Część VI. cz.6, p.1. A. Wieloch, Zakład Fizyki Gorącej Materii IF UJ

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Część VI. cz.6, p.1. A. Wieloch, Zakład Fizyki Gorącej Materii IF UJ"

Transkrypt

1 Część VI Sprzężenie zwrotne Wzmacniacz operacyjny (WO) układy ze wzmacniaczem operacyjnym i ujemnym sprzężeniem zwrotnym układy ze wzmacniaczem operacyjnym i dodatnim sprzężeniem zwrotnym cz.6, p.1 A. Wieloch, Zakład Fizyki Gorącej Materii IF UJ

2 Sprzężenie zwrotne Sprzężeniem zwrotnym nazywa się oddziaływanie skutku na przyczynę. Regulator odśrodkowy w maszynie parowej (James Watt 1788) cz.6, p.2

3 Sprzężenie zwrotne W elektronice sprzężenie zwrotne pozwala projektować układy o określonych własnościach. Stosuje się je dla wzmacniaczy. Wzmacniacz Wzmacniacz ze sprzężeniem zwrotnym Część sygnału wyjściowego βu2, zwana cz.6, p.3 sygnałem zwrotnym, zostaje skierowana do wejścia układu i zsumowana z sygnałem wejściowym.

4 Sprzężenie zwrotne (przypadek K>0, β<0 lub β>0) Kt Układ równoważny do tego po lewej stronie slajdu Dla węzła sumującego: u=u1 +β u2 u2 =K u=k (u 1 +βu 2) K u1 czyli: u2 = (1 β K ) a nowe wzmocnienie Kt: u2 K Kt= = u1 (1 β K) cz.6, p.4 Jeżeli wzmocnienie K jest bardzo duże, tak że K >> 1, to wzmocnienie całkowite takiego układu jest określone przez układ sprzęgający i nie zależy od K: 1 K t β

5 Przykład realzacji sprzężenia zwrotnego Dzielnik napięcia jako układ sprzęgający: βu 2 u2 βu 2 u2 R1=1 k Ω R2 =10 k Ω zatem: niech K= K Kt= = = = β K zmieniamy K o 100%, K= K Kt= = = = β K Wzmocnienienie układu zmieniło się jedynie o 0.005%! cz.6, p.5

6 Sprzężenie zwrotne Można wyróżnić trzy podstawowe przypadki sprzężenia zwrotnego: Kt= 1 1 β K cz.6, p.6 1) β<0 ujemne sprzężenie zwrotne 2) 0<β<1/K dodatnie sprzężenie zwrotne 3) β=1/k Kt.

7 Sprzężenie zwrotne Ujemne: Fazy sygnału wejściowego i sygnału sprzężenia zwrotnego są przeciwne ( <0). Całkowite wzmocnienie układu mniejsze od wzmocnienia samego wzmacniacza. duża stabilność pracy układu. parametry układu ze wzmacniaczem o dużym wzmocnieniu zależą wyłącznie od parametrów układu sprzężenia zwrotnego, a te mogą być bardzo stabilne (układy sprzęgające buduje się często tylko z elementów biernych). zmniejszają się szumy i zniekształcenia sygnałów. zwiększa się górna częstotliwość graniczna (szersze pasmo przenoszenia). modyfikacja impedancji wejściowej i wyjściowej. cz.6, p.7

8 Sprzężenie zwrotne Dodatnie: Fazy sygnału wejściowego i sygnału sprzężenia zwrotnego są zgodne ( >0). Efektywne wzmocnienie ulega zwiększeniu. Układy z K < 1 stosuje się rzadko z uwagi na małą stabilność pracy oraz wzrost zniekształceń sygnałów. Przypadek szczególny: jeżeli K 1 to oczekujemy, że wzmocnienie dążyć będzie do nieskończoności. W rzeczywistości wzrost wzmocnienia jest ograniczony sygnał wyjściowy nie może być większy niż napięcie zasilające wzmacniacz. W układach takich dzięki silnemu sprzężeniu następuje generacja drgań co wykorzystywane jest do budowy generatorów. cz.6, p.8

9 Wzmacniacz operacyjny historia lata 20 te XX w. zauważono, że wzmacniacz oraz odpowiedni układ rezystorów, kondensatorów umożliwia wykonywanie prostych operacji matematycznych: +,. następnie rozwinięto tę technikę na tyle, że można było wykonywać bardziej złożone operacje matematyczne (komputer analogowy): d, dt... dt, /,..., log (...), etc. WW2 liczenie trajektorii pocisków etc. w latach 40 tych pierwszy lampowy wzmacniacz, wtedy też uznano nazwę wzmacniacz operacyjny pojawia się pierwszy monolityczny wz. op. 741 cz.6, p.9

10 Wzmacniacz operacyjny zastosowania cz.6, p.10

11 Wzmacniacz operacyjny Wzmacniacz operacyjny jest to wzmacniacz o bardzo dużym wzmocnieniu napięciowym (AOL), który posiada dwa wejścia =+15 V i jedno wyjście. Jedno z wejść ( ) nosi nazwę odwracającego sygnał wyjściowy jest przesunięty w fazie o 180o względem sygnału przyłożonego do tego wejścia. Drugie 15 V = wejście (+) nazywa się nieodwracającym sygnał albo: wyjściowy jest zgodny w fazie z sygnałem podanym na to wejście. Wzmacniacz operacyjny realizuje funkcję: v o= A OL (v + v ) Wzmacniacz operacyjny jest przeznaczony zwykle do pracy z zewnętrznym obwodem sprzężenia zwrotnego, które decyduje o głównych własnościach całego układu. cz.6, p.11 vo

12 Idealny wzmacniacz operacyjny Posiada następujące własności: nieskończenie duże wzmocnienie napięciowe Aol=, nieskończenie duża rezystancja wejściowa Rin=, rezystancja wyjściowa równa zeru Rout=0, nieskończenie szerokie pasmo przenoszenia częstotliwości (od 0 do ), Pamiętając o powyższch własnościach WO (wzmacniacz operacyjny) można przeprowadzać prostą (lecz dokładną) analizę działania obwodów zbudowanych na jego bazie. cz.6, p.12

