SZKŁO. materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji

Wielkość: px
Rozpocząć pokaz od strony:

Download "SZKŁO. materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji"

Transkrypt

1 SZKŁO Co to jest szkło? materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji Spełnia makroskopową definicję ciała stałego, chociaż może być też uważane za przechłodzoną ciecz. Nie jest plastyczne: może być odkształcone sprężyście lub pęknąć. 1

2 Co to jest szkło? o Uwaga: Historycznie rzecz biorąc, termin szkło jest zarezerwowane do materiałów amorficznych otrzymanych wskutek szybkiego ochłodzenia cieczy. Materiał amorficzny, natomiast, oznacza dowolne ciało stałe o nieperiodycznej sieci atomów. Jak otrzymać szkło: 2

3 Jak otrzymać szkło: o Szybkość chłodzenia: o Szkło metaliczne: > 10 6 K s -1 o Szkło sodowe ~ 10 K s -1 o SiO 2 ~ 0.1 K s -1 o B 2 O 3 - nie krystalizuje pod normalnym ciśnieniem. Historia o Początek był, być może, taki: w części Syrii (Phoenicia), blisko Judei, u podnóża góry Carmel i ujścia rzeki Bellus (koło Ptolemais) są mokradła. Piasek jest tam niezwykle czysty. Pewnego razu rozbił się tam statek kupiecki wiozący natron używany wówczas w procesie mumifikacji [ jest to węglan sodu]. 3

4 Historia o Kupcy znaleźli się na brzegu i aby ugotować posiłek użyli kawałków natronu ze statku (nie było w pobliżu kamieni i aby postawić garnek na ognisku, użyli kawałków natronu). Piasek na brzegu mieszał się z palącym się natronem (dodatek związku sodu do krzemionki powoduje obniżenie temperatury topnienia) i strumienie przezroczystej cieczy zaczęły wypływać z ogniska: był to początek technologii szkła. o (Isidore of Seville, Etymologies XVI.16. Translation by Charles Witke.) Historia o Technologia szkła została odkryta najprawdopodobniej w Mezopotamii, w rejonie obecnie znanym jako Irak i Syria. o Około 3300 lat temu, tajemne "instrukcje" jak budować piece i jak wytapiać szkło zostały zapisane na glinianych tabliczkach pismem obrazkowym. Instrukcje te były później kopiowane przez całe wieki. 4

5 Historia ~ 3000 pne Wytwarzanie szkła na Kaukazie, początki barwienia szkła ~ 1480 pne Pojawienie się szkła w Egipcie Barwienie za pomocą domieszek takich jak Cu, Fe, Mn, Al ~ 630 pne Pierwszy podręcznik wytwarzania szkła (Asyria) ~ 900 pne Wprowadzenie przemysłu szklarskiego do Syrii i Mezopotamii ~ 250 pne Odkrycie technologii dmuchania szkła (Fenicjanie) Historia 50 ne (czasy Juliusza Cezara): Rozwinięcie technologii wydmuchiwania szkła (waza z 3-4 wieku naszej ery) ~70 Rzymianie wprowadzają produkcję szkła do Europy (Hiszpania, Francja, Italia) 79 Pliniusz opisuje produkcję szkła oraz legendy jego odkrycia 100 odlewanie szkła w formach 591 Pierwsze wzmianki o szybach okiennych (w kościołach) 1180 Pierwsze szyby w domach mieszkalnych. 5

6 Historia 1453 Tajemnice produkcji szkła docierają z Bizancjum do Wenecji 1834 Pierwsze teorie dotyczące szkła kwarcowego (Leng) 1859 Pierwsza półautomatyczna maszyna do produkcji butelek 1925 Metoda "Pittsburgh" wytwarzania szyb 1967 Metoda odlewania szyb na stopionej cynie 1970 Produkcja włókien optycznych 1983 Technologia sol-gel Inżynieria materiałowa szkła o Czynniki, które decydują o właściwościach szkła (i które można zmieniać tworząc nowe produkty): Skład szkła; Struktura; Powierzchnia; Cienkie warstwy nanoszone na powierzchnię szkła; o Dodatkowym czynnikiem umożliwiającym tworzenie nowoczesnych produktów jest możliwość konstruowania złożonych układów bazujących na szkle. 6

7 Skład szkła o Głównym składnikiem szkła ( zwykłego) jest SiO 2 Si 4+ O 2- Nie tylko SiO 2 tworzy szkło: o Pierwiastki szkłotwórcze : te, które w związkach z tlenem tworzą sieć wielościanów; mają liczbę koordynacyjną 3 lub 4 (Si, B, P, Ge; As.). Szkło tworzą również inne tlenki, jak Bi 2 O 3, CuO. 7

8 Typ szkła Przybliżony skład szkła (% masowe) SiO 2 Na 2 O CaO B 2 O 3 Al 2 O 3 K 2 O PbO sodowe Butelki, szyby borokrzemianowe Szkło laboratoryjne, żaroodporne glinokrzemianowe fiberglass, top-of-stove ware excellent resistance to heat and chemicals ołowiowe "crystal", art glass, TV tubes easy to form, cut, engrave, stops radiation kwarcowe special uses high heat (1500 C) resistance, UV-transparency Znaczenie składu szkła: przykład o Wata szklana to włókna szkła glinokrzemianowego o długości kilku milimetrów i średnicy kilku mikrometrów. Podobne rozmiary mają włókna krystalicznego glinokrzemianu, czyli azbestu. Azbest nie rozpuszcza się w środowisku panującym w płucach (30 lat), przez co jest rakotwórczy; Wata szklana stosowana przez lata rozpuszcza się po około kilku miesiącach; Modyfikacja składu szkła (zmniejszenie zawartości Al 2 O 3 z 3.4 do 2.2%, Na 2 O z do 15.5% i zwiększenie MgO z 3.0 do 3.4%) spowodowała, że szkło stało się biorozpuszczalne w przeciągu kilku tygodni a nawet dni. 8

9 Struktura szkła o Zbadanie, opisanie i zrozumienie struktury szkła jest skomplikowanym (i wciąż otwartym) zagadnieniem. Przykładowe zagadnienia: Na czym polega nieuporządkowanie struktury? Na czym polega (i czy jest) uporządkowanie bliskiego zasięgu? Czy skład jest jednorodny (w skali bliskiej i dalekiej)? Model struktury szkła tlenkowego o W ramach modelu Zachariesena (1933) szkło jest zbudowane jak ciągła przypadkowa sieć, w której atomy są rozłożone tak jak w cieczy. Spełnione są zazwyczaj następujące cztery reguły: 1 ) atom tlenu może być połączony z najwyżej dwoma innymi atomami; 2 ) liczba koordynacyjna innych atomów jest zazwyczaj mała ( 4); 3 ) wielościany koordynacyjne Si-O (lub inne) połączone są między sobą narożami; 4 ) wielościany tworzą trójwymiarową strukturę (ciągłą). 9

10 Model struktury szkła krzemianowego o Elementem podstawowym szkła kwarcowego (podobnie jak krystalicznego kwarcu) jest czworościan SiO 4-4 o Liczba koordynacyjna krzemu wynosi 4, zgodnie z 2 regułą Zachariesena; o Czworościany są ze sobą połączone narożami; Si4+ O2- Model struktury szkła krzemianowego: porównanie z krystalicznym kwarcem Uporządkowanie daleko-zasięgowe Te same jednostki strukturalne Uporządkowanie krótko-zasięgowe 10

