Konkurs kombinatoryczno-algorytmiczny KOALA Zadanie treningowe 2014/2015
|
|
- Marek Stachowiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Konkurs kombinatoryczno-algorytmiczny KOALA Zadanie treningowe 2014/ Trójkąty Trójkąt Sierpińskiego to fraktal generowany etapami w następujący sposób: Ile białych trójkątów będzie na szóstym etapie tworzenia fraktala? (A) mniej niż 100 (B) (C) (D) (E) więcej niż Wehikuł czasu Twój wehikuł czasu posiada tylko dwie instrukcje skoków w przyszłość: A: o rok, B: o sumę lat pokonanych wcześniej. Na przykład, aby przenieść się w czasie o sześć lat, należy posłużyć się ciągiem instrukcji: AAAB lub ABAB. Ilu co najmniej skoków potrzebujesz, aby przenieść się w czasie o 762 lata? (A) 12 (B) 16 (C) 20 (D) 21 (E) 22 1
2 3. Klejnoty Poniższa mapa zawiera informację o liczbie klejnotów, które można znaleźć w poszczególnych kwadratowych obszarach terenu. Wyobraź sobie, że znajdujesz się wewnątrz obszaru oznaczonego literą C i możesz poruszać się tylko w kierunku poziomym lub pionowym. Jaką największą liczbę klejnotów możesz znaleźć, wykonując trzy ruchy? (A) 11 (B) 12 (C) 13 (D) 14 (E) Sortowanie po trzy Na stole leżą obok siebie karty. Każda z nich oznaczona jest literą. Twoje zadanie polega na posortowaniu kart w kolejności alfabetycznej (A B C... ). Pojedyńczy ruch polega na odwróceniu kolejności trzech kolejnych kart. Dla przykładu układ B D C A w jednym ruchu możesz zastąpić układem C D B A lub B A C D. Który z poniższych zestawów kart można posortować w opisany sposób? (A) F B C D E A (B) C F A B E G D (C) C F A B G D E (D) C F G A E D H B (E) H B C F B D E G A 2
3 5. Prostokąty Kwadratowa siatka została podzielona na nie nakładające się na siebie nawzajem prostokąty. Informacja o polu prostokąta znajduje się w jednym z tworzących prosotkąt jednostkowych kwadatów. Twoje zadanie polega na odtworzeniu prostokątów na podstawie informacji o ich polach. Oto przykład: Jakie pole ma prostokąt zawierający jednostkowy kwadrat z x, przedstawiony na siatce na poniższym rysunku? (A) 2 (B) 3 (C) 4 (D) 6 (E) 8 3
4 6. Punkty widokowe Spacerujesz drogą w pobliżu wysokiego brzegu morza (klifu), przy którym usytuowanych jest siedem punktów widokowych. Liczby zaznaczone na rysunku obok punktów widokowych to informacja o łącznej liczbie minut, które potrzebujesz, by dotrzeć do klifu i wrócić na drogę (scieżkami zaznaczonymi liniami wykropkowanymi). Liczby zaznaczone przy drodze informują o tym, ile czasu trwałby spacer wzdłuż fragmentów drogi (zaznaczonego linią przerywaną), jeśli ominiesz dany punkt widokowy. Ile co najmniej minut będzie trwał spacer, jeśli chcesz zrobić zdjęcia w czterech punktach widokowych? Załóż, że spacer wzdłuż drogi trwałby 100 minut. (A) 125 (B) 126 (C) 127 (D) 128 (E) Teleturniej Uczestnicy teleturnieju otrzymali zadanie, które polega na tym, aby w jak najmniejszej liczbie ruchów spowodować, że wszystkie cyfry pewnej liczby będą równe. Każdy z uczestników teleturnieju ma do dyspozycji tablet. Naciskając odpowiednio nad lub pod wybraną cyfrą może zwiększyć lub zmniejszyć ją o 1 (o ile jest to możliwe). Oto przykład: Jeśli uczestnicy otrzymują liczbę 114, to rywalizację wygra ten, kto otrzyma liczbę 111, naciskając trzykrotnie poniżej cyfry jedności. Określ najmniejszą możliwą liczbę ruchów potrzebną do ujednolicenia wszystkich cyfr dla każdej z poniższych liczb:
5 9. Ładny widok W nowym projekcie urbanistycznego miasta zapisano, że każdy szereg nowych budynków musi mieć następującą własność estetyczną: sąsiednie budynki mają różnić się co do wysokości najwięcej jak to jest możliwe. Na przykład dla szeregu budynków, których planowane liczby pięter mają wynosić odpowiednio: 8, 4, 3, 2 i 1 układ przestrzenny może wyglądać tak: Pierwsze rozwiązanie (po lewej stronie) daje łączną sumę różnic wysokości = 9 pięter, a drugie (po prawej stroenie): =14 pięter. Okazuje się jednak, że można znaleźć bardziej optymalny układ. Jaka jest największa możliwa suma różnic wysokości dla szeregu budynków z poniższego rysunku? (A) 28 (B) 29 (C) 30 (D) 31 (E) 32 5
6 Domino w pętli Grasz w grę, używając klocków domino. Celem gry jest ułożenie pętli, składających się z trzech lub większej liczby klocków w taki sposób, aby cyfry na stykających się końcach klocków były identyczne. Poniższy rysunek ukazuje dwie pętle: jedna składa się z trzech klocków, a druga z czterech. Każdy z graczy w kolejnych ruchach wyciąga losowo jeden klocek ze stosu. Gra kończy się wówczas, gdy ktoś z graczy w momencie, gdy jest jego kolej, potrafi ułożyć jedną pętlę z wszystkich wyciągniętych wcześniej klocków. Dla przykładu: jeśli klockami domino, które trafiałyby do Ciebie byłyby kolejno: [1:4] [2:6] [2:4] [1:6] [3:0], to znaczy, że grę można było wygrać już po czterech ruchach odpowiednia pętla jest pokazana na rysunku wyżej. Dla każdego z poniższych układów, przedstawiających klocki ze stosu, które trafiałyby kolejno (liczymy od lewej do prawej i najpierw pierwszy wiersz) do Ciebie, określ liczbę ruchów (ciągnieć), po których możesz wygrać grę
7 Katarakty Znajdujesz się w punkcie A i rozpoczynasz spływ kajakiem po jednej z rzek. Równolegle do niej są położone trzy inne rzeki. Każda płynie w kierunku wschodnim, jak to pokazuje poniższy rysunek. Zaznaczono na nim podwójną pogrubioną linią niebezpieczne fragmenty katarakty. Nad każdą z nich zapisane są liczby określające trudność jej pokonania (parametr katarakty). Na rysunku zaznaczone są też liniami wykropkowanymi ścieżki łączące sąsiadujące rzeki. Twoje zadanie polega na określeniu maksymalnej sumy parametrów, dla trzech spływów kończących się odpowiednio w punktach B, C i D. Uwaga: Założenie jest takie, że po przeniesieniu kajaka do sąsiedniej rzeki, nie możesz już wrócić do rzeki położonej bardziej na północ. 12. B 13. C 14. D 7
8 Robot-bibliotekarz Szkoła otrzymała w prezencie robota, który ma służyć pomocą w bibliotece. Potrafi uporządkować książki stojące na półce. Obserwcja jego pracy pokazuje, że książki wybiera w sposób nieprzypadkowy, gdyż przenosi wybraną książkę zawsze na początek półki lub na jej koniec. Przykłady: Jeśli książki A B C stały na półce w kolejności B A C, to wystarczy, że robot przeniesie książkę A na początek. Jeśli książki stały w kolejności C B A, to robot przeniesie najpierw książkę A na początek, a później książkę C na koniec (lub najpierw C, a później A.). Każdy z poniższych ciągów liter jest ilustracją innej półki z książkami. Określ, ile książek co najmniej robot musi przenieść w każdym przypadku, aby książki były uporządkowane alfabetycznie (A B C... ). 15. F C A B D E 16. D E C A F B G H 17. D F A E C I G B J H Zadania pochodzą z zasobów konkursu Australian Informatics Competition. Tłumaczenie: Paweł Perekietka. 8
Matematyka test dla uczniów klas piątych
Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Asia postanowiła sprawdzić, ile czasu poświęca
XVII MISTRZOSTWA POLSKI
XVII MISTRZOSTWA POLSKI W ŁAMIGŁÓWKACH 19 stycznia 2013 r. ZADANIA PRZYKŁADOWE Podczas eliminacji do XVII Mistrzostw Polski w Łamigłówkach będzie do rozwiązania 14 zadao o zróżnicowanym stopniu trudności.
RUNDA 2 90 minut / 400 punktów
Imię:... Nazwisko:... XVI Mistrzostwa Polski w Rozwiązywaniu Łamigłówek RUND 9 minut / punktów. Tapa + punktów. Tapa-do-trzech punktów. Wieżowce + punktów. Wieżowce z lukami + 7 punktów. Pętla 7 + punktów.