13 Wzmacniacz operacyjny obwód zastępczy na podstawie cechy Rin= : WO nie pobiera prądu, iin=0 na podstawie cechy Rout=0 : obwód wyjściowy można przedstawić jako VCVS źródło napięcia sterowane napięciem (napięcie na wyjściu nie zależy od obciążenia) na podstawie cechy Aol= : v+=v ponieważ: stąd: vo skończony (v + v )= = =0 A OL nieskończony i input=0 cz.6, p.13

14 Rzeczywisty wzmacniacz operacyjny wzmocnienie napięciowe w typowych wzmacniaczach AOL = , w specjalistycznych do 1010, górna granica pasma przenoszonych częstotliwości kilkadziesiąt MHz, impedancja wejściowa Ω, impedancja wyjściowa kilkadziesiąt WΩ, maksymalna szybkość narastania napięcia wyjściowego rzędu kilku, kilkudziesięciu V/μs, napięcie wyjściowe jest ograniczone, zwykle mniejsze o 1 2 V od napięcia zasilania, parametry wzmacniacza zależą od temperatury. Stąd obwód zastępczy: cz.6, p.14

15 Rzeczywisty wzmacniacz operacyjny wysycenie Sygnały wyjściowy vs. sygnał wejściowy Wysycenie typowo: V. Obszar pracy liniowej Przykład dla sygnału wejściowego typu sinusoidalnego: cz.6, p.15

16 Przykład wzmacniacz operacyjny tranzystorów 11 rezystorów 1 kondensator cz.6, p.16

17 Przykład wzmacniacz operacyjny 741 stosowany na Studenckiej Pracowni Elektronicznej cz.6, p.17

18 WO w konfiguracji z ujemnym sprzężeniem zwrotnym Wzmacniacz nieodwracający fazy Wzmacniacz odwracający fazę Wtórnik napięciowy Sumator Wzmacniacz różnicowy Wzmacniacz różniczkujący Wzmacniacz całkujący Wzmacniacz różniczkująco całkujący Konwerter prąd napięcie cz.6, p.18

19 Wzmacniacz nieodwracający fazy AOL= Sygnał wejściowy: Sygnał wyjściowy: wzmocnienie > 1 β R2 v 0= 1+ vi R1 ( ) Sygnał wejściowy: Korzystając ze wzoru na sprzężenie zwrotne: R2 1 v 0=K L v i= v i = 1+ vi β R1 ( ) Impedancja wejściowa tego wzmcniacza jest: cz.6, p.19 Wzmocnienie = 1 Sygnał wyjściowy:

20 Wzmacniacz nieodwracający fazy analiza układu Idealny WO. Na wyjściu napięcie skończone (ujemne sprzężenie) zatem różnica potencjałów między wejsciem (+) i ( ) wynosi 0. Na podstawie (1) v =vi. Z prawa Ohma prąd przez rezystow R1 wynosi: i1=vi/r1 Impedancja wejsciowa WO nieskończona? prąd ( ) =0A Z prawa KCL prąd dla rezystora R2: i2=i1=vi/r1 Spadek napięcia na rezystorze R2 (prawa Ohma) wynosi vr2=i2r2=r2/r1vi Z prawa KVL sumaryczny spadek napięcia na rezystorach R2 i R1: R2 R2 v 0=v i + v i= 1+ vi cz.6, p.20 R1 R1 ( )

21 Przykład projektowania wzmacniacz nieodwracający fazy Chcemy uzyskać wzmacniacz o wzmocnieniu: KL=5V/V R2 Na podstawie wzoru: K L =1+ R1 Wybieramy: R1= 1kΩ i R2=4kΩ Po dołączeniu dowolnego źródła sygnału, specyfikacja jest ciągle spełniona bo i=0a. cz.6, p.21

22 cz.6, p.22

23 cz.6, p.23

24 cz.6, p.24

25 cz.6, p.25

26 cz.6, p.26

27 cz.6, p.27

28 cz.6, p.28

29 cz.6, p.29

30 cz.6, p.30

31 cz.6, p.31

32 cz.6, p.32

33 Wzmacniacz całkujący (integrator Millera) u+ =0 u i u+ i u =0 Na podstawie prawa KCL: v i (t ) dv (t ) dq(t ) = = C 0 R dt dt zatem: t 1 v 0 (t)= v i (t ')dt ' + v i (0) RC 0 Jeśli napięcie wejsciowe v0 jest odcinkami stałe to: vi v 0 (t)= t RC cz.6, p.33 Komentarz: analiza powyższa nie stosuje się dla napięcia stałego. (tzw. DC)

34 Wzmacniacz całkujący (integrator Millera) Gdy wzmocnienie wzmacniacza jest bardzo duże ale skończone to: d (u (t ) v 0 (t)) i=c =... dt ponadto: u 0 v 0= A ol u d (u ( t )+ A ol u (t )) du...=c =C (1+ A ol ) dt dt bardzo duża pojemność (widziana od strony wejścia wzmacniacza) ponieważ: i(t)dt =dq Zatem układ ten jest integratorem ładunku! dq (t) Informacja o zebranym ładunku to napięcie wyjściowe v0: dv 0 (t)= C cz.6, p.34

35 Wzmacniacz różniczkujący (differentiator) u+ =0 u i u+ i u =0 Na podstawie prawa KCL: dv i (t ) v 0 (t ) d q(t ) =C = dt dt R zatem: dv i (t ) v 0 (t )= RC dt Komentarz: z natury wzmacniacz ten wprowadza dodatkowy szum: cz.6, p.35

36 Wzmacniacz różniczkująco całkujący Wz. odwracający fazę vi v0 vi v0 gdzie: Z 1 =R1 + ; = + j ω C2 j ω C 1 Z 2 R2 Zatem dla sygnałów sinusoidalnych funkcja przejścia T(ω) ma postać: cz.6, p.36 v0 Z2 T (ω)= = vi Z1

37 Wzmacniacz różniczkująco całkujący Z2 T (ω)= = Z1 jeśli: ω0 = to: 1 ; R2 C1 R2 ( ( 1+ j ω R2 C 2) R1 + ω1 = 1 ; R1C1 1 jω C1 ω2 = ) = j ω R2 C 1 ( 1+ j ω R 2 C 2 ) ( 1+ j ω R1 C 1 ) =... 1 R2C2 ω jω 0...= ω 1+ j ω 1+ j ω ω1 ) ( 2 )( charakterystyka amplitudowa: ω T (ω) = T T + = ω 0 1 ( 2 2 ω ω 1+ ( ω ) 1+ ( ω ) 1 2 )( ) Filtr pasmowy (środkowoprzepustowy) z częstotliwościami granicznymi ω1 i ω2. cz.6, p.37