11 Inne pierwiastki w strukturze szkła o Modyfikatory: te, które przerywają sieć wielościanów (Na, Ca, Ba, K.) z liczbą koordynacyjną 6 o Stabilizatory sieci: te, które ani nie tworzą ani nie przerywają sieci (Al, Li, Zn, Mg, Pb..) liczba koordynacyjna 4 i 6 Przykład: szkło krzemianowe z dodatkiem sodu i wapnia Na + Si 4+ O 2-11

12 Inne aspekty struktury szkła: (nie)jednorodność o W odpowiednich warunkach (wygrzewanie, oświetlenie,..) mogą w strukturze szkła powstawać lokalne niejednorodności. Np. klastry srebra (szkło fotochromatyczne), klastry złota (czerwone szkło z Murano). Inne aspekty struktury szkła: (nie)jednorodność o W ostatnich latach rozwinęła się technika wytwarzania trójwymiarowych obiektów wewnątrz szkła. Pikosekundowe impulsy światła laserowego ogniskowane na kolejnych punktach wewnątrz szkła powodują lokalne zmiany struktury (mikrokrystality, mikropory, zmiany składu - nie wiadomo dokładnie). Obecnie stosowane tylko w celach dekoracyjnych, ale w przyszłości.. 12

13 Powierzchnia szkła i warstwy nanoszone na powierzchnię o Powierzchnia jest najsłabszym elementem szkła Powierzchnia jest źródłem kruchości szkła: tam powstają i przemieszczają się pęknięcia; o Stąd poprawienie jakości powierzchni jest bardzo ważne. Stąd również wynikają prace nad warstwami nanoszonymi na powierzchnię. Szczegóły - później Właściwości fizyczne szkła T g T g : Temperatura przejścia do fazy szklistej ( temperatura zeszklenia ) jest to temperatura, w której ciało amorficzne wykazuje zmianę nachylenia zależności objętości właściwej od temperatury. 13

14 Przykłady: o Szkło o SiO 2 o GeO 2 o polistyren o Au 0.8 Si 2 o H 2 O o T g o 1430 K o 820 K o 370 K o 290 K o 140 K Lepkość szkła Powyżej tej lepkości szkło jest kruche Relaksują wewnętrzne naprężenia Szkło zachowuje kształt W tym zakresie szkło jest formowane Powyżej 10 2 szkło jest cieczą 14

15 Kolor szkła o Kolor szkła, ogólnie rzecz biorąc, wynika z obecności w nim jonów metali w postaci klasterów; o Drugim czynnikiem wpływającym na kolor jest wielkość klasterów metalu, co z kolei jest związane z obróbką termiczną i chemiczną szkła, a także z procesami utleniania, redukcji, dyfuzji zachodzącymi pod wpływem światła i innych czynników. Kolor szkła: rodzaj jonów metali kolor jon metalu czerwone Se lub Au żółte Ni 2+ lub Cd 2+ + S 2- zielone Cr 3+ lub Fe 3+ Niebiesko-zielone Cu 2+ lub Fe 2+ niebieskie Co 2+ purpurowe Mn 2+ czarne Cr 2 O 3 lub MnO 2 + NiO bursztynowe Fe 3+ + S 2- + C białe (opal) CaF 2 lub NaCl rozdyspergowane w szkle 15

16 Kolor szkła: wielkość klastrów metali o Przykład: rubinowe szkło weneckie (Murano) zawierało małe klastry złota. Obecna podróbka zawiera klastry Cu i CuO o wielkości rzędu nm. Kolor szkła: wielkość klastrów metali 16

17 Kolor szkła: wielkość klastrów metali o Źródłem koloru spowodowanego obecnością nanoklastrów metalu są powierzchniowe plazmony. Plazmon to rezonansowe drganie gazu elektronowego. Szkło fotochromatyczne o Szkło fotochromatyczne zawiera AgCl lub AgI lub inny podobny związek. Są one równomiernie rozłożone w objętości szkła. o Pod wpływem światła zachodzi redukcja Ag: o Cl -1 Cl + e- o Ag +1 + e Ag 17

18 Szkło fotochromatyczne o Atomy srebra aglomerują tworząc grupy, które absorbują światło i powodują pociemnienie szkła. o Stopień zaciemnienia zależy od intensywności światła. Proces ten jest bardzo szybki. Szkło fotochromatyczne o Aby proces foto-pociemnienia szkła był użyteczny, musi być odwracalny. Gdy oświetlenie zanika, wówczas następują procesy odwrotne: srebro jest utleniane Jest to możliwe, ponieważ żadne z atomów w trakcie fotoutleniania i fotoredukcji nie przemieszcza się na duże odległości. o Trwają prace nad innymi związkami metali (np. azotanem srebra). o Fotochromatyczne szkło otrzymuje się również poprzez naniesienie warstw na powierzchnię szkła. 18

19 Właściwości mechaniczne szkła o Szkło ma bardzo duży moduł Younga; o Główną wadą szkła jest jego kruchość. Właściwości mechaniczne szkła o Przyczyny kruchości szkła: Główną przyczyną kruchości szkła są mikropęknięcia na powierzchni. Mikropęknięcia przemieszczają się najpierw powoli, a następnie katastrofalnie szybko. Para wodna i woda dostając się do mikropęknięć przyspiesza ich propagację (przyspiesza zrywanie wiązań kowalencyjnych). 19

20 Właściwości mechaniczne szkła o Jakość powierzchni szkła decyduje o jego kruchości. Ciekawostki: Jakość zewnętrznej powierzchni szkła decyduje o wytrzymałości butelki na wewnętrzne ciśnienie (szampan). Jakość wewnętrznej powierzchni butelki decyduje o wytrzymałości butelki na uderzenia (transport, proces napełniania butelek). Prawie idealną powierzchnię (a co za tym idzie - prawie idealną wytrzymałość) mają włókna szklane używane do wzmacniania kompozytów. Wytwarzanie szkła: ogólnie o czysty SiO 2 topi się powyżej 1700 O C o Zmieszany z sodą (tlenek lub węglan sodu) topi się w 900 O Cale jest rozpuszczalne w wodzie! o Zmieszany z CaO staje się nierozpuszczalne w wodzie. o Dlatego właśnie SiO 2, CaO i Na 2 O są głównymi składnikami zwykłego szkła. 20

21 Wczesna technologia o Rdzeń z błota i gliny o kształcie np. dzbana; o Po wysuszeniu owijano go półpłynnymi włóknami szkła; o Następnie znowu go ogrzewano i ceramicznym narzędziem wygładzano; o Na koniec wydobywano rdzeń ze środka. Wytwarzanie szkła: nieco później o Obecnie, przedmioty szklane są wytwarzane trzema głównymi metodami: Wydmuchiwanie szkła; Prasowanie; Wytwarzanie szyb; Wytwarzanie włókien; 21

22 Wydmuchiwanie szkła: dawniej A: tuba do wydmuchiwania szkła B: szczypce C: nożyce D: płaskie narzędzie pomocnicze służące do formowania wydmuchiwanych kształtów Softened glass Wydmuchiwanie szkła w wersji zautomatyzowanej: 22

23 Prasowanie Softened Gob Wytwarzanie szyb; Pitsburgh process : metoda Pitsburgh : Układ precyzyjnych wałków wyciąga warstwę szkła pionowo do góry. Po usunięciu roztopionej cieczy, wałki nadal się obracają i warstwa cała wędruje go góry, gdzie jest cięta na odpowiednie kawałki. 23

24 Wytwarzanie szyb na stopionej cynie (float) Stopione szkło o temperaturze 1500 o C, tworzy ciągłą warstwę, która wpływa na stopioną cynę. Warstwa szkła ma grubość od 2 do 19 mm. Temperatura szkła stopniowo maleje i warstwa przybiera kształt równoległo-ściennej wstęgi. Wytwarzanie szyb na stopionej cynie (float) 24