XIV MISTRZOSTWA POLSKI
XIV MISTRZOSTWA POLSKI W ŁAMANIU GŁOWY 23 maja 2010 r. ZADANIA ELIMINACYJNE KILKA WAŻNYCH INFORMACJI: 1. Formularz odpowiedzi można wysłać tylko raz. 2. O kolejności miejsc decydują: suma punktów, a następnie
Kto jeszcze gra w domino?
Mirosław Dąbrowski Kto jeszcze gra w domino? Domino, choć wciąż jeszcze można jego zestawy kupić w sklepach z zabawkami, nie należy już chyba do bardzo popularnych dziecięcych rozrywek. Szkoda, bo gra
ELEMENTY GRY. 6 pionków, po jednym dla każdego gracza. Plansza. 6 zestawów kart (13 kart w każdym zestawie), po jednym dla każdego gracza
Gra dla 2-6 graczy w wieku 8-108 lat * Autor gry: Roberto Fraga Jak co roku, wielkie jezioro staje się areną rywalizacji najodważniejszych śmiałków z całego królestwa, którzy przyjeżdżają tu, aby wziąć
XVII MISTRZOSTWA POLSKI
XVII MISTRZOSTWA POLSKI W ŁAMIGŁÓWKACH 19 stycznia 2013 r. ZADANIA ELIMINACYJNE KILKA WAŻNYCH INFORMACJI: 1. Formularz odpowiedzi można wysład więcej niż raz. Pod uwagę brana będzie ostatnia wysłana w
Materiały dla finalistów
Materiały dla finalistów Malachoviacus Informaticus 2016 11 kwietnia 2016 Wprowadzenie Poniższy dokument zawiera opisy zagadnień, które będą niezbędne do rozwiązania zadań w drugim etapie konkursu. Polecamy
Na poniższym rysunku widać fragment planszy. Pozycja pionka jest oznaczona przez. Pola, na które może dojść (w jednym ruchu), oznaczone są.
Dwuwymiarowy Nim VII OIG zawody indywidualne, etap I. 8 XI 0-7 I 0 Dostępna pamięć: 6 MB. Jaś i Małgosia grają w nietypową grę. Odbywa się ona na planszy ograniczonej z dołu i z lewej, a nieskończonej
Zadanie 1 - MŁODZIKI
Zadanie 1 - MŁOZIKI klasy 2,, 4 - szkoła podstawowa 28.09.2012 r. OMINO Zapewne widzieliście i graliście kiedyś w OMINO. Przed przystąpieniem do rozwiązywania zadań tej sesji zagrajcie z najbliższymi w
XVII edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2009/2010
XVII edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2009/2010 Etap III Klasa IV Ola, Jacek i Paweł kupowali jednakowe książki, zeszyty i gumki. Ola za 2 książki, 4 zeszyty i jedną
r., godz Czas trwania 60 minut. Przepisz tutaj Twój kod
zdolny Ślązaczek MATEMATYKA XVI DOLNOŚLĄSKI KONKURS DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH II ETAP - POWIATOWY 13.11.2018 r., godz. 12 00 Czas trwania 60 minut TWÓJ KOD Przepisz tutaj Twój kod Przepisz tutaj Twój
Egzamin ósmoklasisty Matematyka
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka DATA: 16 kwietnia 2019 r. GODZINA
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012 Etap II Klasa IV Marcin, Michał i Bartek będąc w gościach zostali poczęstowani trzema rodzajami ciast: sernikiem, keksem
Gra planszowa dla 2 5 graczy w wieku powyżej 4 lat
ZAWARTOŚĆ PUDEŁKA: 1 plansza 1 dwunastościenna kostka 36 kartoników ze zdjęciami potwora Nessie 1 woreczek 12 figurek fotografów (3 żółte, 3 czerwone, 2 niebieskie, 2 czarne i 2 zielone) 1 figurka potwora
b) bc a Rys. 1. Tablice Karnaugha dla funkcji o: a) n=2, b) n=3 i c) n=4 zmiennych.
DODATEK: FUNKCJE LOGICZNE CD. 1 FUNKCJE LOGICZNE 1. Tablice Karnaugha Do reprezentacji funkcji boolowskiej n-zmiennych można wykorzystać tablicę prawdy o 2 n wierszach lub np. tablice Karnaugha. Tablica
Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku
KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012 Finał 20 kwietnia 2012 roku Zestaw dla uczniów klas III Uczeń Liczba zdobytych punktów Drogi Uczniu, witaj na finale konkursu Omnibus Matematyczny. Przeczytaj
Podstawy programowania, Poniedziałek , 8-10 Projekt, część 3
Podstawy programowania, Poniedziałek 13.05.2015, 8-10 Projekt, część 3 1. Zadanie Projekt polega na stworzeniu logicznej gry komputerowej działającej w trybie tekstowym o nazwie Minefield. 2. Cele Celem
Robo - instrukcja obsługi
Robo - instrukcja obsługi Robo jest grą logiczną, której celem jest doprowadzenie robota do wyjścia z labiryntu. Aby tego dokonać, należy zaprogramować go przy użyciu dostępnych komend. ZAPOZNAMY SIĘ Z
II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R.
II POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH SZKÓŁ PODSTAWOWYCH CO DWIE GŁOWY TO NIE JEDNA 2012 R. I ETAP KOD. PIRAMIDA ( 4 pkt ) Dodaj sąsiednie liczby w każdym wierszu i wejdź na szczyt piramidy.
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2011/2012
XX edycja Międzynarodowego Konkursu Matematycznego PIKOMA rok szkolny 2011/2012 Etap I Klasa IV Zastąp znaki zapytania znakami dodawania, odejmowania, mnożenia i dzielenia w taki sposób, aby wyniki obliczeń
Złożoność obliczeniowa zadania, zestaw 2
Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze
XVII Mistrzostwa Polski W Łamigłówkach. Instrukcje. Bonus:
XVII Mistrzostwa Polski W Łamigłówkach Instrukcje Bonus: w każdej rundzie za poprawne rozwiązanie wszystkich zadań przed czasem zawodnik otrzymuje dodatkowe 2 pkt. za każdą pełną minutę XVII Mistrzostwa
CZĘŚĆ 1 TEST KWALIFIKACYJNY Z PREDYSPOZYCJI DO ZAWODU ARCHITEKTA SUMA MAKS. 40 C D E F G H. ZADANIE A Dziewczynka z zapałkami 2017
TABELA PUNKTACJI. WYPEŁNIA WYDZIAŁOWA KOMISJA KWALIFIKACYJNA ZADANIE A B PRZYZNANE PUNKTY PODPIS SPRAWDZENIE TEST KWALIFIKACYJNY Z PREDYSPOZYCJI DO ZAWODU ARCHITEKTA PODPISY GDAŃSK, 10 CZERWCA 017 C D
INSTRUKCJA. Gra dla 2 graczy w wieku 8-108 lat
INSTRUKCJA Gra dla 2 graczy w wieku 8-108 lat ELEMENTY GRY Sakiewka z 45 klejnotami (3 zielone, 6 fioletowych, 9 żółtych, 12 czerwonych, 15 niebieskich) 49 kart: 24 karty postaci (po 12 dla każdego gracza)
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny
Cel gry: Gracze starają się ułożyć słowa z takimi literami i na takich polach planszy, które pozwolą zdobyć jak największą liczbę punktów.
INSTRUKCJA SCRIBA TRAVEL Opis gry: SCRIBA TRAVEL to gra słowna dla 2 4 osób. Naczelną zasadą gry jest układanie przez graczy słów z wylosowanych tabliczek z literami. Słowa układa się na planszy w pionie
T Z A A R G I P F. Kris Burm. Deutsch... 3 English... 7 Français Italiano Nederlands Español Polski... 27
Kris Burm G I P F Deutsch... 3 English... 7 Français... 11 Italiano... 15 Nederlands... 19 Español... 23 Polski... 27 Polski 27 Tzaar, Tzarra i Tott chroń swoją trójcę! TZAAR to druga gra projektu GIPF.