38 Konwerter prąd napięcie i i WE np.: Mamy: i WE=i v + =v i=0 V v v+ Zatem: v 0= i WE R Napięcie wyjściowe v0 jest proporcjonalne do natężnia prądu iwe Stosująć duży opór R można łatwo mierzyć b. małe prądy rzędu μa. cz.6, p.38

39 Wzmacniacz logarytmiczny U vi zatem: v 0= ηu T ln(i)+const vi i= R vi v 0= ηu T ln + const R ( ) Mamy: Korzystając z własności funkcji ln oraz zaniedbując stałą dostajemy: i WE=i v + =v i=0 V v 0= ηu T ln(v i ) Rówanie diody, i(u): ( i=i s e U ηu T ) 1 I s e U T, I s stałe cz.6, p.39 v0 ηu T k stała Boltzmanna T temperatura w [K] q ładunek elektronu η czynnik skalujący z zakresu 1 2

40 Wzmacniacz exponencjalny vi Mamy: Proszę pokazać, że: i WE=i v + =v i=0 V vi v 0= R I s e +const Rówanie diody, i(u): ( i=i s e U ηu T ) 1 I s e cz.6, p.40 v0 ηu T

41 Układy nieliniowe dodatnie sprzężenie zwrotne u2 K Kt= = u1 (1 β K) 1) β<0 ujemne sprzężenie zwrotne 2) 0<β<1/K dodatnie sprzężenie zwrotne 3) β=1/k Kt. Interesuje nas przypadek sprzężenia zwrotnego 2) i 3) cz.6, p.41

42 Układy nieliniowe Komparator (otwarta pętla sprzężenia zwrotnego) Przerzutniki (dodatnie sprzężenie zwrotne) przerzutnik Schmitta przerzutnik astabilny Generatory przebiegów sinusoidalnych cz.6, p.42

43 Komparator (brak sprzężenia zwrotnego) Jeśli β=0 wtedy mamy otwartą pętlę sprzężenia zwrotnego: +E v o= A OL (v + 0 v i )= A OL v i v+ E Wyjście vi znajduje się albo w stanie wysokim (dodatnie nasycenie) albo w stanie niskim (ujemne nasycenie) w zależności od tego, które z dwóch wejść ( ) i (+) ma większe napięcie. Dzieje się tak, ponieważ wzmocnienie AOL dla WO jest b. duże i w sytuacji gdy nie ma sprzężenia zwrotnego różnica napięć pomiędzy obu wejściami WO rzędu mikrowoltów jest wystarczająca aby napięcie wyjściowe osiągnęło swój stan maksymalny (+E) lub stan minimalny ( E). Jest to szczególnie pożyteczne w zastosowaniach cyfrowych np.: przetworniki analogowo cyfrowe (ADC) w których porównuje się badane napięcie z napięciem referencyjnym. cz.6, p.43

44 Przerzutniki (dodatnie sprzężenie zwrotne) Wyjście przerzutników, ze względu na dodatnie sprzężenie zwrotne w układzie, znajduje się zawsze albo w stanie dodatniego nasycenia albo w stanie ujemnego nasycenia. Prowadzi to do tzw. zjawiska histerezy. Układy te wytwarzają prostokątne przebiegi napięciowe poprzez (szybkie) przełączanie (wymuszone zewnętrznie lub nie wymuszone zewnętrznie) pomiędzy obu wymienionymi stanami. Główne rodzaje przerzutników: Przerzutniki bistabile dwa stany stabilne. Dla wymuszenia przejścia z jednego stanu do drugiego konieczne jest doprowadzenie zewnętrznego sygnału wyzwalającego. Przerzutniki monostabilne jeden stan stabilny. Zewnętrzny sygnał wyzwalający powoduje przejście do drugiego stanu, który jest stanem niestabilnym. Po pewnym czasie układ samoczynnie powraca do stanu stabilnego. Przerzutniki astabilne brak stanów stabilnych. Nastepują samoczynne przerzuty pomiędzy dwoma stanami bez udziału sygnału zewnętrznego. Układ jest generatorem przebiegów prostokątnych. cz.6, p.44

45 Przerzutnik Schmitta (bistabilny) vi v 0=+ E, E U+ U R2 v p= v0 R1 + R 2 ( =+ E, E) Dodatnie sprzężenie zwrotne jest realizowane przez dzielnik napięcia. Wyjście układu v0 jest albo w stanie wysokim (+E) albo w stanie niskim ( E). Gdzie E napięcia zasilania WO. Wiemy, że: U + =v p U =v i v 0= A OL (U + U ) cz.6, p.45 jeśli: U + >U v 0=+ E U + <U v 0= E

46 Przerzutnik Schmitta (zasada działania) Gdy na wyjściu napięcie wynosi E to stan ten utrzymuje się tak długo jak długo vp<vi vi vi 0 vi Gdy na wyjściu napięcie wynosi +E to stan ten utrzymuje się tak długo jak długo vp>vi v p np. : 1 V 0 v0 v0 +E +E E E v 0= E v p= 0.1 E cz.6, p.46 R1=9 k Ω R2 =1 k Ω vi v p np. :+1V v 0=+ E v p=+ 0.1 E

47 Przerzutnik Schmitta (histereza) Konsekwencją występowania dwóch stanów stabilnych jest histereza układu: 0.1 E +0.1 E Oznacza to, że układ posiada pamięć: dla tej samej wartości napięcia wejściowego vi wyjście układu może się znaleźć w stanie +E lub E w zależności jaki był poprzedni stan wyjścia. cz.6, p.47

48 Przerzutnik astabilny (zmodyfikowany przerzutnik Schmitta) vp v0 U U + =v p = U =v i R2 v R1+ R 2 0 vp Na wejście układu podłączamy kondensator ładowany (rozładowywany) prądem przepływającym przez rezystor R. Na wyjściu układu v0 będą następować cykliczne przejścia pomiędzy stanami v0=+e i v0= E. vi vp vp cz.6, p.48 Przejścia te analogicznie jak w przerzutniku Schmitta będą występować po osiągnięciu przez napięcie vi (na kondesatorze) napięć przerzutu vp.