25 Przykłady różnych zwykłych i niezwykłych szkieł Kryształy o Proces cięcia szkła polega na dociskaniu szklanego przedmiotu do wirującego koła (kamienne lub stalowe). Koło wycina rowki o prostych, ostrych krawędziach. Dzięki temu szkło jest bardziej połyskujące (więcej powierzchni odbijających światło). o Najlepszy efekt otrzymuje się w szkle zawierającym dużo tlenku ołowiu. o wynalezione przez George a Ravenscrofta (Anglia, około 1676). 25

26 Butelki o Szklane butelki wytwarzano w czasach przed- Rzymskich, używając techniki owijania stopionego szkła wokół formy z gliny i trawy. o Rzymianie wynaleźli dmuchanie szkła i wytwarzali szklane butelki w wielkich ilościach. Butelki o Obecnie, butelki wytwarza się całkowicie automatycznie; 26

27 Szkło w bąbelki o Technika dekorowania szkła stosowana przez wielu wytwórców szkła. o Można bąbelki wprowadzać dodając do stopionego szkła związki chemiczne, które reagując wytwarzają bąble. o Pojedyncze bąble można wprowadzić za pomocą szpikulca. Szkło opalizujące o Szkło, które w tych miejscach, gdzie warstwa szkła jest gruba chłodzi się powoli, dzięki czemu zachodzi krystalizacja i szkło staje się matowe. 27

28 Witraże Wytwarzanie witraży prawie się nie zmieniło od 12-go wieku. Witraż składa się z fragmentów kolorowego szkła połączonych w całość za pomocą ołowiu. Szczegóły dodatkowo się maluje, a następnie wypala. Witraże Figura namalowana na szkle (1340) Początkowo szczegóły twarzy, rąk, stroju i inne były malowane na szkle tylko czarną i brązową farbą. 28

29 Witraże XV wiek Około roku 1300 odkryto żółty barwnik. To umożliwiło barwienie białego szkła na kolor żółty, niebieskiego na zielony i było bardzo pomocne w barwieniu włosów, koron i aureol. Włókna optyczne o Włókno optyczne: cienkie i giętkie włókno zdolne do przewodzenia światła. Składa się z bardzo cienkiego rdzenia otoczonego koncentrycznymi warstwami szkła i innych materiałów. o Szkło musi być bardzo przezroczyste 29

30 Współczynnik załamania może się zmieniać w sposób skokowy bądź stopniowo: Przezroczystość szkła o Od 3000 pne Egipcjanie i Fenicjanie zaczęli poszukiwanie sposobów polepszenia przezroczystości szkła... Przed 1966 osiągnięto pewne plateau w rozwoju przezroczystości; 60 30

31 Przezroczystość szkła o o Dopiero prace prowadzone w latach (Bell Laboratories) spowodowały, że szkło stało się razy bardziej przezroczyste niż w Dzięki temu, włókno może mieć średnicę tylko 0.01 mm. 61 Wytwarzanie 2. Wyciąganie włókna: 1. wytwarzanie szkła i wstępna obróbka 31

32 Z kolei zmianę współczynnika załamania osiąga się dzięki: o Dodaniu germanu (też jako czterochlorek). German ma o 18 elektronów więcej niż Si jest domieszką, która zwiększa n, nie zmieniając współczynnika absorpcji. o Dodatek boru lub fluoru zmniejsza współczynnik załamania. Organiczne szkło fotochromatyczne o United States Patent o Abstract:The invention relates to organic photochromic materials consisting of a polymer matrix of optical quality and of at least one dye that imparts photochromic properties to the matrix, the dye being selected from spirooxazines, spiropyrans and chromenes. The polymer constituting the matrix is a copolymer of wt % ethoxylated bisphenol A dimethacrylate and 5-70 wt % of a polyurethane oligomer having terminal di- or triacrylic or di- or trimethacrylic functionality. Such photochromic materials are most suitable for the production of ophthalmic and sun protection lenses. 32

33 Powierzchnia szkła Modyfikacja powierzchni szkła może prowadzić do otrzymania materiału o niezwykle ciekawych właściwościach Wzmacnianie szkła o Wzmacnianie szkła polega na poprawieniu jakości powierzchni i takiej modyfikacji powierzchni, że pęknięć albo nie ma, albo nie mogą się przemieszczać. Hartowanie; Chemiczna modyfikacja powierzchni; Nanoszenie warstw, laminowanie szkła. 33

34 Hartowanie o Szkło wewnętrznie naprężone ma lepsze właściwości mechaniczne: zewnętrzna powierzchnia zostaje ściśnięta, wewnętrzna - rozciągnięta; Hartowanie o Jak to się robi: Szkło ogrzewa się do temperatury około Tg Ochładza się w powietrzu lub oleju Powierzchnia ochładza się szybciej niż części wewnętrzne Gdy wewnętrzne części się ochładzają do temperatury pokojowej, powierzchnia już jest zimna i sztywna. Rozmiary nie mogą się dopasować: wnętrze jest rozciągane przez powierzchnię, a powierzchnia ściskana przez wnętrze. 34

35 Hartowanie before cooling surface cooling cooler hot hot cooler further cooled compression tension compression Naprężenia hamują rozprzestrzenianie się pęknięcia Chemiczne hartowanie o Podobny efekt można uzyskać metodą chemiczną: Wymiana jonów Na + na K + na powierzchni. Większe K + rozpychają zewnętrzną powierzchnię. o Szkło umieszcza się w stopionej soli zawierającej jony K + (np. KNO 3 przez 12 godzin w 500 C). o Dyfuzja powoduje wymianę jonów sodu na K + 35

36 Hartowanie Obie metody hartowania prowadzą do 2-4 krotnego zwiększenia wytrzymałości szkła. Wzmacnianie szkła o Laminowanie szkła. Polega na umieszczeniu warstwy polimeru pomiędzy warstwami szkła (minimum dwie). 36

37 Wzmacnianie szkła o Laminowanie szkła. Są dwa sposoby wytwarzania szkła laminowanego: 1. Jak na zdjęciach, czyli umieszczenie polimeru pomiędzy warstwy szkła i sprasowanie całego układu; polimer (PVB ma zazwyczaj grubość 0.38 mm, w szybach samochodowych: 0.76 mm) 2. Wlanie ciekłego polimeru między szyby (1-1.5mm) Wzmacnianie szkła o o Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. 37

38 Wzmacnianie szkła o o Szkło kuloodporne: Od grubości laminatu zależy kaliber pocisku, który może szyba wytrzymać Warstwy na szkle o Na powierzchnię szkła można nanosić warstwy zmieniające jego właściwości optyczne i termiczne; 38

39 Szkło metaliczne o Stop amorficzny dwu- lub wieloskładnikowy, w którym metal jest głównym składnikiem, otrzymany przez bardzo szybkie chłodzenie ( K/s) Produkuje się je najczęściej przez wylanie cienkiej warstwy stopu na szybko odprowadzające ciepło podłoże. Można też wylewać stop na wirującą tarczę (90 m/s). Po raz pierwszy szkło metaliczne otrzymano w 1960 roku Szkło metaliczne - własności 39