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 0/03 Seria IV październik 0 rozwiązania zadań 6. Dla danej liczby naturalnej n rozważamy wszystkie sumy postaci a b a b 3 a 3 b 3 a b...n
Konkurs dla gimnazjalistów Etap szkolny 12 grudnia 2013 roku
Konkurs dla gimnazjalistów Etap szkolny 1 grudnia 01 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 1. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
AKADEMIA ŁAMANIA GŁOWY Część I KALEJDOSKOP --0--
AKADEMIA ŁAMANIA GŁOWY Część I KALEJDOSKOP W pierwszej części Akademii Łamania Głowy prezentujemy te łamigłówki, których rozwiązywania nauczycie się w następnych częściach. y są różne różne zadania, różne
Zadania z ułamkami. Obliczenia czasowe
Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały
Temat 7. Najlżejsze i najcięższe algorytmy sortowania
Temat 7 Najlżejsze i najcięższe algorytmy sortowania Streszczenie Komputery są często używane porządkowania różnych danych, na przykład nazwisk (w porządku alfabetycznym), terminów spotkań lub e-maili
~ A ~ 1. Dany jest trójkąt prostokątny o bokach długości 12, 16 i 20. Zmniejszamy długość każdego boku o 8. Wtedy:
GIM-. Dany jest trójkąt prostokątny o bokach długości 2, 6 i 20. Zmniejszamy długość każdego boku o 8. Wtedy: I. Powstanie trójkąt o polu równym połowie pola trójkąta pierwotnego II. Pole nowego trójkąta
Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum
1 Przykładowe zadania na kółko matematyczne dla uczniów gimnazjum Zagadnienia, które uczeń powinien znać przy rozwiązywaniu opisanych zadań: zastosowanie równań w zadaniach tekstowych, funkcje i ich monotoniczność,
WOJEWÓDZKI KONKURS MATEMATYCZNY
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2018/2019 Schemat punktowania zadania zamknięte Za każdą poprawną odpowiedź uczeń otrzymuje 1 punkt. Numer zadania Poprawna odpowiedź
Instrukcje dla zawodników
Płock, 17 marca 2018 r. Instrukcje dla zawodników Arkusze otwieramy na wyraźne polecenie komisji. Wszystkie poniższe instrukcje zostaną odczytane i wyjaśnione. 1. Arkusz składa się z 3 zadań. 2. Każde
QUIZ O ŚWIECIE INSTRUKCJA WARIANT I
INSTRUKCJA QUIZ O ŚWIECIE WARIANT I rekwizyty: 1) karty pytań i odpowiedzi - 97 szt. 2) karty liter a, b, c - 4 x 3 szt. 3) karta z nazwami działów - 1 szt. 4) pionki do gry - 4 szt. 5) kostka do gry 6)
Wstęp Sterowanie Utworzenie, wybór i kasowanie gracza. utworzenia nowego gracza Nowy gracz Nastawienie gracza
Wstęp Użytkownik znajduje się na Dzikim Zachodzie a jego zadaniem jest zdobyć wszystkie 15 części totemu, który blade twarze wykradły Indianom. W każdej części miasta na gracza czekają liczne zadania w
PROGRAMOWANIE W C++ ZADANIA
PROGRAMOWANIE W C++ ZADANIA Włodzimierz Gajda Rozdział 7 PĘTLE 7.1 PĘTLA FOR: rysowanie wzorków. ZADANIE 7.1.1 Napisz program drukujący na ekranie 19 gwiazdek: ******************* ZADANIE 7.1.2 Napisz
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_7) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
Pzetestuj działanie pętli while i do...while na poniższym przykładzie:
Pzetestuj działanie pętli while i do...while na poniższym przykładzie: Zadania pętla while i do...while: 1. Napisz program, który wczytuje od użytkownika liczbę całkowitą, dopóki podana liczba jest mniejsza
SAMOGŁOSKI I SPÓŁGŁOSKI
INSTRUKCJA SAMOGŁOSKI I SPÓŁGŁOSKI gra edukacyjna w 2 wariantach Gra I dla 2 4 graczy rekwizyty: 1) tabliczki z samogłoskami - 36 szt. 2) tabliczki ze spółgłoskami - 70 szt. 3) tabliczki Joker - 2 szt.
REGULAMIN I MIĘDZYKLASOWEGO TURNIEJU W SCRABBLE 2016/2017
REGULAMIN I MIĘDZYKLASOWEGO TURNIEJU W SCRABBLE 2016/2017 1. Organizatorem turnieju jest Gimnazjum im. J. Piłsudskiego w Sierakowicach. 2. Turniej jest adresowany do wszystkich uczniów (kl. I, II, III)
Ćw. IV. Tabele przestawne
Ćw. IV. Tabele przestawne Przykład 1. Dysponujemy raportem w formacie tabeli (Arkusz: Tabele Przestawne ) o trzech kolumnach zawierających: nazwę produktu, kategorie, do której produkt ten należy, oraz
EGZAMIN MATURALNY Z INFORMATYKI
ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY Instrukcja dla zdającego CZĘŚĆ II Czas pracy 50 minut.
WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH
Etap szkolny 16 listopada 2011 r. Instrukcja dla ucznia Godzina 10.00 1. Sprawdź, czy zestaw zawiera 7 stron. Kod ucznia. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i
PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:
PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,
PRÓBNY EGZAMIN ÓSMOKLASISTY Matematyka
UZUPEŁNIA UCZEŃ KOD UCZNIA PESEL PRÓBNY EGZAMIN ÓSMOKLASISTY Matematyka Instrukcja dla ucznia 1. Sprawdź, czy na kolejno ponumerowanych 16 stronach arkusza są wydrukowane 22 zadania. 2. Sprawdź, czy do
Dobble? Co to takiego?