49 Przerzutnik astabilny (zmodyfikowany przerzutnik Schmitta) Napięcie na kondesatorze zmienia się v i zgodnie z funkcją: t τ v i =( E+ v p ) ( 1 e ) v vp vp p gdzie τ=rc stała czasowa układu RC a kondensator ładuje się od ujemnego napięcia vp do napięcia +E. Gdy vi osiąga wartość dodatniego vp następuje przerzut z +E do v0= E. Czas ładowania kondesatora do wartości vp wynosi: ( T τ1 v p=( E+ v p ) 1 e R2 gdzie: γ= R 1 + R2 cz.6, p.49 ) v p vp 1+ E 1+ γ T 1=τ ln =τ ln vp 1 γ 1 E

50 Przerzutnik astabilny (zmodyfikowany przerzutnik Schmitta) Jeśli napięcia zasilania WO są identyczne na moduł, to czas ładowania T1 i czas rozładowania T2 kondensatora jest taki sam. Zatem okres T wynosi: 1+ γ T =2 T 1=2 RC ln 1 γ W szczególnym przypadku: jeśli R1=R2 to: T =2 RC ln cz.6, p.50 T2 vi 1+1/2 =2 RC ln RC 1 1/2 T1 vp vp

51 Generatory przebiegów sinusoidalnych Generatory wytwarzają zmienne przebiegi elektryczne bez konieczności doprowadzenia z zewnątrz sygnału pobudzającego, np.: generatory przebiegów sinusoidalnych. Generatory można budować wykorzystując dodatnie sprzężenie zwrotne. u1 =β u2 u 2=K u 1 Warunkiem generacji drgań jest: 1) Drgania muszą być podtrzymywane. Zauważmy, że: u 2=K β u2 K β=1 warunek Barkhausena 2) Całkowite przesunięcie fazowe wprowadzone podczas przenoszenia sygnału przez wzmacniacz i układ sprzężenia zwrotnego wynosi: Δ ϕ=2 π n ; (n=0,1,2...) cz.6, p.51

52 Generator z mostkiem Wiena Z1 Z2 Z1 U+ U Z2 Napięcie podane na wejście ( ): R2 U = U WY R1 +R 2 Napięcie podane na wejście (+): Z2 U+ = U WY Z 1 +Z 2 cz.6, p.52 zatem napięcie na wyjściu: Z2 R2 U WY =K U WY Z 1 + Z 2 R1 +R 2 ( )

53 Generator z mostkiem Wiena Warunek Barhausena: Z2 R2 K =1 Z 1 +Z 2 R1 + R 2 ( ) podstawiając wzory na odpowiednie impedancje: R R2 1+ j ω RC 1 = R 1 R 1 +R 2 K +R + 1+ j ω RC j ωc Jeśli K to lewa strona 0. Oznaczo to zerowanie się części rzeczywistej i urojonej. Zachodzi to wedy gdy: ω RC=1 ω= cz.6, p.53 1 RC R2 1 = R 1 +R 2 3 R1 =2 R2

54 Generator z przesuwnikiem fazy Układ różniczkujący przesuwa fazę o: ω 0= 1 RC Łączymy w kaskadę kilka układów różniczkujących cz.6, p.54

55 Generator z przesuwnikiem fazy U =βu WY Można pokazać, że: β= 1 5 α 2 1+ j(6 α 2) gdzie α oznacza: α= Przesunięcie fazy o 1800 (warunek Barhausena) zachodzi gdy Im(β)=0, czyli gdy: α 2=6 a samo β wynosi: cz.6, p.55 β= ω RC

Demonstracja: konwerter prąd napięcie

Demonstracja: konwerter prąd napięcie Demonstracja: konwerter prąd napięcie i WE =i i WE i v = i WE R R=1 M Ω i WE = [V ] 10 6 [Ω] v + Zasilanie: +12, 12 V wy( ) 1) Oświetlanie o stałym natężeniu: =? (tryb DC) 2) Oświetlanie przez lampę wstrząsoodporną:

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VI Sprzężenie zwrotne Wzmacniacz operacyjny Wzmacniacz operacyjny w układach z ujemnym i dodatnim sprzężeniem zwrotnym Janusz Brzychczyk IF UJ Sprzężenie zwrotne Sprzężeniem

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 3 Wzmacniacz operacyjny Grupa 6 Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniaczy operacyjnych do przetwarzania

Bardziej szczegółowo

ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym.

ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym. ĆWICZENIE 2 Wzmacniacz operacyjny z ujemnym sprzężeniem zwrotnym. Wykonanie ćwiczenia 1. Zapoznać się ze schematem ideowym układu ze wzmacniaczem operacyjnym. 2. Zmontować wzmacniacz odwracający fazę o

Bardziej szczegółowo

Wzmacniacze operacyjne.

Wzmacniacze operacyjne. Wzmacniacze operacyjne Jacek.Szczytko@fuw.edu.pl Polecam dla początkujących! Piotr Górecki Wzmacniacze operacyjne Jak to działa? Powtórzenie: dzielnik napięcia R 2 Jeśli pominiemy prąd płynący przez wyjście:

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Dr inż. Adam Klimowicz konsultacje: wtorek, 9:15 12:00 czwartek, 9:15 10:00 pok. 132 aklim@wi.pb.edu.pl Literatura Łakomy M. Zabrodzki J. : Liniowe układy scalone

Bardziej szczegółowo

Temat: Wzmacniacze operacyjne wprowadzenie

Temat: Wzmacniacze operacyjne wprowadzenie Temat: Wzmacniacze operacyjne wprowadzenie.wzmacniacz operacyjny schemat. Charakterystyka wzmacniacza operacyjnego 3. Podstawowe właściwości wzmacniacza operacyjnego bardzo dużym wzmocnieniem napięciowym

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO

BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO Ćwiczenie 11 BADANIE PRZERZUTNIKÓW ASTABILNEGO, MONOSTABILNEGO I BISTABILNEGO 11.1 Cel ćwiczenia Celem ćwiczenia jest poznanie rodzajów, budowy i właściwości przerzutników astabilnych, monostabilnych oraz

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ

Realizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych. Instytut Automatyki PŁ ealizacja regulatorów analogowych za pomocą wzmacniaczy operacyjnych W6-7/ Podstawowe układy pracy wzmacniacza operacyjnego Prezentowane schematy podstawowych układów ze wzmacniaczem operacyjnym zostały

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2 Cel ćwiczenia: Praktyczne poznanie podstawowych parametrów wzmacniaczy operacyjnych oraz ich możliwości i ograniczeń. Wyznaczenie charakterystyki amplitudowo-częstotliwościowej wzmacniacza operacyjnego.

