodzenie ( K/s) Produkuje się je najczęściej przez wylanie cienkiej warstwy stopu na szybko odprowadzające ciepło podłoże. Można też wylewać stop na wirującą tarczę (90 m/s). Po raz pierwszy szkło metaliczne otrzymano w 1960 roku 30

31 Szkło metaliczne - własności Szkło metaliczne o W 1990, naukowcy otrzymali szkło metaliczne już nie tylko w postaci cienkiej warstwy (nie mikrometry, tylko centymetry przy szybkościach chłodzenia K/s). Przykłady: Rodzina Zr-Ti-Cu-Ni-Be BMG otrzymana przez Johnsona i Pekera Vitreloy 1 : Zr 41.2 Ti 13.8 Cu 12.5 Ni 10.0 Be

32 Struktura szkła metalicznego (Vitreloy 1) o Zbudowane jest z atomów znacznie różniących się między sobą - zmniejsza to tendencją do krystalizacji. 100 Figure 1b. Topological atomic size comparsion of species in Vitreloy 1 bulk metallic glass 90 Zr41.2Ti13.8Cu12.5Ni10Be Atomic Compostition (at%) Atomic Radius (nm) Właściwości o Granica odkształcenia sprężystego 2%! Image courtesy of Liquidmetal golf 32

33 Szkło metaliczne - zastosowania o Głównie - wykorzystujące własności magnetyczne: Rdzenie transformatorów; Głowice magnetyczne; Przetworniki magnetostrykcyjne; Elastyczne ekrany magnetyczne; Szkło metaliczne - zastosowania o Wykorzystujące własności fizyczne i mechaniczne Wzmocnienie zbiorników ciśnieniowych; Węże, rury, pasy; tkaniny ekranujące przed interferencją; Ostrza; Folia łącząca elementy stalowe i stopy niklu w: Wymiennikach ciepła; Bateriach Ni-Cd; Rozrusznikach serca. 33

34 Tworzywa szklano-ceramiczne Szkło można skrystalizować, wygrzewając je, ale staje się ono wtedy kruche i pęka. Dodanie zarodków krystalizacji, takich jak Ag or TiO 2 powoduje, że krystalizowane szkło jest bardzo wytrzymałe i odporne na wysoka temperaturę Stosuje się w naczyniach kuchennych, konwerterach katalitycznych itd.. SYNTEZA SOL-ŻEL o Powstawanie aerożelu przebiega w dwóch głównych etapach: tworzenie mokrego żelu suszenie 34

35 SYNTEZA SOL-ŻEL Większość krzemowych aerożeli wytwarza się z Si(OCH 3 ) 4 lub Si(OCH 2 CH 3 ) 4. Typowa reakcja: Si(OCH 2 CH 3 ) 4 + 2H 2 O = SiO 2 + 4HOCH 2 CH 3 Ta reakcja najczęściej przebiega w etanolu i w obecności katalizatora (np. HCl). SYNTEZA SOL-ŻEL o W rezultacie reakcji hydrolizy powstaje SOL. Jest to układ rozdyspergowanych koloidalnych cząstek w cieczy (koloid : cząstki o rozmiarze nm, tzn atomów) 35

36 SYNTEZA SOL-ŻEL W miarę postępowania reakcji polimeryzacji SiO 2 (kondensacja) SOL przekształca się w sztywny ŻEL. W tym stanie, żel jest wyjmowany z formy. SYNTEZA SOL-ŻEL o Ostatnim, najważniejszym etapem wytwarzania aerożelu jest jego suszenie w warunkach nadkrytycznych. 36

37 WŁAŚCIWOŚCI AEROŻELI o Większość właściwości aerożeli wynika z ich z bardzo dużej porowatości. Aerożele składają się w około 95% z powietrza (od 85% do 99.87%). o Średnia średnica porów: 20 nm, wielkość cząsteczek: 2-5 nm. WŁAŚCIWOŚCI AEROŻELI o Mała gęstość g/cm 3, średnio gęstość jest około 0.1 g/cm 3. Dla porównania zwykłe szkło ma gęstość g/cm 3. o Porowatość wiąże się również z ogromną powierzchnią wewnętrzną ( m 2 /g). 37