SZALONA GRA WYMAGAJĄCA REFLEKSU OD 2 DO 8 GRACZY OD 6. ROKU ŻYCIA GWIEZDNE WOJNY ZASADY GRY Dobble? Co to takiego? Gra Dobble składa się z 55 kart. Na każdej z nich znajduje się 8 różnych symboli z puli
INSTRUKCJA. zabawka i gra rekomendowany wiek: od lat 5 liczba graczy: 1-5. Zawartość pudełka: 1. Elementy domina (kamienie) - 56 szt. 2.
INSTRUKCJA zabawka i gra rekomendowany wiek: od lat 5 liczba graczy: 1-5 Zawartość pudełka: 1. Elementy domina (kamienie) - 56 szt. 2. Instrukcja Po rozpakowaniu należy sprawdzić zawartość z listą zawartości
~ A ~ PANGEA KONKURS MATEMATYCZNY
PANGEA KONKURS MATEMATYCZNY Piątek, 17kwietnia 2015 Czas pracy: 90 minut 1. Ogólne zasady 1.1 W czasie testu nie wolno używać kalkulatorów ani innych pomocy naukowych. 1.2 Zadania mają formę testu jednokrotnego
Zadanie 4. Siedem osób siedzi przy okrągłym stole na miejscach ponumerowanych w prawo od 1 do 7. Numery miejsc jednocześnie stanowią numery graczy.
Zadanie. Pewną niewiadomą liczbę trzycyfrową pomnożono przez drugą liczbę trzycyfrową utworzoną z tych samych cyfr, zapisanych w odwrotnej kolejności. W wyniku mnożenia otrzymano liczbę 25020. Znajdź niewiadome
Aby utworzyć tabelę przestawną należy ustawić aktywną komórkę na dowolnej komórce tabeli z danymi i wybrać z
Tabele przestawne Przykład 1. Dysponujemy raportem w formacie tabeli (Arkusz: Tabele Przestawne ) o trzech kolumnach zawierających: nazwę produktu, kategorie, do której produkt ten należy, oraz jego sprzedaż
Konkurs dla gimnazjalistów Etap szkolny 5 grudnia 2014 roku
Konkurs dla gimnazjalistów Etap szkolny 5 grudnia 014 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 1. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2015/2016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 14 stron.
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 4/14 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego
Kod ucznia Data urodzenia ucznia Dzień miesiąc rok V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych ETAP REJONOWY Rok szkolny 01/016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 1
ELEMENTY GRY NAJLEPSZA GRA KARCIANA Nominacja GOLDEN GEEK. 5 pyszczków jamników. 12 tajnych zadań (używane są w jednym z wariantów gry)
autor: David Short ilustracje: Maciej Szymanowicz 2 014 NAJLEPSZA GRA KARCIANA Nominacja GOLDEN GEEK ELEMENTY GRY 5 pyszczków jamników 12 tajnych zadań (używane są w jednym z wariantów gry) 5 8 8 5 Na
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Naklejka. Składniki. Przygotowanie do gry
Gracze poprowadzą lud wyrosły z żyznej Mezopotamii do cywilizacji. Ten, który sprawniej zajmie się rozwojem kultury, handlu, rolnictwa, polityki i wojny oraz wybuduje wyznawcom zigguraty, zwycięży. Składniki
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 3/10 indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
EGZAMIN MATURALNY Z INFORMATYKI
WPISUJE ZDAJĄCY NUMER UCZNIA EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY CZĘŚĆ I ARKUSZ EGZAMINACYJNY PROJEKTU INFORMATURA DATA: 13 LUTEGO 2015 R. CZAS PRACY: 60 MINUT LICZBA PUNKTÓW DO UZYSKANIA:
EGZAMIN Z MATEMATYKI
Zespół Społecznych Szkół Ogólnokształcących Bednarska im. Maharadży Jam Saheba Digvijay Sinhji Społeczne Gimnazjum nr 20 NUMER Dysleksja A GRUPA EGZAMIN Z MATEMATYKI Witaj na egzaminie do naszego gimnazjum.
P o w o d z e n i a!
Powiatowy Konkurs Matematyczny Dla uczniów klas V Etap finałowy Imię i nazwisko Szkoła Miejscowość Gratulujemy Ci zakwalifikowania się do etapu finałowego konkursu. Na rozwiązanie 17 zadań masz 75 minut.