Bardziej szczegółowo

Wzmacniacze. Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny

Wzmacniacze. Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny Wzmacniacze Klasyfikacja wzmacniaczy Wtórniki Wzmacniacz różnicowy Wzmacniacz operacyjny Zasilanie Z i I we I wy E s M we Wzmacniacz wy Z L Masa Wzmacniacze 2 Podział wzmacniaczy na klasy Klasa A ηmax

Bardziej szczegółowo

Liniowe układy scalone

Liniowe układy scalone Liniowe układy scalone Wykład 3 Układy pracy wzmacniaczy operacyjnych - całkujące i różniczkujące Cechy układu całkującego Zamienia napięcie prostokątne na trójkątne lub piłokształtne (stała czasowa układu)

Bardziej szczegółowo

Zastosowania liniowe wzmacniaczy operacyjnych

Zastosowania liniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania liniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Temat i plan wykładu Wzmacniacze operacyjne. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Wzmacniacz odwracający i nieodwracający 4. kład całkujący, różniczkujący, różnicowy 5. Konwerter prąd-napięcie

Bardziej szczegółowo

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I)

Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Ćw. 7 Wyznaczanie parametrów rzeczywistych wzmacniaczy operacyjnych (płytka wzm. I) Celem ćwiczenia jest wyznaczenie parametrów typowego wzmacniacza operacyjnego. Ćwiczenie ma pokazać w jakich warunkach

Bardziej szczegółowo

Liniowe układy scalone. Elementy miernictwa cyfrowego

Liniowe układy scalone. Elementy miernictwa cyfrowego Liniowe układy scalone Elementy miernictwa cyfrowego Wielkości mierzone Czas Częstotliwość Napięcie Prąd Rezystancja, pojemność Przesunięcie fazowe Czasomierz cyfrowy f w f GW g N D L start stop SB GW

Bardziej szczegółowo

Liniowe układy scalone w technice cyfrowej

Liniowe układy scalone w technice cyfrowej Liniowe układy scalone w technice cyfrowej Wykład 6 Zastosowania wzmacniaczy operacyjnych: konwertery prąd-napięcie i napięcie-prąd, źródła prądowe i napięciowe, przesuwnik fazowy Konwerter prąd-napięcie

Bardziej szczegółowo

Generatory. Podział generatorów

Generatory. Podział generatorów Generatory Generatory są układami i urządzeniami elektronicznymi, które kosztem energii zasilania wytwarzają okresowe przebiegi elektryczne lub impulsy elektryczne Podział generatorów Generatory można

Bardziej szczegółowo

Zaprojektowanie i zbadanie dyskryminatora amplitudy impulsów i generatora impulsów prostokątnych (inaczej multiwibrator astabilny).

Zaprojektowanie i zbadanie dyskryminatora amplitudy impulsów i generatora impulsów prostokątnych (inaczej multiwibrator astabilny). WFiIS LABOATOIM Z ELEKTONIKI Imię i nazwisko:.. TEMAT: OK GPA ZESPÓŁ N ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Zaprojektowanie i zbadanie

Bardziej szczegółowo

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym 1. Definicja sprzężenia zwrotnego Sprzężenie zwrotne w układach elektronicznych polega na doprowadzeniu części sygnału wyjściowego z powrotem do wejścia. Częśd sygnału wyjściowego, zwana sygnałem zwrotnym,

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Wzmacniacz operacyjny zastosowania liniowe. Wrocław 2009

Wzmacniacz operacyjny zastosowania liniowe. Wrocław 2009 Wzmacniacz operacyjny zastosowania linio Wrocław 009 wzmocnienie różnico Pole wzmocnienia 3dB częstotliwość graniczna k D [db] -3dB 0dB/dek 0 db f ca f T Tłumienie sygnału wspólnego - OT ins M[ V / V ]

Bardziej szczegółowo

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia

Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Ćwiczenie 21 Temat: Komparatory ze wzmacniaczem operacyjnym. Przerzutnik Schmitta i komparator okienkowy Cel ćwiczenia Poznanie zasady działania układów komparatorów. Prześledzenie zależności napięcia

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Wrocław 2015 Wprowadzenie jest wzmacniaczem prądu stałego o dużym wzmocnieniu napięciom (różnicom). Wzmacniacz ten posiada wejście symetryczne (różnicowe) oraz jście niesymetryczne.

Bardziej szczegółowo

A-3. Wzmacniacze operacyjne w układach liniowych

A-3. Wzmacniacze operacyjne w układach liniowych A-3. Wzmacniacze operacyjne w kładach liniowych I. Zakres ćwiczenia wyznaczenia charakterystyk amplitdowych i częstotliwościowych oraz parametrów czasowych:. wtórnika napięcia. wzmacniacza nieodwracającego

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

Spis treści Przełączanie złożonych układów liniowych z pojedynczym elementem reaktancyjnym 28

Spis treści Przełączanie złożonych układów liniowych z pojedynczym elementem reaktancyjnym 28 Spis treści CZE ŚĆ ANALOGOWA 1. Wstęp do układów elektronicznych............................. 10 1.1. Filtr dolnoprzepustowy RC.............................. 13 1.2. Filtr górnoprzepustowy RC..............................

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 28 lutego 2011 Stany nieustalone, stabilność

Bardziej szczegółowo

Laboratorium Elektroniki

Laboratorium Elektroniki Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Badanie wzmacniaczy tranzystorowych i operacyjnych 1. Wstęp teoretyczny Wzmacniacze są bardzo często i szeroko stosowanym układem elektronicznym.