38 WŁAŚCIWOŚCI DIELEKTRYCZNE o Współczynnik załamania światła: ; o Stała dielektryczna: 1.1 o Obie wielkości są niezwykle małe jak na ciało stałe. WŁAŚCIWOŚCI MECHANICZNE o Moduł Younga N/m 2 o Wytrzymałość na rozciąganie 16 kpa o Prędkość dźwięku w aerożelu: 100m/s o Wszystkie 3 wielkości są niezwykle małe w porównaniu ze zwykłym szkłem (np. E jest 10 4 razy mniejsze). 38

39 WŁAŚCIWOŚCI MECHANICZNE o Wbrew pozorom aerożele mają interesujące właściwości mechaniczne jako materiały absorbujące energię uderzeniową. Stosuje się je w kaskach. WŁAŚCIWOŚCI MECHANICZNE o W czasie uderzenia zostają zrywane wiązania jedno po drugim. Wewnątrz aerożelu ten proces trwa dość długo (i o to chodzi).dodatkowo część energii jest zużywana na sprężenie powietrza z porów. polistyren 39

40 WŁAŚCIWOŚCI TERMICZNE o Zachowują swoje właściwości do temperatury 500ºC; o Temperatura topnienia 1200ºC; o Typowy aerożel ma przewodność cieplną ~0.017 W/mK (bardzo małą). WŁAŚCIWOŚCI TERMICZNE o Izolacja termiczna to jedno z głównych zastosowań aerożeli. Aerożele izolują około 3-7 razy lepiej niż szkło 2-4 razy lepiej niż styropian. o Wykorzystuje się je do izolacji płynów kriogenicznych 40

41 WŁAŚCIWOŚCI TERMICZNE o Głównym mechanizmem przewodzenia ciepła jest transport za pośrednictwem gazów poruszających się poprzez pory. o Zmniejszenie przewodnictwa termicznego można osiągnąć przez zwiększenie drogi swobodnej gazu wypełniającego pory w stosunku do wielkości porów. WŁAŚCIWOŚCI TERMICZNE o Trzy sposoby obniżenia przewodności termicznej: wypełnienie aerożelu gazem o mniejszej masie molowej; zmniejszenie porów; obniżenie ciśnienia; niepraktyczne 41

42 WŁAŚCIWOŚCI TERMICZNE o Obniżenie ciśnienia w wielu zastosowaniach ma sens (np. termosy) wystarczy obniżyć ciśnienie do 50 torów (do tego celu wystarczy torebka foliowa) Zastosowania o Do aerożeli można dodawać różne inne pierwiastki otrzymując w ten sposób np. różne kolory. Cu Fe 2 O 3 C Ni 42

43 Zastosowania w medycynie o Kapsułki aerożelu zawierające substancje aktywne stopniowo je uwalniają jednocześnie zabezpieczając przed zbyt dużym kontaktem z tkankami. Zastosowania Przezroczyste warstwy ceramiczne na szkle 43

44 Zastosowania o Najstarszym zastosowaniem technologii sol-gel są cienkie warstwy. Pierwszy patent: Jenaer Glaswer Schott & Gen. w Obecnie: Zastosowania: pył kosmiczny o Sonda Stardust wykorzysta aerożel do zbierania pyłu kosmicznego. o Gdy cząstka pyłu uderza w aerożel, zagłębia się w nim, stopniowo zwalniając, i pozostawia podłużny ślad mniej więcej 200 razy dłuższy niż średnica cząstki. 44

45 Zastosowania o Tak wygląda cały detektor. o Jedna strona kolektora będzie skierowana w stronę komety Wild 2, druga- będzie zbierać międzygwiezdny pył kosmiczny. Zastosowania o Dodając drobiny ferromagnetyka otrzymujemy materiał magnetyczny (tutaj jest to tlenek żelaza). Podobnie można otrzymać aerożel ferroelektryczny. 45