XIX MISTRZOSTWA POLSKI W ŁAMIGŁÓWKACH INSTRUKCJE. 1 marca 2015 r. KILKA WAŻNYCH INFORMACJI:
XIX MISTRZOSTWA POLSKI W ŁAMIGŁÓWKACH 1 marca 2015 r. INSTRUKCJE KILKA WAŻNYCH INFORMACJI: 1. Formularz odpowiedzi można wysłać więcej niż raz. Pod uwagę brana będzie ostatnia wysłana w regulaminowym czasie
ELEMENTY GRY PRZYGOTOWANIE DO GRY
Czy pandy mieszkają tylko w górach i lasach? A może też na pustyni? Czy miodożer je tylko rośliny, czy też lubi przekąsić czasem coś innego? Czy świnka wietnamska waży więcej niż dziecięcy rower, ale mniej
Jarosław Wróblewski Matematyka Elementarna, zima 2014/15
Ćwiczenia 0.10.014 Powtórka przed sprawdzianem nr 1. Wzory skróconego mnożenia dwumian Newtona procenty. Postęp arytmetyczny i geometryczny. Ćwiczenia 138.10.014 Sprawdzian nr 1: 1.10.014 godz. 8:15-8:40
VII Mistrzostwa Dolnego Śląska w Sudoku - Eliminacje SP7/GIM/LIC str. 1. imię i nazwisko:... kl... szkoła:... 6 pkt. 3 pkt 4 pkt.
VII Mistrzostwa Dolnego Śląska w Sudoku - Eliminacje SP/GIM/LIC str. imię i nazwisko:... kl.... szkoła:... pkt pkt pkt pkt pkt pkt pkt NIEREGULARNE DIAGONALNE Dodatkowa reguła: na dwóch zaznaczonych przekątnych
Bednarska Szkoła Podstawowa Terytorium Raszyńska EGZAMIN Z MATEMATYKI. do klasy siódmej. na rok szkolny 2018/2019. Czas pisania: 75 minut.
Bednarska Szkoła Podstawowa Terytorium Raszyńska NUMER Dysleksja EGZAMIN Z MATEMATYKI do klasy siódmej na rok szkolny 2018/2019 Witaj na egzaminie! Nie otwieraj jeszcze egzaminu! Poczekaj na sygnał z naszej
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.
ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_1) Czas pracy: 100 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:
1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 2015 r. zawody II stopnia (rejonowe)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 24 stycznia 205 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 3 zadań.
Zestaw 1-1 Organizacja plików: Oddajemy tylko źródła programów (pliki o rozszerzeniach.cpp)!!!
Zestaw 1-1 1. Napisz program pobierający od użytkownika liczbę całkowitą R (R>1) i liczbę rzeczywistą dodatnią S, a następnie informujący ile kolejnych liczb z ciągu 1, R-1, R 2-2, R 3-3, R 4-4, należy
ETAP SZKOLNY III Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego. Arkusz Szkoła
Arkusz Szkoła Informacje do zadań 1 4 Bartek, uczeń klasy 6a, dojeżdża do szkoły tramwajem, którego trasę przedstawiono na poniższym rysunku. Bartek, jadąc do szkoły, wsiada na przystanku oznaczonym literą
Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera
III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R.
III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. CZĘŚĆ I 7 KONKURENCJI ( CZAS 45 MINUT) DO ZDOBYCIA 25 PUNKTÓW KWADRAT MAGICZNY (3 pkt) INTRUZ (4 pkt) PIRAMIDA (3
Szkolna Liga Matematyczna zestaw nr 4 dla klasy 3
zestaw nr 4 dla klasy 3 Muchy mają po 6 nóg. Ile par butów potrzebuje rodzina much złożona z mamy, taty i dziecka? Jeśli teraz wskazówka minutowa zegarka jest na czwórce, to za ile minut będzie na ósemce?
Elementy gry. Cel gry. Dla 1 do 4 graczy, w wieku od 6 do 116 lat. Gra autorstwa Antoine a Bauzy, zilustrowana przez Stéphana Escapę.