Bardziej szczegółowo

I-21 WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI

I-21 WYDZIAŁ PPT LABORATORIUM Z ELEKTROTECHNIKI I ELEKTRONIKI Ćwiczenie nr 0 Cel ćwiczenia: Poznanie cech wzmacniaczy operacyjnych oraz charakterystyk opisujących wzmacniacz poprzez przeprowadzenie pomiarów dla wzmacniacza odwracającego. Program ćwiczenia. Identyfikacja

Bardziej szczegółowo

Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny

Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny AGH Katedra Elektroniki Podstawy Elektroniki dla Teleinformatyki 2014 r. Generator relaksacyjny Ćwiczenie 6 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

A U. -U Z Napięcie zasilania ujemne względem masy (zwykle -15V) Symbol wzmacniacza operacyjnego.

A U. -U Z Napięcie zasilania ujemne względem masy (zwykle -15V) Symbol wzmacniacza operacyjnego. Wzmacniacz operacyjny opisywany jest jako wzmacniacz prądu stałego, czy jak kto woli wzmacniacz o sprzężeniach bezpośrednich, który charakteryzuje się bardzo dużym wzmocnieniem, wejściem różnicowym (symetrycznym)

Bardziej szczegółowo

WZMACNIACZE OPERACYJNE

WZMACNIACZE OPERACYJNE WZMACNIACZE OPERACYJNE Indywidualna Pracownia Elektroniczna Michał Dąbrowski asystent: Krzysztof Piasecki 25 XI 2010 1 Streszczenie Celem wykonywanego ćwiczenia jest zbudowanie i zapoznanie się z zasadą

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Generator relaksacyjny

Podstawy Elektroniki dla Informatyki. Generator relaksacyjny AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki 2015 r. Generator relaksacyjny Ćwiczenie 5 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny parametry i zastosowania Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego (klasyka: Fairchild ua702) 1965 Wzmacniacze

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY. Podstawowe właściwości wzmacniaczy operacyjnych. Rodzaj wzmacniacza Rezystancja wejściowa Rezystancja wyjściowa

WZMACNIACZ OPERACYJNY. Podstawowe właściwości wzmacniaczy operacyjnych. Rodzaj wzmacniacza Rezystancja wejściowa Rezystancja wyjściowa WZMACNIACZ OPEACYJNY kłady aktywne ze wzmacniaczami operacyjnymi... Podstawowe właściwości wzmacniaczy operacyjnych odzaj wzmacniacza ezystancja wejściowa ezystancja wyjściowa Bipolarny FET MOS-FET Idealny

Bardziej szczegółowo

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu.

Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu. Opracowane przez D. Kasprzaka aka 'master' i D. K. aka 'pastakiller' z Technikum Elektronicznego w ZSP nr 1 w Inowrocławiu. WZMACNIACZ 1. Wzmacniacz elektryczny (wzmacniacz) to układ elektroniczny, którego

Bardziej szczegółowo

Liniowe układy scalone. Komparatory napięcia i ich zastosowanie

Liniowe układy scalone. Komparatory napięcia i ich zastosowanie Liniowe układy scalone Komparatory napięcia i ich zastosowanie Komparator Zadaniem komparatora jest wytworzenie sygnału logicznego 0 lub 1 na wyjściu w zależności od znaku różnicy napięć wejściowych Jest

Bardziej szczegółowo

Generatory impulsowe przerzutniki

Generatory impulsowe przerzutniki Generatory impulsowe przerzutniki Wrocław 2015 Przerzutniki Przerzutniki stosuje się do przechowywania małych ilości danych, do których musi być zapewniony ciągły dostęp. Ze względu na łatwy odczyt i zapis,

Bardziej szczegółowo

Układy akwizycji danych. Komparatory napięcia Przykłady układów

Układy akwizycji danych. Komparatory napięcia Przykłady układów Układy akwizycji danych Komparatory napięcia Przykłady układów Komparatory napięcia 2 Po co komparator napięcia? 3 Po co komparator napięcia? Układy pomiarowe, automatyki 3 Po co komparator napięcia? Układy

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH W UKŁADACH

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający

Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych

Bardziej szczegółowo

Tranzystor bipolarny. przykłady zastosowań cz. 1

Tranzystor bipolarny. przykłady zastosowań cz. 1 Tranzystor bipolarny przykłady zastosowań cz. 1 Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wzmacniacz prądu

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE

PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE PODSTAWY ELEKTRONIKI TEMATY ZALICZENIOWE 1. Wyznaczanie charakterystyk statycznych diody półprzewodnikowej a) Jakie napięcie pokaże woltomierz, jeśli wiadomo, że Uzas = 11V, R = 1,1kΩ a napięcie Zenera

Bardziej szczegółowo

Wejścia analogowe w sterownikach, regulatorach, układach automatyki

Wejścia analogowe w sterownikach, regulatorach, układach automatyki Wejścia analogowe w sterownikach, regulatorach, układach automatyki 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia

Bardziej szczegółowo

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody)

A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) A-6. Wzmacniacze operacyjne w układach nieliniowych (diody) I. Zakres ćwiczenia 1. Zastosowanie diod i wzmacniacza operacyjnego µa741 w następujących układach nieliniowych: a) generator funkcyjny b) wzmacniacz

Bardziej szczegółowo

Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA

Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA WFiIS LABORATORIM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia

Bardziej szczegółowo

Podstawy Elektroniki dla Informatyki. Wzmacniacze operacyjne

Podstawy Elektroniki dla Informatyki. Wzmacniacze operacyjne AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki 2014 r. Wzmacniacze operacyjne Ćwiczenie 4 1 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i wybranymi zastosowaniami wzmacniaczy

Bardziej szczegółowo

Tranzystory bipolarne elementarne układy pracy i polaryzacji

Tranzystory bipolarne elementarne układy pracy i polaryzacji Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2010 2014 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

ZASTOSOWANIA WZMACNIACZY OPERACYJNYCH

ZASTOSOWANIA WZMACNIACZY OPERACYJNYCH ZASTOSOWANIA WZMACNIACZY OPERACYJNYCH 1. WSTĘP Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Zadaniem ćwiczących jest dokonanie pomiaru charakterystyk

Bardziej szczegółowo

A3 : Wzmacniacze operacyjne w układach liniowych

A3 : Wzmacniacze operacyjne w układach liniowych A3 : Wzmacniacze operacyjne w układach liniowych Jacek Grela, Radosław Strzałka 2 kwietnia 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, których używaliśmy w obliczeniach: 1.