40 Szkło metaliczne o W 1990, naukowcy otrzymali szkło metaliczne już nie tylko w postaci cienkiej warstwy (nie mikrometry, tylko centymetry przy szybkościach chłodzenia K/s). Przykłady: Rodzina Zr-Ti-Cu-Ni-Be BMG otrzymana przez Johnsona i Pekera Vitreloy 1 : Zr 41.2 Ti 13.8 Cu 12.5 Ni 10.0 Be 22.5 Struktura szkła metalicznego (Vitreloy 1) o Zbudowane jest z atomów znacznie różniących się między sobą - zmniejsza to tendencją do krystalizacji. 100 Figure 1b. Topological atomic size comparsion of species in Vitreloy 1 bulk metallic glass 90 Zr41.2Ti13.8Cu12.5Ni10Be Atomic Compostition (at%) Atomic Radius (nm) 40

41 Właściwości o Granica odkształcenia sprężystego 2%! Image courtesy of Liquidmetal golf Amorficzny krzem o Niewysycone wiązania krzemu pasywuje się poprzez wygrzewanie w wodorze. o Amorficzny krzem wykorzystuje się w ogniwach fotowoltaicznych. 41

42 Tworzywa szklano-ceramiczne Szkło można skrystalizować, wygrzewając je, ale staje się ono wtedy kruche i pęka. Dodanie zarodków krystalizacji, takich jak Ag or TiO 2 powoduje, że krystalizowane szkło jest bardzo wytrzymałe i odporne na wysoka temperaturę Stosuje się w naczyniach kuchennych, konwerterach katalitycznych itd.. Organiczne szkło fotochromatyczne o United States Patent o Abstract:The invention relates to organic photochromic materials consisting of a polymer matrix of optical quality and of at least one dye that imparts photochromic properties to the matrix, the dye being selected from spirooxazines, spiropyrans and chromenes. The polymer constituting the matrix is a copolymer of wt % ethoxylated bisphenol A dimethacrylate and 5-70 wt % of a polyurethane oligomer having terminal di- or triacrylic or di- or trimethacrylic functionality. Such photochromic materials are most suitable for the production of ophthalmic and sun protection lenses. 42

43 Benzospiropyrans t increasing τ = 70 s Photochromic materials form color in a photostep and decolorize either via a thermal process or in a second photochemical step triggered by absorption of light at the wavelength of maximum absorption of the colored form of the compound. In the case of benzospiropyrans, the colored form is called a merocyanine. It is zwitterion and has different solubility characteristices than the benzospiropyran. Purple of spectacle lenses R N R 1 R 2 R 3 N O R 4 N R 1 R 2 R 3 N Usually used in combination with a spiropyran; the two compounds below are isomers; one opens and is easily reversed; the other is thermally stable. The naphthopyrans (below) add an orange tint to the blue of the oxazines (above) giving an overall brown O O - R 6 5 O 4 1 O R 4 43

44 SYNTEZA SOL-ŻEL Inna, niezwykła metoda wytwarzania szkła SYNTEZA SOL-ŻEL o Powstawanie aerożelu przebiega w dwóch głównych etapach: tworzenie mokrego żelu suszenie 44

45 SYNTEZA SOL-ŻEL Większość krzemowych aerożeli wytwarza się z Si(OCH 3 ) 4 lub Si(OCH 2 CH 3 ) 4. Typowa reakcja: Si(OCH 2 CH 3 ) 4 + 2H 2 O = SiO 2 + 4HOCH 2 CH 3 Ta reakcja najczęściej przebiega w etanolu i w obecności katalizatora (np. HCl). SYNTEZA SOL-ŻEL o W rezultacie reakcji hydrolizy powstaje SOL. Jest to układ rozdyspergowanych koloidalnych cząstek w cieczy (koloid : cząstki o rozmiarze nm, tzn atomów) 45

46 SYNTEZA SOL-ŻEL W miarę postępowania reakcji polimeryzacji SiO 2 (kondensacja) SOL przekształca się w sztywny ŻEL. W tym stanie, żel jest wyjmowany z formy. SYNTEZA SOL-ŻEL o Ostatnim, najważniejszym etapem wytwarzania aerożelu jest jego suszenie w warunkach nadkrytycznych. 46

47 WŁAŚCIWOŚCI AEROŻELI o Większość właściwości aerożeli wynika z ich z bardzo dużej porowatości. Aerożele składają się w około 95% z powietrza (od 85% do 99.87%). o Średnia średnica porów: 20 nm, wielkość cząsteczek: 2-5 nm. WŁAŚCIWOŚCI AEROŻELI o Mała gęstość g/cm 3, średnio gęstość jest około 0.1 g/cm 3. Dla porównania zwykłe szkło ma gęstość g/cm 3. o Porowatość wiąże się również z ogromną powierzchnią wewnętrzną ( m 2 /g). 47

48 WŁAŚCIWOŚCI DIELEKTRYCZNE o Współczynnik załamania światła: ; o Stała dielektryczna: 1.1 o Obie wielkości są niezwykle małe jak na ciało stałe. WŁAŚCIWOŚCI MECHANICZNE o Moduł Younga N/m 2 o Wytrzymałość na rozciąganie 16 kpa o Prędkość dźwięku w aerożelu: 100m/s o Wszystkie 3 wielkości są niezwykle małe w porównaniu ze zwykłym szkłem (np. E jest 10 4 razy mniejsze). 48

49 WŁAŚCIWOŚCI MECHANICZNE o Wbrew pozorom aerożele mają interesujące właściwości mechaniczne jako materiały absorbujące energię uderzeniową. Stosuje się je w kaskach. WŁAŚCIWOŚCI MECHANICZNE o W czasie uderzenia zostają zrywane wiązania jedno po drugim. Wewnątrz aerożelu ten proces trwa dość długo (i o to chodzi).dodatkowo część energii jest zużywana na sprężenie powietrza z porów. polistyren 49

50 WŁAŚCIWOŚCI TERMICZNE o Zachowują swoje właściwości do temperatury 500ºC; o Temperatura topnienia 1200ºC; o Typowy aerożel ma przewodność cieplną ~0.017 W/mK (bardzo małą). Zastosowania o Do aerożeli można dodawać różne inne pierwiastki otrzymując w ten sposób np. różne kolory. Cu Fe 2 O 3 C Ni 50

51 Zastosowania w medycynie o Kapsułki aerożelu zawierające substancje aktywne stopniowo je uwalniają jednocześnie zabezpieczając przed zbyt dużym kontaktem z tkankami. Zastosowania: pył kosmiczny o Sonda Stardust wykorzysta aerożel do zbierania pyłu kosmicznego. o Gdy cząstka pyłu uderza w aerożel, zagłębia się w nim, stopniowo zwalniając, i pozostawia podłużny ślad mniej więcej 200 razy dłuższy niż średnica cząstki. 51

52 Zastosowania o Dodając drobiny ferromagnetyka otrzymujemy materiał magnetyczny (tutaj jest to tlenek żelaza). Podobnie można otrzymać aerożel ferroelektryczny. Zastosowania o Naukowcy otrzymali super lekkie magnesy zbudowane z aerożeli, do których dodano bardzo małe cząstki magnetyczne (Nd 2 Fe 14 B). Nano-drobiny magnetyczne były w czasie syntezy orientowane w polu magnetycznym. Magnesy te są przezroczyste. 52

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła Wzmacnianie szkła Laminowanie szkła. Są dwa sposoby wytwarzania szkła laminowanego: 1. Jak na zdjęciach, czyli umieszczenie polimeru pomiędzy warstwy szkła i sprasowanie całego układu; polimer (PVB ma

Bardziej szczegółowo

opal Szkło naturalne

opal Szkło naturalne opal Szkło naturalne Szkło naturalne Obsydian szybko ochłodzona lawa; Szkło naturalne Fulguryt, strzałka piorunowa, piorunowiec, rurka, pręt kwarcowy powstały z piasku lub skały, stopionych od uderzenia

Bardziej szczegółowo

Wzmacnianie szkła. Jak to się robi:

Wzmacnianie szkła. Jak to się robi: Wzmacnianie szkła 1. Szkło wewnętrznie naprężone ma lepsze właściwości mechaniczne: zewnętrzna powierzchnia zostaje ściśnięta, wewnętrzna - rozciągnięta; Wzmacnianie szkła Jak to się robi: Szkło ogrzewa

Bardziej szczegółowo

SZKŁO. materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji

SZKŁO. materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji SZKŁO Co to jest szkło? materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji Spełnia makroskopową definicję ciała stałego, chociaż może być też uważane za przechłodzoną

Bardziej szczegółowo

materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji

materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji Co to jest szkło? materiał nieorganiczny powstały wskutek stopienia a następnie ochłodzenia bez krystalizacji Spełnia makroskopową definicję ciała stałego, chociaż może być też uważane za przechłodzoną

Bardziej szczegółowo

POMIARY OPTYCZNE Współczynnik załamania #3 Szkło. Damian Siedlecki

POMIARY OPTYCZNE Współczynnik załamania #3 Szkło. Damian Siedlecki POMIARY OPTYCZNE 1 { 8. Współczynnik załamania #3 Szkło Damian Siedlecki Metoda de Chaulnesa Pomiar współczynnika załamania opiera się na pomiarze wielkości poosiowego przesunięcia obrazu, utworzonego

Bardziej szczegółowo

Samopropagująca synteza spaleniowa

Samopropagująca synteza spaleniowa Samopropagująca synteza spaleniowa Inne zastosowania nauki o spalaniu Dyfuzja gazów w płomieniu Zachowanie płynnych paliw i aerozoli; Rozprzestrzenianie się płomieni wzdłuż powierzchni Synteza spaleniowa

Bardziej szczegółowo

MATERIAŁY SUPERTWARDE

MATERIAŁY SUPERTWARDE MATERIAŁY SUPERTWARDE Twarde i supertwarde materiały Twarde i bardzo twarde materiały są potrzebne w takich przemysłowych zastosowaniach jak szlifowanie i polerowanie, cięcie, prasowanie, synteza i badania

Bardziej szczegółowo

w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych

w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych w_08 Chemia mineralnych materiałów budowlanych c.d. Chemia metali budowlanych Spoiwa krzemianowe Kompozyty krzemianowe (silikatowe) kity, zaprawy, farby szkło wodne Na 2 SiO 3 + 2H 2 O H 2 SiO 3 +

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) MATERIAŁOZNAWSTWO dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) jhucinsk@pg.gda.pl MATERIAŁOZNAWSTWO dziedzina nauki stosowanej obejmująca badania zależności

Bardziej szczegółowo

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Materiałoznawstwo optyczne CERAMIKA OPTYCZNA Szkło optyczne i fotoniczne, A. Szwedowski, R. Romaniuk, WNT, 2009 POLIKRYSZTAŁY - ciała stałe o drobnoziarnistej strukturze, które są złożone z wielkiej liczby

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych

Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych Materiały budowlane - systematyka i uwarunkowania właściwości użytkowych Kompozyty Większość materiałów budowlanych to materiały złożone tzw. KOMPOZYTY składające się z co najmniej dwóch składników występujących

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH 1 REAKCJA CHEMICZNA: TYPY REAKCJI CHEMICZNYCH REAKCJĄ CHEMICZNĄ NAZYWAMY PROCES, W WYNIKU KTÓREGO Z JEDNYCH SUBSTANCJI POWSTAJĄ NOWE (PRODUKTY) O INNYCH WŁAŚCIWOŚCIACH NIŻ SUBSTANCJE WYJŚCIOWE (SUBSTRATY)

Bardziej szczegółowo

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki

Bardziej szczegółowo

Czym się różni ciecz od ciała stałego?

Czym się różni ciecz od ciała stałego? Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona

Bardziej szczegółowo

I. Substancje i ich przemiany

I. Substancje i ich przemiany NaCoBeZU z chemii dla klasy 1 I. Substancje i ich przemiany 1. Pracownia chemiczna podstawowe szkło i sprzęt laboratoryjny. Przepisy BHP i regulamin pracowni chemicznej zaliczam chemię do nauk przyrodniczych

Bardziej szczegółowo

Tlen. Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki

Tlen. Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki Tlen Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki Ogólna charakterystyka tlenowców Tlenowce: obejmują pierwiastki

Bardziej szczegółowo

WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera

WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera WyŜsza Szkoła InŜynierii Dentystycznej im. prof. Meissnera ANALIZA POŁĄCZENIA WARSTW CERAMICZNYCH Z PODBUDOWĄ METALOWĄ Promotor: Prof. zw. dr hab. n. tech. MACIEJ HAJDUGA Tadeusz Zdziech CEL PRACY Celem

Bardziej szczegółowo

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE WYMAGANIA PODSTAWOWE wskazuje w środowisku substancje chemiczne nazywa sprzęt i szkło laboratoryjne opisuje podstawowe właściwości substancji będących głównymi składnikami stosowanych na co dzień produktów

Bardziej szczegółowo

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.

Bardziej szczegółowo

Kompozyty. Czym jest kompozyt

Kompozyty. Czym jest kompozyt Kompozyty Czym jest kompozyt Kompozyt jest to materiał utworzony z co najmniej dwóch komponentów mający właściwości nowe (lepsze) w stosunku do komponentów. MSE 27X Unit 18 1 Material Elastic Modulus GPa

Bardziej szczegółowo

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW POUFNE Pieczątka szkoły 16 styczeń 2010 r. Kod ucznia Wpisuje uczeń po otrzymaniu zadań Imię Wpisać po rozkodowaniu pracy Czas pracy 90 minut Nazwisko KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW ROK SZKOLNY

Bardziej szczegółowo

Litowce i berylowce- lekcja powtórzeniowa, doświadczalna.

Litowce i berylowce- lekcja powtórzeniowa, doświadczalna. Doświadczenie 1 Tytuł: Badanie właściwości sodu Odczynnik: Sód metaliczny Szkiełko zegarkowe Metal lekki o srebrzystej barwie Ma metaliczny połysk Jest bardzo miękki, można kroić go nożem Inne właściwości

Bardziej szczegółowo

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką

Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Inżynieria materiałowa: wykorzystywanie praw termodynamiki a czasem... walka z termodynamiką Kilka definicji Faza Stan materii jednorodny wewnętrznie, nie tylko pod względem składu chemicznego, ale również

Bardziej szczegółowo

SZKŁO LABORATORYJNE. SZKŁO LABORATORYJNE (wg składu chemicznego): Szkło sodowo - wapniowe (laboratoryjne zwykłe)

SZKŁO LABORATORYJNE. SZKŁO LABORATORYJNE (wg składu chemicznego): Szkło sodowo - wapniowe (laboratoryjne zwykłe) SZKŁO LABORATORYJNE SZKŁO LABORATORYJNE (wg składu chemicznego): Szkło sodowo - wapniowe (laboratoryjne zwykłe) To połączenie tlenków: 13 20% tlenków alkalicznych, 6 12% tlenków grupy RO, 0,5 6% Al 2O

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA)

PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA) ISO 9001:2008, ISO/TS 16949:2002 ISO 14001:2004, PN-N-18001:2004 PVD-COATING PRÓŻNIOWE NAPYLANIE ALUMINIUM NA DETALE Z TWORZYWA SZTUCZNEGO (METALIZACJA PRÓŻNIOWA) *) PVD - PHYSICAL VAPOUR DEPOSITION OSADZANIE

Bardziej szczegółowo

Sprawdzian 1. CHEMIA. Przed próbną maturą (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30. Imię i nazwisko ...