Gra autorstwa Antoine a Bauzy, zilustrowana przez Stéphana Escapę. Dla 1 do 4 graczy, w wieku od 6 do 116 lat Elementy gry 26 kart Kanałów Cel gry 15 kart Kotów 2 karty Opiekunów Celem gry jest zdobycie
Bukiety matematyczne dla szkoły podstawowej
Bukiety matematyczne dla szkoły podstawowej http://www.mat.uni.torun.pl/~kolka/ 8 X 2002 Bukiet 1 Dany jest sześciokąt ABCDEF, którego wszystkie kąty są równe 120. Proste AB i CD przecinają się w punkcie
TABELA ODPOWIEDZI. kod ucznia
MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów prowadzonych w szkołach innego typu województwa małopolskiego Rok szkolny 018/019 ETAP SZKOLNY 5 października
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 29 PAŹDZIERNIKA 2013 R. 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte
ELEMENTY GRY CEL GRY. 56 kart akcji (po 2 karty o wartości 1-7 w każdym kolorze) 50 kart zadań
08 NAGRODA RODZICÓW USA Wszystko albo nic ELEMENTY GRY kart akcji (po karty o wartości - w każdym kolorze) 0 kart zadań CEL GRY Wszystko albo nic to gra kooperacyjna, czyli oparta na współpracy. Macie
WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku
WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu
Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów gimnazjów województwa kujawsko-pomorskiego
Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów gimnazjów województwa kujawsko-pomorskiego Informacja o przygotowaniu zestawu dla ucznia na etapie szkolnym Dla każdego ucznia należy: 1. wydrukować
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_5) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
do instrukcja while (wyrażenie);
Instrukcje pętli -ćwiczenia Instrukcja while Pętla while (póki) powoduje powtarzanie zawartej w niej sekwencji instrukcji tak długo, jak długo zaczynające pętlę wyrażenie pozostaje prawdziwe. while ( wyrażenie
IV MISTRZOSTWA POLSKI W SUDOKU
IV MISTRZOSTWA POLSKI W SUDOKU Warszawa, 2009 r. ZADANIA TRENINGOWE, CZĘŚĆ I --//-- Zadania pochodzą z I i z III mistrzostw świata w sudoku. (2006 Lucca we Włoszech, 2008 - Goa w Indiach) --//-- Przy zadaniach
Tworzywo. 4 karty do zapisywania wyników 1 karta rundowa 4 pisaki
Phil Walker-Harding 100 krzyżyków 1000 skarbów! Gracze: 2-4 osób Wiek: powyżej 8 lat Czas trwania: ok. 20 minut Tworzywo 47 kart ze skarbami W każdym kolorze (liliowym, pomarańczowym, zielonym, szarym)
Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym.
Praktyczne przykłady wykorzystania GeoGebry podczas lekcji na II etapie edukacyjnym. Po uruchomieniu Geogebry (wersja 5.0) Pasek narzędzi Cofnij/przywróć Problem 1: Sprawdź co się stanie, jeśli połączysz
Ciekawe zadania o... liczbach całkowitych poziom 3
1/9 Małgorzata Rucińska-Wrzesińska Ciekawe zadania o... liczbach całkowitych poziom 3 Zadanie 1 Zapisz pięć liczb całkowitych co najmniej trzycyfrowych oraz liczby do nich przeciwne. Następnie uszereguj
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019
EGZAMIN ÓSMOKLASISTY od roku szkolnego 2018/2019 MATEMATYKA Przykładowy arkusz egzaminacyjny (EO_4) Czas pracy: do 150 minut GRUDZIEŃ 2017 Centralna Komisja Egzaminacyjna Warszawa Zadanie 1. (0 1) Z okazji
Przykład 1. (Arkusz: Sortowanie 1 )
Przykład 1. (Arkusz: Sortowanie 1 ) W poniższej tabeli znajduje się 10 nazwisk pracowników pewnej firmy, ich miesięczna płaca oraz roczna premia jaką otrzymali. Osoby te chcielibyśmy posortować wg nazwisk
Gra logiczna dla 2 5 osób Czas rozgrywki około 45 minut Wiek od 7 lat
Qubix Gra logiczna dla 2 5 osób Czas rozgrywki około 45 minut Wiek od 7 lat Zawartość pudełka: 5 dwustronnych plansz graczy 75 klocków w pięciu kolorach 5 znaczników punktacji plansza punktacji instrukcja
Konkurencje sportowo- matematyczne.
Konkurencje sportowo- matematyczne. Wersja dla sędziów. Klasy IV VI do udziału w zawodach wystawiają 5 reprezentantów z każdej klasy. Punktacja za każdy wyścig I miejsce 5 pkt. II miejsce 3 pkt. III miejsce
Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach.
Lista NR 6 Przedstaw obliczenia we wszystkich zadaniach. Zad 1. (0-1) Długość przekątnej prostokąta przedstawionego na rysunku jest równa A. 12 B. 16 C. 20 D. 24 Zad 2. (0-2) Przedstawiony na rysunku trójkąt
KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2016/2017
Drogi Uczniu, KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2016/2017 Finał 5 maja 2017 r. Zestaw dla uczniów klas VI witaj na finale konkursu Omnibus Matematyczny. Przeczytaj uważnie instrukcję i postaraj
Kategoria Szkoły podstawowe
Kategoria Szkoły podstawowe Gdyby iść z punktu Y na NE, trafiłoby się na punkt z Twojej mapy, którego numer jest o 1 większy od kwadratu pewnej liczby naturalnej. Punkt Y leży w odległości 3070 dm od PK