Bardziej szczegółowo

A-5. Generatory impulsów prostokatnych, trójkatnych i sinusoidalnych

A-5. Generatory impulsów prostokatnych, trójkatnych i sinusoidalnych A-5. Generatory impulsów prostokatnych, trójkatnych i sinusoidalnych Zakres ćwiczenia. Wytwarzanie napięcia zmieniającego się liniowo.. Paraboliczne przybliżenie sinusoidy.. Modelowanie równania obwodu

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 Zastosowania wzmacniaczy operacyjnych w układach

Bardziej szczegółowo

7. UKŁADY ODOPERACYJNE

7. UKŁADY ODOPERACYJNE 7. UKŁADY ODOPERACYJNE 7.. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych możliwości wykorzystania wzmacniacza operacyjnego jako wzmacniacza napięciowego oraz układów kształtujących. 7.. SCHEMAT

Bardziej szczegółowo

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego

WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Pracownia Wstępna - - WYKŁAD 2 Pojęcia podstawowe obwodów prądu zmiennego Układy złożone z elementów biernych Bierne elementy elektroniczne to : opór R: u ( = Ri( indukcyjność L: di( u( = L i pojemność

Bardziej szczegółowo

ĆWICZENIE 14 BADANIE SCALONYCH WZMACNIACZY OPERACYJNYCH

ĆWICZENIE 14 BADANIE SCALONYCH WZMACNIACZY OPERACYJNYCH 1 ĆWICZENIE 14 BADANIE SCALONYCH WZMACNIACZY OPERACYJNYCH 14.1. CEL ĆWICZENIA Celem ćwiczenia jest pomiar wybranych charakterystyk i parametrów określających podstawowe właściwości statyczne i dynamiczne

Bardziej szczegółowo

Wzmacniacz operacyjny

Wzmacniacz operacyjny Wzmacniacz operacyjny opisywany jest jako wzmacniacz prądu stałego, czyli wzmacniacz o sprzężeniach bezpośrednich, który charakteryzuje się bardzo dużym wzmocnieniem, wejściem różnicowym (symetrycznym)

Bardziej szczegółowo

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych

WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych WZMACNIACZE OPERACYJNE Instrukcja do zajęć laboratoryjnych Tematem ćwiczenia są zastosowania wzmacniaczy operacyjnych w układach przetwarzania sygnałów analogowych. Ćwiczenie składa się z dwóch części:

Bardziej szczegółowo

Laboratorium z Układów Elektronicznych Analogowych

Laboratorium z Układów Elektronicznych Analogowych Laboratorium z Układów Elektronicznych Analogowych Wpływ ujemnego sprzężenia zwrotnego (USZ) na pracę wzmacniacza operacyjnego WYMAGANIA: 1. Klasyfikacja sprzężeń zwrotnych. 2. Wpływ sprzężenia zwrotnego

Bardziej szczegółowo

Ćwiczenie 22. Temat: Przerzutnik monostabilny. Cel ćwiczenia

Ćwiczenie 22. Temat: Przerzutnik monostabilny. Cel ćwiczenia Temat: Przerzutnik monostabilny. Cel ćwiczenia Ćwiczenie 22 Poznanie zasady działania układu przerzutnika monostabilnego. Pomiar przebiegów napięć wejściowego wyjściowego w przerzutniku monostabilny. Czytanie

Bardziej szczegółowo

Podstawowe zastosowania wzmacniaczy operacyjnych

Podstawowe zastosowania wzmacniaczy operacyjnych ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych

Bardziej szczegółowo

Wykład 2 Projektowanie cyfrowych układów elektronicznych

Wykład 2 Projektowanie cyfrowych układów elektronicznych Wykład 2 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner Lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Sztuka Elektroniki - P. Horowitz, W.Hill kłady półprzewodnikowe.tietze,

Bardziej szczegółowo

Filtry aktywne filtr górnoprzepustowy

Filtry aktywne filtr górnoprzepustowy . el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa

Bardziej szczegółowo

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL

PL B1. INSTYTUT MECHANIKI GÓROTWORU POLSKIEJ AKADEMII NAUK, Kraków, PL BUP 21/08. PAWEŁ LIGĘZA, Kraków, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 209493 (13) B1 (21) Numer zgłoszenia: 382135 (51) Int.Cl. G01F 1/698 (2006.01) G01P 5/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie

Bardziej szczegółowo

Liniowe układy scalone. Wykład 4 Parametry wzmacniaczy operacyjnych

Liniowe układy scalone. Wykład 4 Parametry wzmacniaczy operacyjnych Liniowe układy scalone Wykład 4 Parametry wzmacniaczy operacyjnych 1. Wzmocnienie napięciowe z otwartą pętlą ang. open loop voltage gain Stosunek zmiany napięcia wyjściowego do wywołującej ją zmiany różnicowego

Bardziej szczegółowo

Badanie przerzutników astabilnych i monostabilnych

Badanie przerzutników astabilnych i monostabilnych Badanie przerzutników astabilnych i monostabilnych 1. Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie badania podstawowych układów przerzutników astabilnych, bistabilnych i monostabilnych. 2. Przebieg

Bardziej szczegółowo

2. Który oscylogram przedstawia przebieg o następujących parametrach amplitudowo-czasowych: Upp=4V, f=5khz.

2. Który oscylogram przedstawia przebieg o następujących parametrach amplitudowo-czasowych: Upp=4V, f=5khz. 1. Parametr Vpp zawarty w dokumentacji technicznej wzmacniacza mocy małej częstotliwości oznacza wartość: A. średnią sygnału, B. skuteczną sygnału, C. maksymalną sygnału, D. międzyszczytową sygnału. 2.