Sprawdzian 1. CHEMIA. Przed próbną maturą (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30. Imię i nazwisko ... CHEMIA Przed próbną maturą 2017 Sprawdzian 1. (poziom rozszerzony) Czas pracy: 90 minut Maksymalna liczba punktów: 30 Imię i nazwisko... Liczba punktów Procent 2 Zadanie 1. Chlor i brom rozpuszczają się

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Techniki niskotemperaturowe w Inżynierii Mechaniczno Medycznej Zmiana własności ciał w temperaturach kriogenicznych Prowadzący: dr inż. Waldemar Targański Emilia

Bardziej szczegółowo

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery.

CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. CHEMIA klasa 1 Wymagania programowe na poszczególne oceny do Programu nauczania chemii w gimnazjum. Chemia Nowej Ery. Dział - Substancje i ich przemiany WYMAGANIA PODSTAWOWE stosuje zasady bezpieczeństwa

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie

Utrwalenie wiadomości. Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Utrwalenie wiadomości Fizyka, klasa 1 Gimnazjum im. Jana Pawła II w Sułowie Za tydzień sprawdzian Ciało fizyczne a substancja Ciało Substancja gwóźdź żelazo szklanka szkło krzesło drewno Obok podanych

Bardziej szczegółowo

BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE.

BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE. BADANIE WYNIKÓW NAUCZANIA Z CHEMII KLASA I GIMNAZJUM. PYTANIA ZAMKNIĘTE. 1. Którą mieszaninę można rozdzielić na składniki poprzez filtrację; A. Wodę z octem. B. Wodę z kredą. C. Piasek z cukrem D. Wodę

Bardziej szczegółowo

MIKROSYSTEMY. Ćwiczenie nr 2a Utlenianie

MIKROSYSTEMY. Ćwiczenie nr 2a Utlenianie MIKROSYSTEMY Ćwiczenie nr 2a Utlenianie 1. Cel ćwiczeń: Celem zajęć jest wykonanie kompletnego procesu mokrego utleniania termicznego krzemu. W skład ćwiczenia wchodzą: obliczenie czasu trwania procesu

Bardziej szczegółowo

1. Podstawowe prawa i pojęcia chemiczne

1. Podstawowe prawa i pojęcia chemiczne 1. PODSTAWOWE PRAWA I POJĘCIA CHEMICZNE 5 1. Podstawowe prawa i pojęcia chemiczne 1.1. Wyraź w gramach masę: a. jednego atomu żelaza, b. jednej cząsteczki kwasu siarkowego. Odp. 9,3 10 23 g; 1,6 10 22

Bardziej szczegółowo

SZKŁO, ciało bezpostaciowe o właściwościach mech. zbliżonych do ciała stałego, powstałe w wyniku przechłodzenia stopionych surowców, gł. miner. i in.

SZKŁO, ciało bezpostaciowe o właściwościach mech. zbliżonych do ciała stałego, powstałe w wyniku przechłodzenia stopionych surowców, gł. miner. i in. Szkła SZKŁO, ciało bezpostaciowe o właściwościach mech. zbliżonych do ciała stałego, powstałe w wyniku przechłodzenia stopionych surowców, gł. miner. i in. surowców nieorg., bez krystalizacji składników.

Bardziej szczegółowo

Transport jonów: kryształy jonowe

Transport jonów: kryształy jonowe Transport jonów: kryształy jonowe Jodek srebra AgI W 420 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie Frenkla podsieci anionowej, klastry

Bardziej szczegółowo

Test kompetencji z chemii do liceum. Grupa A.

Test kompetencji z chemii do liceum. Grupa A. Test kompetencji z chemii do liceum. Grupa A. 1. Atomy to: A- niepodzielne cząstki pierwiastka B- ujemne cząstki materii C- dodatnie cząstki materii D- najmniejsze cząstki pierwiastka, zachowujące jego

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 MATERIAŁOZNAWSTWO Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 PODRĘCZNIKI Leszek A. Dobrzański: Podstawy nauki o materiałach i metaloznawstwo K. Prowans: Materiałoznawstwo

Bardziej szczegółowo

ZAMRAŻANIE PODSTAWY CZ.2

ZAMRAŻANIE PODSTAWY CZ.2 METODY PRZECHOWYWANIA I UTRWALANIA BIOPRODUKTÓW ZAMRAŻANIE PODSTAWY CZ.2 Opracował: dr S. Wierzba Katedra Biotechnologii i Biologii Molekularnej Uniwersytetu Opolskiego Odmienność procesów zamrażania produktów

Bardziej szczegółowo

Metody łączenia metali. rozłączne nierozłączne:

Metody łączenia metali. rozłączne nierozłączne: Metody łączenia metali rozłączne nierozłączne: Lutowanie: łączenie części metalowych za pomocą stopów, zwanych lutami, które mają niższą od lutowanych metali temperaturę topnienia. - lutowanie miękkie

Bardziej szczegółowo

Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością.

Wiązania jonowe występują w układach złożonych z atomów skrajnie różniących się elektroujemnością. 105 Elektronowa teoria wiązania chemicznego Cząsteczki powstają w wyniku połączenia się dwóch lub więcej atomów. Już w początkowym okresie rozwoju chemii podejmowano wysiłki zmierzające do wyjaśnienia

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII KOD UCZNIA... WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII Termin: 20 marzec 2007 r. godz. 10 00 Czas pracy: 90 minut ETAP III Ilość punktów za rozwiązanie zadań Część I Część II Część III numer zadania numer

Bardziej szczegółowo

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab. Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Laboratorium inżynierii materiałowej LIM

Laboratorium inżynierii materiałowej LIM Laboratorium inżynierii materiałowej LIM wybrane zagadnienia fizyki ciała stałego czyli skrót skróconego skrótu dr hab. inż.. Ryszard Pawlak, P prof. PŁP Fizyka Ciała Stałego I. Wstęp Związki Fizyki Ciała

Bardziej szczegółowo

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Wykresy układów równowagi faz stopowych Ilustrują skład fazowy

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny z chemii w kl.1. I. Substancje i ich przemiany

Wymagania programowe na poszczególne oceny z chemii w kl.1. I. Substancje i ich przemiany Wymagania programowe na poszczególne oceny z chemii w kl.1 I. Substancje i ich przemiany Ocena dopuszczająca [1] Ocena dostateczna [1 + 2] zalicza chemię do nauk przyrodniczych wyjaśnia, dlaczego chemia

Bardziej szczegółowo

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Elektrolity polimerowe 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Zalety - Giętkie, otrzymywane w postaci folii - Lekkie (wysoka gęstość energii/kg)

Bardziej szczegółowo

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1 III Podkarpacki Konkurs Chemiczny 2010/2011 KOPKCh ETAP I 22.10.2010 r. Godz. 10.00-12.00 Zadanie 1 1. Jon Al 3+ zbudowany jest z 14 neutronów oraz z: a) 16 protonów i 13 elektronów b) 10 protonów i 13

Bardziej szczegółowo

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I...... Imię i nazwisko ucznia ilość pkt.... czas trwania: 90 min Nazwa szkoły... maksymalna ilość punk. 33 Imię

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

Metale i niemetale. Krystyna Sitko

Metale i niemetale. Krystyna Sitko Metale i niemetale Krystyna Sitko Substancje proste czyli pierwiastki dzielimy na : metale np. złoto niemetale np. fosfor półmetale np. krzem Spośród 115 znanych obecnie pierwiastków aż 91 stanowią metale

Bardziej szczegółowo

Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06

Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06 Granulowany węgiel aktywny z łupin orzechów kokosowych: BT bitumiczny AT - antracytowy 999-DL06 Granulowany Węgiel Aktywny GAC (GAC - ang. Granular Activated Carbon) jest wysoce wydajnym medium filtracyjnym.