46 Zastosowania o Naukowcy otrzymali super lekkie magnesy zbudowane z aerożeli, do których dodano bardzo małe cząstki magnetyczne (Nd 2 Fe 14 B). Nano-drobiny magnetyczne były w czasie syntezy orientowane w polu magnetycznym. Magnesy te są przezroczyste. 46

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła Wzmacnianie szkła Laminowanie szkła. Są dwa sposoby wytwarzania szkła laminowanego: 1. Jak na zdjęciach, czyli umieszczenie polimeru pomiędzy warstwy szkła i sprasowanie całego układu; polimer (PVB ma

Bardziej szczegółowo

Wzmacnianie szkła. Jak to się robi:

Wzmacnianie szkła. Jak to się robi: Wzmacnianie szkła 1. Szkło wewnętrznie naprężone ma lepsze właściwości mechaniczne: zewnętrzna powierzchnia zostaje ściśnięta, wewnętrzna - rozciągnięta; Wzmacnianie szkła Jak to się robi: Szkło ogrzewa

Bardziej szczegółowo

opal Szkło naturalne

opal Szkło naturalne opal Szkło naturalne Szkło naturalne Obsydian szybko ochłodzona lawa; Szkło naturalne Fulguryt, strzałka piorunowa, piorunowiec, rurka, pręt kwarcowy powstały z piasku lub skały, stopionych od uderzenia

Bardziej szczegółowo

SZKŁO. materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji

SZKŁO. materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji SZKŁO Co to jest szkło? materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji Spełnia makroskopową definicję ciała stałego, chociaż może być też uważane za przechłodzoną

Bardziej szczegółowo

SZKŁO. materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji

SZKŁO. materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji SZKŁO Co to jest szkło? materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji Spełnia makroskopową definicję ciała stałego, chociaż może być też uważane za przechłodzoną

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 6 SZKŁO. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 6 SZKŁO. Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE 1 Wykład 6 SZKŁO Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Pokój 18/11 bud. A-1 http://www.if.pwr.wroc.pl/~wozniak/pomiary_optyczne_1.html

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 6 SZKŁO

POMIARY OPTYCZNE 1. Wykład 6 SZKŁO POMIARY OPTYCZNE 1 Wykład 6 SZKŁO Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/ POKÓJ

Bardziej szczegółowo

OPTYKA INSTRUMENTALNA

OPTYKA INSTRUMENTALNA OPTYKA INSTRUMENTALNA Wykład 9: SZKŁO definicja, budowa, metody wytwarzania, własności fizyczne, parametry mechaniczne; parametry optyczne szkła: jednorodność, smużystość, pęcherzowatość, dwójłomność,

Bardziej szczegółowo

POMIARY OPTYCZNE Współczynnik załamania #3 Szkło. Damian Siedlecki

POMIARY OPTYCZNE Współczynnik załamania #3 Szkło. Damian Siedlecki POMIARY OPTYCZNE 1 { 8. Współczynnik załamania #3 Szkło Damian Siedlecki Metoda de Chaulnesa Pomiar współczynnika załamania opiera się na pomiarze wielkości poosiowego przesunięcia obrazu, utworzonego

Bardziej szczegółowo

Analiza strukturalna materiałów Ćwiczenie 4

Analiza strukturalna materiałów Ćwiczenie 4 Akademia Górniczo Hutnicza Wydział Inżynierii Materiałowej i Ceramiki Katedra Chemii Krzemianów i Związków Wielkocząsteczkowych Instrukcja do ćwiczeń laboratoryjnych Kierunek studiów: Technologia chemiczna

Bardziej szczegółowo

w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych

w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych Spoiwa krzemianowe Kompozyty krzemianowe (silikatowe) kity, zaprawy, farby szkło wodne Na 2 SiO 3 + 2H 2 O H 2 SiO 3 +

Bardziej szczegółowo

Samopropagująca synteza spaleniowa

Samopropagująca synteza spaleniowa Samopropagująca synteza spaleniowa Inne zastosowania nauki o spalaniu Dyfuzja gazów w płomieniu Zachowanie płynnych paliw i aerozoli; Rozprzestrzenianie się płomieni wzdłuż powierzchni Synteza spaleniowa