Bardziej szczegółowo

Ćwiczenie - 4. Podstawowe układy pracy tranzystorów

Ćwiczenie - 4. Podstawowe układy pracy tranzystorów LABORATORIM ELEKTRONIKI Spis treści Ćwiczenie - 4 Podstawowe układy pracy tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Podstawowe układy pracy tranzystora........................ 2 2.2 Wzmacniacz

Bardziej szczegółowo

Elektronika i techniki mikroprocesorowe

Elektronika i techniki mikroprocesorowe Elektronika i techniki mikroprocesorowe Elektronika Wybrane układy elektroniczne Katedra Energoelektroniki, Napędu Elektrycznego i Robotyki Wydział Elektryczny, ul. Krzywoustego 1. Generatory sinusoidalne:.

Bardziej szczegółowo

Wzmacniacze. sprzężenie zwrotne

Wzmacniacze. sprzężenie zwrotne Wzmacniacze sprzężenie zwrotne Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Sprzężenie zwrotne Sprzężenie zwrotne,

Bardziej szczegółowo

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa

płytka montażowa z tranzystorami i rezystorami, pokazana na rysunku 1. płytka montażowa do badania przerzutnika astabilnego U CC T 2 masa Tranzystor jako klucz elektroniczny - Ćwiczenie. Cel ćwiczenia Zapoznanie się z podstawowymi układami pracy tranzystora bipolarnego jako klucza elektronicznego. Bramki logiczne realizowane w technice RTL

Bardziej szczegółowo

Tranzystory bipolarne elementarne układy pracy i polaryzacji

Tranzystory bipolarne elementarne układy pracy i polaryzacji Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Układy

Bardziej szczegółowo

Liniowe układy scalone. Budowa scalonego wzmacniacza operacyjnego

Liniowe układy scalone. Budowa scalonego wzmacniacza operacyjnego Liniowe układy scalone Budowa scalonego wzmacniacza operacyjnego Wzmacniacze scalone Duża różnorodność Powtarzające się układy elementarne Układy elementarne zbliżone do odpowiedników dyskretnych, ale

Bardziej szczegółowo

Badanie wzmacniacza operacyjnego

Badanie wzmacniacza operacyjnego Badanie wzmacniacza operacyjnego CEL: Celem ćwiczenia jest poznanie właściwości wzmacniaczy operacyjnych i komparatorów oraz możliwości wykorzystania ich do realizacji bloków funkcjonalnych poprzez dobór

Bardziej szczegółowo

P-2. Generator przebiegu liniowego i prostokątnego

P-2. Generator przebiegu liniowego i prostokątnego P-2. Generator przebiegu liniowego i prostokątnego Ćwiczenie polega na zaprojektowaniu, zmontowaniu i zbadaniu generatora samowzbudnego, wytwarzającego jednocześnie dwa przebiegi o zadanej częstotliwości:

Bardziej szczegółowo

5 Filtry drugiego rzędu

5 Filtry drugiego rzędu 5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy

Bardziej szczegółowo

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET

Ćwiczenie 5. Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET Ćwiczenie 5 Zastosowanie tranzystorów bipolarnych cd. Wzmacniacze MOSFET Układ Super Alfa czyli tranzystory w układzie Darlingtona Zbuduj układ jak na rysunku i zaobserwuj dla jakiego położenia potencjometru

Bardziej szczegółowo

Ćwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1

Ćwiczenie nr 05 1 Oscylatory RF Podstawy teoretyczne Aβ(s) 1 Generator w układzie Colpittsa gmr Aβ(S) =1 gmrc1/c2=1 lub gmr=c2/c1 gmr C2/C1 Ćwiczenie nr 05 Oscylatory RF Cel ćwiczenia: Zrozumienie zasady działania i charakterystyka oscylatorów RF. Projektowanie i zastosowanie oscylatorów w obwodach. Czytanie schematów elektronicznych, przestrzeganie

Bardziej szczegółowo

Rys. 1. Wzmacniacz odwracający

Rys. 1. Wzmacniacz odwracający Ćwiczenie. 1. Zniekształcenia liniowe 1. W programie Altium Designer utwórz schemat z rys.1. Rys. 1. Wzmacniacz odwracający 2. Za pomocą symulacji wyznaczyć charakterystyki częstotliwościowe (amplitudową

Bardziej szczegółowo

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne

1. Zarys właściwości półprzewodników 2. Zjawiska kontaktowe 3. Diody 4. Tranzystory bipolarne Spis treści Przedmowa 13 Wykaz ważniejszych oznaczeń 15 1. Zarys właściwości półprzewodników 21 1.1. Półprzewodniki stosowane w elektronice 22 1.2. Struktura energetyczna półprzewodników 22 1.3. Nośniki

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY Zakład Elektroniki I I P i B Laboratorium Układów Elektronicznych WZMACNIACZ OPERACYJNY TEMATYKA ĆWICZENIA WYMAGANE WIADOMOŚCI Celem ćwiczenia jest poznanie niektórych układów pracy wzmacniacza operacyjnego

Bardziej szczegółowo

Generatory drgań sinusoidalnych LC

Generatory drgań sinusoidalnych LC Generatory drgań sinusoidalnych LC Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Generatory drgań sinusoidalnych

Bardziej szczegółowo

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko

Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko Klasa Imię i nazwisko Nr w dzienniku espół Szkół Łączności w Krakowie Pracownia elektroniczna Nr ćw. Temat ćwiczenia Data Ocena Podpis Badanie parametrów wzmacniacza mocy 1. apoznać się ze schematem aplikacyjnym

Bardziej szczegółowo

Podstawy fizyki sezon 2 3. Prąd elektryczny

Podstawy fizyki sezon 2 3. Prąd elektryczny Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny

Bardziej szczegółowo

Tranzystor bipolarny. przykłady zastosowań

Tranzystor bipolarny. przykłady zastosowań Tranzystor bipolarny przykłady zastosowań Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja współfinansowana

Bardziej szczegółowo

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA NIESTACJONARNE Semestr III LABORATORIUM UKŁADÓW ELEKTRONICZNYCH Ćwiczenie Temat: Badanie wzmacniacza operacyjnego

Bardziej szczegółowo

Wyjścia analogowe w sterownikach, regulatorach

Wyjścia analogowe w sterownikach, regulatorach Wyjścia analogowe w sterownikach, regulatorach 1 Sygnały wejściowe/wyjściowe w sterowniku PLC Izolacja galwaniczna obwodów sterownika Zasilanie sterownika Elementy sygnalizacyjne Wejścia logiczne (dwustanowe)

Bardziej szczegółowo