Bardziej szczegółowo

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr.

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Typ wiązania w KBr... Typ wiązania w HBr... Zadanie 2. (2 pkt) Oceń poprawność poniższych

Bardziej szczegółowo

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu) Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu (na prawach rękopisu) W analityce procesowej istotne jest określenie stężeń rozpuszczonych w cieczach gazów. Gazy rozpuszczają się w cieczach

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 1 POWŁOKI KONWERSYJNE-TECHNOLOGIE NANOSZENIA WSTĘP TEORETYCZNY Powłoki konwersyjne tworzą się na powierzchni metalu

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska UKŁADY RÓWNOWAGI FAZOWEJ Równowaga termodynamiczna pojęcie stosowane w termodynamice. Oznacza stan, w którym makroskopowe

Bardziej szczegółowo

Zn + S ZnS Utleniacz:... Reduktor:...

Zn + S ZnS Utleniacz:... Reduktor:... Zadanie: 1 Spaliny wydostające się z rur wydechowych samochodów zawierają znaczne ilości tlenku węgla(ii) i tlenku azotu(ii). Gazy te są bardzo toksyczne i dlatego w aktualnie produkowanych samochodach

Bardziej szczegółowo

Poliamid (Ertalon, Tarnamid)

Poliamid (Ertalon, Tarnamid) Poliamid (Ertalon, Tarnamid) POLIAMID WYTŁACZANY PA6-E Pół krystaliczny, niemodyfikowany polimer, który jest bardzo termoplastyczny to poliamid wytłaczany PA6-E (poliamid ekstrudowany PA6). Bardzo łatwo

Bardziej szczegółowo

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG

dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG 3. POLIMERY AMORFICZNE dr hab. inż. Józef Haponiuk Katedra Technologii Polimerów Wydział Chemiczny PG Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego

Bardziej szczegółowo

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III

Nowoczesne metody metalurgii proszków. Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Nowoczesne metody metalurgii proszków Dr inż. Hanna Smoleńska Materiały edukacyjne DO UŻYTKU WEWNĘTRZNEGO Część III Metal injection moulding (MIM)- formowanie wtryskowe Metoda ta pozwala na wytwarzanie

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII KOD UCZNIA... WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII Termin: 16.03. 2010 r. godz. 10 00 Czas pracy: 90 minut ETAP III Ilość punktów za rozwiązanie zadań Część I Część II Część III numer zadania numer

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

Spis treści. Szkło kwarcowe - dane techniczne 3. Rury kwarcowe 5. Pręty kwarcowe 7. Szkło borokrzemowe - dane techniczne 8. Rury borokrzemowe 10

Spis treści. Szkło kwarcowe - dane techniczne 3. Rury kwarcowe 5. Pręty kwarcowe 7. Szkło borokrzemowe - dane techniczne 8. Rury borokrzemowe 10 Spis treści Szkło kwarcowe - dane techniczne Rury kwarcowe 5 Pręty kwarcowe 7 Szkło borokrzemowe - dane techniczne 8 Rury borokrzemowe 0 Kapilary borokrzemowe 5 Pręty borokrzemowe 6 Rury kolorowe borokrzemowe

Bardziej szczegółowo

-wszystkie substancje (pierwiastki lub zw chem) które biorą udział w reakcji chemicznej nazywamy reagentami

-wszystkie substancje (pierwiastki lub zw chem) które biorą udział w reakcji chemicznej nazywamy reagentami Zapis reakcji chemicznej co to są przemiany chemiczne oraz w jaki sposób możemy opisać zachodzące reakcje? wokół nas bezustannie zachodzą rozmaite przemiany przemiany podczas których powstaje nowa substancja,

Bardziej szczegółowo

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii: Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do

Bardziej szczegółowo

PL B1. INSTYTUT METALURGII I INŻYNIERII MATERIAŁOWEJ IM. ALEKSANDRA KRUPKOWSKIEGO POLSKIEJ AKADEMII NAUK, Kraków, PL

PL B1. INSTYTUT METALURGII I INŻYNIERII MATERIAŁOWEJ IM. ALEKSANDRA KRUPKOWSKIEGO POLSKIEJ AKADEMII NAUK, Kraków, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211075 (13) B1 (21) Numer zgłoszenia: 382853 (51) Int.Cl. C22C 5/08 (2006.01) B21D 26/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE

WPŁYW DODATKÓW STOPOWYCH NA WŁASNOŚCI STOPU ALUMINIUM KRZEM O NADEUTEKTYCZNYM SKŁADZIE WYDZIAŁ ODLEWNICTWA AGH Oddział Krakowski STOP XXXIV KONFERENCJA NAUKOWA Kraków - 19 listopada 2010 r. Marcin PIĘKOŚ 1, Stanisław RZADKOSZ 2, Janusz KOZANA 3,Witold CIEŚLAK 4 WPŁYW DODATKÓW STOPOWYCH NA

Bardziej szczegółowo

Zespół Szkół Samochodowych

Zespół Szkół Samochodowych Zespół Szkół Samochodowych Podstawy Konstrukcji Maszyn Materiały Konstrukcyjne i Eksploatacyjne Temat: OTRZYMYWANIE STOPÓW ŻELAZA Z WĘGLEM. 2016-01-24 1 1. Stopy metali. 2. Odmiany alotropowe żelaza. 3.

Bardziej szczegółowo

MARATON WIEDZY CHEMIA CZ. II

MARATON WIEDZY CHEMIA CZ. II MARATON WIEDZY CHEMIA CZ. II 1. Podaj liczbę elektronów, nukleonów, protonów i neuronów zawartych w następujących atomach: a), b) 2. Podaj liczbę elektronów, nukleonów, protonów i neutronów zawartych w

Bardziej szczegółowo

Układ okresowy pierwiastków chemicznych, budowa atomu. Na podstawie fragmentu układu okresowego pierwiastków odpowiedz na pytania:

Układ okresowy pierwiastków chemicznych, budowa atomu. Na podstawie fragmentu układu okresowego pierwiastków odpowiedz na pytania: Układ okresowy pierwiastków chemicznych, budowa atomu zestaw I Na podstawie fragmentu układu okresowego pierwiastków odpowiedz na pytania: Zad 1 (0-1pkt)Wskaż nazwę pierwiastka, który leży w drugiej grupie

Bardziej szczegółowo

Świat chemii cz. 1, rok szkolny 2016/17 Opis założonych osiągnięć ucznia

Świat chemii cz. 1, rok szkolny 2016/17 Opis założonych osiągnięć ucznia Świat chemii cz. 1, rok szkolny 2016/17 Opis założonych osiągnięć ucznia Osiągnięcia podstawowe Rodzaje i przemiany materii wymienia powtarzające się elementy podręcznika i wskazuje rolę, jaką odgrywają;

Bardziej szczegółowo

KONKURS CHEMICZNY KLAS TRZECICH GIMNAZJALNYCH ROK SZKOLNY 2011/2012

KONKURS CHEMICZNY KLAS TRZECICH GIMNAZJALNYCH ROK SZKOLNY 2011/2012 IMIĘ I NAZWISKO PUNKTACJA SZKOŁA KLASA NAZWISKO NAUCZYCIELA CHEMII I LICEUM OGÓLNOKSZTAŁCĄCE Inowrocław 19 maja 2012 im. Jana Kasprowicza INOWROCŁAW KONKURS CHEMICZNY KLAS TRZECICH GIMNAZJALNYCH ROK SZKOLNY