Bardziej szczegółowo

Szkła specjalne Wykład 10 Metoda zol żel, aerożele Część 2 Właściwości termiczne aerożeli

Szkła specjalne Wykład 10 Metoda zol żel, aerożele Część 2 Właściwości termiczne aerożeli Szkła specjalne Wykład 10 Metoda zol żel, aerożele Część 2 Właściwości termiczne aerożeli Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Wzrost przychodów sektora rynku opartego

Bardziej szczegółowo

Szkło. T g szkła używanego w oknach katedr wynosi ok. 600 C, a czas relaksacji sięga lat. FIZYKA 3 MICHAŁ MARZANTOWICZ

Szkło. T g szkła używanego w oknach katedr wynosi ok. 600 C, a czas relaksacji sięga lat. FIZYKA 3 MICHAŁ MARZANTOWICZ Szkło Przechłodzona ciecz, w której ruchy uległy zamrożeniu Tzw. przejście szkliste: czas potrzebny na zmianę konfiguracji cząsteczek (czas relaksacji) jest rzędu minut lub dłuższy T g szkła używanego

Bardziej szczegółowo

Szkła. Forma i odlewy ze szkła kwarcowego wykonane w starożytnym Egipcie (około roku 2500 p.n.e.)

Szkła. Forma i odlewy ze szkła kwarcowego wykonane w starożytnym Egipcie (około roku 2500 p.n.e.) Szkła metaliczne Szkła cdn.gemrockauctions.com/uploads/images/275000-279999/276152/276152_1338954219.jpg American Association for the Advancement of Science Grot ze szkła wulkanicznego obsydianu (epoka

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

MATERIAŁY SUPERTWARDE

MATERIAŁY SUPERTWARDE MATERIAŁY SUPERTWARDE Twarde i supertwarde materiały Twarde i bardzo twarde materiały są potrzebne w takich przemysłowych zastosowaniach jak szlifowanie i polerowanie, cięcie, prasowanie, synteza i badania

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Czym się różni ciecz od ciała stałego?

Czym się różni ciecz od ciała stałego? Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe

Technologie wytwarzania metali. Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe Technologie wytwarzania metali Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki próżniowe KRYSTALIZACJA METALI I STOPÓW Krzepnięcie - przemiana fazy

Bardziej szczegółowo

WOJEWÓDZKI KONKURS CHEMICZNY

WOJEWÓDZKI KONKURS CHEMICZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS CHEMICZNY DLA UCZNIÓW DOTYCHCZASOWYCH GIMNAZJÓW W ROKU SZKOLNYM 2018/2019 30.10.2018 r. 1. Test konkursowy zawiera 22 zadania. Są to zadania

Bardziej szczegółowo

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Szkło optyczne i fotoniczne, A. Szwedowski, R. Romaniuk, WNT, 2009 POLIKRYSZTAŁY - ciała stałe o drobnoziarnistej strukturze, które są złożone z wielkiej liczby

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH 1 REAKCJA CHEMICZNA: TYPY REAKCJI CHEMICZNYCH REAKCJĄ CHEMICZNĄ NAZYWAMY PROCES, W WYNIKU KTÓREGO Z JEDNYCH SUBSTANCJI POWSTAJĄ NOWE (PRODUKTY) O INNYCH WŁAŚCIWOŚCIACH NIŻ SUBSTANCJE WYJŚCIOWE (SUBSTRATY)

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera

WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera ANALIZA POŁĄCZENIA WARSTW CERAMICZNYCH Z PODBUDOWĄ METALOWĄ Promotor: Prof. zw. dr hab. n. tech. MACIEJ HAJDUGA Tadeusz Zdziech CEL PRACY Celem

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) MATERIAŁOZNAWSTWO dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) jhucinsk@pg.gda.pl MATERIAŁOZNAWSTWO dziedzina nauki stosowanej obejmująca badania zależności

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA)

PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA) ISO 9001:2008, ISO/TS 16949:2002 ISO 14001:2004, PN-N-18001:2004 PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA) *) PVD - PHYSICAL VAPOUR DEPOSITION OSADZANIE