Bardziej szczegółowo

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska

Politechnika Gdańska, Inżynieria Biomedyczna. Przedmiot: BIOMATERIAŁY. Metody pasywacji powierzchni biomateriałów. Dr inż. Agnieszka Ossowska BIOMATERIAŁY Metody pasywacji powierzchni biomateriałów Dr inż. Agnieszka Ossowska Gdańsk 2010 Korozja -Zagadnienia Podstawowe Korozja to proces niszczenia materiałów, wywołany poprzez czynniki środowiskowe,

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 2. Na podstawie struktury cząsteczek wyjaśnij dlaczego N 2 jest bierny a Cl 2 aktywny chemicznie? 3. Które substancje posiadają budowę

Bardziej szczegółowo

KWASY I WODOROTLENKI. 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to:

KWASY I WODOROTLENKI. 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to: KWASY I WODOROTLENKI 1. Poprawne nazwy kwasów H 2 S, H 2 SO 4, HNO 3, to: 1. kwas siarkowy (IV), kwas siarkowy (VI), kwas azotowy, 2. kwas siarkowy (VI), kwas siarkowy (IV), kwas azotowy (V), 3. kwas siarkowodorowy,

Bardziej szczegółowo

Woda. Najpospolitsza czy najbardziej niezwykła substancja Świata?

Woda. Najpospolitsza czy najbardziej niezwykła substancja Świata? Woda Najpospolitsza czy najbardziej niezwykła substancja Świata? Cel wykładu Odpowiedź na pytanie zawarte w tytule A także próby odpowiedzi na pytania typu: Dlaczego woda jest mokra a lód śliski? Dlaczego

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Technologia ceramiki: -zaawansowanej -ogniotrwałej Jerzy Lis, Dariusz Kata Katedra Technologii Ceramiki i Materiałów Ogniotrwałych

Technologia ceramiki: -zaawansowanej -ogniotrwałej Jerzy Lis, Dariusz Kata Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Technologia szkła i ceramiki Technologia ceramiki: -zaawansowanej -ogniotrwałej Jerzy Lis, Dariusz Kata Katedra Technologii Ceramiki i Materiałów Ogniotrwałych PODSTAWOWE IMANENTNE WŁAŚCIWOŚCI TWORZYW

Bardziej szczegółowo

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią? Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja

Bardziej szczegółowo

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6)

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007 r. Kierownik

Bardziej szczegółowo

Wewnętrzna budowa materii - zadania

Wewnętrzna budowa materii - zadania Poniższe zadania rozwiąż na podstawie układu okresowego. Zadanie 1 Oceń poprawność poniższych zdań, wpisując P, gdy zdanie jest prawdziwe oraz F kiedy ono jest fałszywe. Stwierdzenie Atom potasu posiada

Bardziej szczegółowo

Materiały pomocnicze do przedmiotu Chemia I dla studentów studiów I stopnia Inżynierii Materiałowej

Materiały pomocnicze do przedmiotu Chemia I dla studentów studiów I stopnia Inżynierii Materiałowej Materiały pomocnicze do przedmiotu Chemia I dla studentów studiów I stopnia Inżynierii Materiałowej Opracowali: Jarosław Chojnacki i Łukasz Ponikiewski, Wydział Chemiczny, Politechnika Gdaoska, Gdaosk

Bardziej szczegółowo

nazywa wybrane elementy szkła i sprzętu laboratoryjnego oraz określa ich przeznaczenie (4)

nazywa wybrane elementy szkła i sprzętu laboratoryjnego oraz określa ich przeznaczenie (4) Wymagania na poszczególne oceny z chemii w klasie I Uczeń: I. Substancje i ich właściwości stosuje zasady bezpieczeństwa obowiązujące w pracowni chemicznej (2) zalicza chemię do nauk przyrodniczych (2)

Bardziej szczegółowo

KONKURS CHEMICZNY ROK PRZED MATURĄ

KONKURS CHEMICZNY ROK PRZED MATURĄ WYDZIAŁ CHEMII UMCS POLSKIE TOWARZYSTWO CHEMICZNE ODDZIAŁ LUBELSKI DORADCA METODYCZNY DS. NAUCZANIA CHEMII W LUBLINIE LUBELSKIE SAMORZĄDOWE CENTRUM DOSKONALENIA NAUCZYCIELI ODDZIAŁ W ZAMOŚCIU KONKURS CHEMICZNY

Bardziej szczegółowo

a) Sole kwasu chlorowodorowego (solnego) to... b) Sole kwasu siarkowego (VI) to... c) Sole kwasu azotowego (V) to... d) Sole kwasu węglowego to...

a) Sole kwasu chlorowodorowego (solnego) to... b) Sole kwasu siarkowego (VI) to... c) Sole kwasu azotowego (V) to... d) Sole kwasu węglowego to... Karta pracy nr 73 Budowa i nazwy soli. 1. Porównaj wzory sumaryczne soli. FeCl 2 Al(NO 3 ) 3 K 2 CO 3 Cu 3 (PO 4 ) 2 K 2 SO 4 Ca(NO 3 ) 2 CaCO 3 KNO 3 PbSO 4 AlCl 3 Fe 2 (CO 3 ) 3 Fe 2 (SO 4 ) 3 AlPO 4

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny

Wymagania programowe na poszczególne oceny Przedmiot: chemia Klasa: Ia, Ib Nauczyciel: Agata SROKA Wymagania programowe na poszczególne oceny I. Substancje i ich przemiany Ocena dopuszczająca [1] zalicza chemię do nauk przyrodniczych stosuje zasady

Bardziej szczegółowo

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE Przechowywanie cieczy kriogenicznych i rodzaje izolacji cieplnych Imię i nazwisko: Olga Gałązka i Mateusz Pawelec Rok akademicki: 2011/2012 Semestr: II magisterski

Bardziej szczegółowo

Szkło specjalne centrum obróbki mechanicznej szkła

Szkło specjalne centrum obróbki mechanicznej szkła Szkło specjalne centrum obróbki mechanicznej szkła 1 Szkło specjalne Szkło hartowane Szkło Półhartowane Szkło emaliowane Szkło emaliowane przy użyciu walca Szkło emaliowane METODĄ SITODRUKU centrum obróbki

Bardziej szczegółowo

MATERIAŁY KONSTRUKCYJNE

MATERIAŁY KONSTRUKCYJNE Stal jest to stop żelaza z węglem o zawartości węgla do 2% obrobiona cieplnie i przerobiona plastycznie Stale ze względu na skład chemiczny dzielimy głównie na: Stale węglowe Stalami węglowymi nazywa się

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. I. Substancje i ich przemiany. Ocena bardzo dobra. Ocena dostateczna. Ocena dopuszczająca.

Wymagania programowe na poszczególne oceny. I. Substancje i ich przemiany. Ocena bardzo dobra. Ocena dostateczna. Ocena dopuszczająca. Wymagania programowe na poszczególne oceny I. Substancje i ich przemiany Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra [1] [1 + 2] [1 + 2 + 3] [1 + 2 + 3 + 4] 1 zalicza chemię do

Bardziej szczegółowo

Teorie budowy szkieł. Nieuporządkowanej więźby ciągłej

Teorie budowy szkieł. Nieuporządkowanej więźby ciągłej SZKŁO BUDOWLANE Teorie budowy szkieł Krystalitowa Nieuporządkowanej więźby ciągłej CZWOROŚCIAN SiO4 Z czego zrobić szkło stosując przemysłową technologię topienia i przechłodzenia stopu Surowce szkłotwórcze

Bardziej szczegółowo