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią? Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 10

Dobór materiałów konstrukcyjnych cz. 10 Dobór materiałów konstrukcyjnych cz. 10 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska DO UŻYTKU WEWNĘTRZNEGO Zniszczenie materiału w wyniku

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Szkła specjalne Strukturalne warunki tworzenia się szkła Wykład 2. Ryszard J. Barczyński, Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Strukturalne warunki tworzenia się szkła Wykład 2. Ryszard J. Barczyński, Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Strukturalne warunki tworzenia się szkła Wykład 2 Ryszard J. Barczyński, 2017-2018 Materiały edukacyjne do użytku wewnętrznego Teoria poszukiwana... Nie ma jeszcze w pełni satysfakcjonującej

Bardziej szczegółowo

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

KRYSTALIZACJA METALI I STOPÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego KRYSTALIZACJA METALI I STOPÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Krzepnięcie przemiana fazy ciekłej w fazę stałą Krystalizacja przemiana

Bardziej szczegółowo

Tlen. Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki

Tlen. Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki Tlen Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki Ogólna charakterystyka tlenowców Tlenowce: obejmują pierwiastki

Bardziej szczegółowo

Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie

Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Utrwalenie wiadomości Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Za tydzień sprawdzian Ciało fizyczne a substancja Ciało Substancja gwóźdź żelazo szklanka szkło krzesło drewno Obok podanych

Bardziej szczegółowo

Spis treści. Szkło kwarcowe - dane techniczne 3. Rury kwarcowe 5. Pręty kwarcowe 7. Szkło borokrzemowe - dane techniczne 8. Rury borokrzemowe 10

Spis treści. Szkło kwarcowe - dane techniczne 3. Rury kwarcowe 5. Pręty kwarcowe 7. Szkło borokrzemowe - dane techniczne 8. Rury borokrzemowe 10 Spis treści Szkło kwarcowe - dane techniczne Rury kwarcowe 5 Pręty kwarcowe 7 Szkło borokrzemowe - dane techniczne 8 Rury borokrzemowe 0 Kapilary borokrzemowe 5 Pręty borokrzemowe 6 Rury kolorowe borokrzemowe

Bardziej szczegółowo

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW POUFNE Pieczątka szkoły 16 styczeń 2010 r. Kod ucznia Wpisuje uczeń po otrzymaniu zadań Imię Wpisać po rozkodowaniu pracy Czas pracy 90 minut Nazwisko KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY

Bardziej szczegółowo

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.

Bardziej szczegółowo

Sprawdzian 1. CHEMIA. Przed próbną maturą (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30. Imię i nazwisko ...

Sprawdzian 1. CHEMIA. Przed próbną maturą (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30. Imię i nazwisko ... CHEMIA Przed próbną maturą 2017 Sprawdzian 1. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30 Imię i nazwisko... Liczba punktów Procent 2 Zadanie 1. Chlor i brom rozpuszczają się

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

Temat 9. Nauka o materiałach. Kompozyty i materiały ceramiczne

Temat 9. Nauka o materiałach. Kompozyty i materiały ceramiczne Temat 9 Nauka o materiałach Kompozyty i materiały ceramiczne Kompozyty budowa Kompozyty DEFINICJA Kompozyt jest to materiał utworzony z co najmniej dwóch komponentów (faz) o różnych właściwościach w taki

Bardziej szczegółowo

MIKROSYSTEMY. Ćwiczenie nr 2a Utlenianie

MIKROSYSTEMY. Ćwiczenie nr 2a Utlenianie MIKROSYSTEMY Ćwiczenie nr 2a Utlenianie 1. Cel ćwiczeń: Celem zajęć jest wykonanie kompletnego procesu mokrego utleniania termicznego krzemu. W skład ćwiczenia wchodzą: obliczenie czasu trwania procesu

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

Nazwy pierwiastków: ...

Nazwy pierwiastków: ... Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20

Bardziej szczegółowo

Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej

Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej Temat w podręczniku Substancje i ich przemiany 1. Zasady

Bardziej szczegółowo

Litowce i berylowce- lekcja powtórzeniowa, doświadczalna.

Litowce i berylowce- lekcja powtórzeniowa, doświadczalna. Doświadczenie 1 Tytuł: Badanie właściwości sodu Odczynnik: Sód metaliczny Szkiełko zegarkowe Metal lekki o srebrzystej barwie Ma metaliczny połysk Jest bardzo miękki, można kroić go nożem Inne właściwości

Bardziej szczegółowo

1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f)

1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f) 1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0,0000000001 m b) 10-8 mm c) 10-10 m d) 10-12 km e) 10-15 m f) 2) Z jakich cząstek składają się dodatnio naładowane jądra atomów? (e

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE Przechowywanie cieczy kriogenicznych i rodzaje izolacji cieplnych Imię i nazwisko: Olga Gałązka i Mateusz Pawelec Rok akademicki: 2011/2012 Semestr: II magisterski

Bardziej szczegółowo

Metale i niemetale. Krystyna Sitko

Metale i niemetale. Krystyna Sitko Metale i niemetale Krystyna Sitko Substancje proste czyli pierwiastki dzielimy na : metale np. złoto niemetale np. fosfor półmetale np. krzem Spośród 115 znanych obecnie pierwiastków aż 91 stanowią metale

Bardziej szczegółowo

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE WYMAGANIA PODSTAWOWE wskazuje w środowisku substancje chemiczne nazywa sprzęt i szkło laboratoryjne opisuje podstawowe właściwości substancji będących głównymi składnikami stosowanych na co dzień produktów

Bardziej szczegółowo

Elektrochemia - prawa elektrolizy Faraday a. Zadania

Elektrochemia - prawa elektrolizy Faraday a. Zadania Elektrochemia - prawa elektrolizy Faraday a Zadania I prawo Faraday a Masa substancji wydzielonej na elektrodach podczas elektrolizy jest proporcjonalna do natężenia prądu i czasu trwania elektrolizy q

Bardziej szczegółowo

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii: Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do

Bardziej szczegółowo

ZAMRAŻANIE PODSTAWY CZ.2

ZAMRAŻANIE PODSTAWY CZ.2 METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.2 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Odmienność procesów zamrażania produktów

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Techniki niskotemperaturowe w Inżynierii Mechaniczno Medycznej Zmiana własności ciał w temperaturach kriogenicznych Prowadzący: dr inż. Waldemar Targański Emilia

Bardziej szczegółowo

Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej

Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej Nauczyciel: Marta Zielonka Temat w podręczniku Substancje i ich przemiany 1. Zasady bezpiecznej pracy

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

Metody łączenia metali. rozłączne nierozłączne:

Metody łączenia metali. rozłączne nierozłączne: Metody łączenia metali rozłączne nierozłączne: Lutowanie: łączenie części metalowych za pomocą stopów, zwanych lutami, które mają niższą od lutowanych metali temperaturę topnienia. - lutowanie miękkie

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

1. Podstawowe prawa i pojęcia chemiczne

1. Podstawowe prawa i pojęcia chemiczne 1. PODSTAWOWE PRAWA I POJĘCIA CHEMICZNE 5 1. Podstawowe prawa i pojęcia chemiczne 1.1. Wyraź w gramach masę: a. jednego atomu żelaza, b. jednej cząsteczki kwasu siarkowego. Odp. 9,3 10 23 g; 1,6 10 22

Bardziej szczegółowo

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Elektrolity polimerowe 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Zalety - Giętkie, otrzymywane w postaci folii - Lekkie (wysoka gęstość energii/kg)

Bardziej szczegółowo

Kryteria oceniania z chemii kl VII

Kryteria oceniania z chemii kl VII Kryteria oceniania z chemii kl VII Ocena dopuszczająca -stosuje zasady BHP w pracowni -nazywa sprzęt laboratoryjny i szkło oraz określa ich przeznaczenie -opisuje właściwości substancji używanych na co

Bardziej szczegółowo

I. Substancje i ich przemiany

I. Substancje i ich przemiany NaCoBeZU z chemii dla klasy 1 I. Substancje i ich przemiany 1. Pracownia chemiczna podstawowe szkło i sprzęt laboratoryjny. Przepisy BHP i regulamin pracowni chemicznej zaliczam chemię do nauk przyrodniczych

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech

Fizyka 1 Wróbel Wojciech w poprzednim odcinku 1 Stany skupienia materii Ciała stałe Ciecze Płyny Gazy 2 Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 3 Ciało stałe ustalony kształt i objętość uporządkowanie dalekiego

Bardziej szczegółowo

CHEMIA. Wymagania szczegółowe. Wymagania ogólne

CHEMIA. Wymagania szczegółowe. Wymagania ogólne CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [

Bardziej szczegółowo

Recykling złomu obiegowego odlewniczych stopów magnezu poprzez zastosowanie innowacyjnej metody endomodyfikacji

Recykling złomu obiegowego odlewniczych stopów magnezu poprzez zastosowanie innowacyjnej metody endomodyfikacji PROJEKT NR: POIG.01.01.02-00-015/09 Zaawansowane materiały i technologie ich wytwarzania Recykling złomu obiegowego odlewniczych stopów magnezu poprzez zastosowanie innowacyjnej metody endomodyfikacji

Bardziej szczegółowo

Termochemia elementy termodynamiki

Termochemia elementy termodynamiki Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.

Bardziej szczegółowo

Kompozyty. Czym jest kompozyt

Kompozyty. Czym jest kompozyt Kompozyty Czym jest kompozyt Kompozyt jest to materiał utworzony z co najmniej dwóch komponentów mający właściwości nowe (lepsze) w stosunku do komponentów. MSE 27X Unit 18 1 Material Elastic Modulus GPa

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

Metale nieżelazne - miedź i jej stopy

Metale nieżelazne - miedź i jej stopy Metale nieżelazne - miedź i jej stopy Miedź jest doskonałym przewodnikiem elektryczności, ustępuje jedynie srebru. Z tego powodu miedź znalazła duże zastosowanie w elektrotechnice na przewody. Miedź charakteryzuje

Bardziej szczegółowo

Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych

Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych Kompozyty Większość materiałów budowlanych to materiały złożone tzw. KOMPOZYTY składające się z co najmniej dwóch składników występujących

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Wymagania przedmiotowe do podstawy programowej - chemia klasa 7

Wymagania przedmiotowe do podstawy programowej - chemia klasa 7 Wymagania przedmiotowe do podstawy programowej - chemia klasa 7 I. Substancje i ich właściwości opisuje cechy mieszanin jednorodnych i niejednorodnych, klasyfikuje pierwiastki na metale i niemetale, posługuje

Bardziej szczegółowo

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1 III Podkarpacki Konkurs Chemiczny 2010/2011 KOPKCh ETAP I 22.10.2010 r. Godz. 10.00-12.00 Zadanie 1 1. Jon Al 3+ zbudowany jest z 14 neutronów oraz z: a) 16 protonów i 13 elektronów b) 10 protonów i 13

Bardziej szczegółowo

Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06

Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06 Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06 Granulowany Węgiel Aktywny GAC (GAC - ang. Granular Activated Carbon) jest wysoce wydajnym medium filtracyjnym.

Bardziej szczegółowo

Drewno. Zalety: Wady:

Drewno. Zalety: Wady: Drewno Drewno to naturalny surowiec w pełni odnawialny. Dzięki racjonalnej gospodarce leśnej w Polsce zwiększają się nie tylko zasoby drewna, lecz także powierzchnia lasów. łatwość w obróbce, lekkość i

Bardziej szczegółowo

Czym jest aerogel? Izolacja aerogelem zapewnia maksimum ochrony termicznej przy minimalnej wadze i grubości.

Czym jest aerogel? Izolacja aerogelem zapewnia maksimum ochrony termicznej przy minimalnej wadze i grubości. Czym jest aerogel? Otrzymany w 1931 roku aerożel składa się w ponad 90% z powietrza, co czyni go bardzo skutecznym izolatorem o najniższym przewodnictwie termicznym. Aspen Aerogels uczynił z aerożelu bardzo

Bardziej szczegółowo

Odwracalność przemiany chemicznej

Odwracalność przemiany chemicznej Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt

Bardziej szczegółowo

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr.

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Typ wiązania w KBr... Typ wiązania w HBr... Zadanie 2. (2 pkt) Oceń poprawność poniższych

Bardziej szczegółowo

Chłodnice CuproBraze to nasza specjalność

Chłodnice CuproBraze to nasza specjalność Chłodnice CuproBraze to nasza specjalność Dlaczego technologia CuproBraze jest doskonałym wyborem? LUTOWANIE TWARDE 450 C LUTOWANIE MIĘKKIE 1000 C 800 C 600 C 400 C 200 C Topienie miedzi Topienie aluminium

Bardziej szczegółowo

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto Zadanie 1. (3 pkt) Nadtlenek litu (Li 2 O 2 ) jest ciałem stałym, występującym w temperaturze pokojowej w postaci białych kryształów. Stosowany jest w oczyszczaczach powietrza, gdzie ważna jest waga użytego

Bardziej szczegółowo

Test kompetencji z chemii do liceum. Grupa A.

Test kompetencji z chemii do liceum. Grupa A. Test kompetencji z chemii do liceum. Grupa A. 1. Atomy to: A- niepodzielne cząstki pierwiastka B- ujemne cząstki materii C- dodatnie cząstki materii D- najmniejsze cząstki pierwiastka, zachowujące jego

Bardziej szczegółowo

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Wykresy układów równowagi faz stopowych Ilustrują skład fazowy

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Technologia światłowodów włóknistych Kable światłowodowe

Technologia światłowodów włóknistych Kable światłowodowe Technologia światłowodów włóknistych Kable światłowodowe Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone

Bardziej szczegółowo

SZKŁO LABORATORYJNE. SZKŁO LABORATORYJNE (wg składu chemicznego): Szkło sodowo - wapniowe (laboratoryjne zwykłe)

SZKŁO LABORATORYJNE. SZKŁO LABORATORYJNE (wg składu chemicznego): Szkło sodowo - wapniowe (laboratoryjne zwykłe) SZKŁO LABORATORYJNE SZKŁO LABORATORYJNE (wg składu chemicznego): Szkło sodowo - wapniowe (laboratoryjne zwykłe) To połączenie tlenków: 13 20% tlenków alkalicznych, 6 12% tlenków grupy RO, 0,5 6% Al 2O

Bardziej szczegółowo

Technologia ceramiki: -zaawansowanej -ogniotrwałej Jerzy Lis, Dariusz Kata Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Technologia ceramiki: -zaawansowanej -ogniotrwałej Jerzy Lis, Dariusz Kata Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Technologia szkła i ceramiki Technologia ceramiki: -zaawansowanej -ogniotrwałej Jerzy Lis, Dariusz Kata Katedra Technologii Ceramiki i Materiałów Ogniotrwałych PODSTAWOWE IMANENTNE WŁAŚCIWOŚCI TWORZYW

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

Konwersatorium 1. Zagadnienia na konwersatorium

Konwersatorium 1. Zagadnienia na konwersatorium Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują

Bardziej szczegółowo

Zn + S ZnS Utleniacz:... Reduktor:...

Zn + S ZnS Utleniacz:... Reduktor:... Zadanie: 1 Spaliny wydostające się z rur wydechowych samochodów zawierają znaczne ilości tlenku węgla(ii) i tlenku azotu(ii). Gazy te są bardzo toksyczne i dlatego w aktualnie produkowanych samochodach

Bardziej szczegółowo

Transport jonów: kryształy jonowe

Transport jonów: kryształy jonowe Transport jonów: kryształy jonowe Jodek srebra AgI W 420 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie Frenkla podsieci anionowej, klastry

Bardziej szczegółowo

BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE.

BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE. BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE. 1. Którą mieszaninę można rozdzielić na składniki poprzez filtrację; A. Wodę z octem. B. Wodę z kredą. C. Piasek z cukrem D. Wodę

Bardziej szczegółowo