ZARZĄDZANIE WIEDZĄ I TECHNOLOGIE WSPOMAGAJĄCE. Plan i cele wykładu. Wprowadzenie. Systemy Informacyjne Zarządzania

Wielkość: px
Rozpocząć pokaz od strony:

Download "2014-01-10 ZARZĄDZANIE WIEDZĄ I TECHNOLOGIE WSPOMAGAJĄCE. Plan i cele wykładu. Wprowadzenie. Systemy Informacyjne Zarządzania"

Transkrypt

1 Systemy Informacyjne Zarządzania Wprowadzenie ZARZĄDZANIE WIEDZĄ I TECHNOLOGIE WSPOMAGAJĄCE Jerzy Korczak Uniwersytet Ekonomiczny, Wrocław Katedra Technologii Informacyjnych jerzy.korczak at ue.wroc.pl W części materiału wykorzystano slajdy M. Owoca opracowane na podstawie: Laudon K.C, Laudon J.P.: Management Information Systems, wyd. 11 (9) 2010 Chapter 11(12): Managing Knowledge and Collaboration Szacuje się, że sprzedaż oprogramowania dla potrzeb ZW będzie wzrastała rocznie o 15% Ekonomika informacji (USA) 55% zatrudnionych jest w sektorze przetwarzania informacji i wiedzy 60% GDP pochodzi z sektora przetwarzania informacji i wiedzy Znacząca część udziału w wartości firm na giełdzie dotyczy niematerialnych aktywów: wiedzy, marki, reputacji i unikalnych procesów biznesowych Projekty bazujące na wiedzy mogą generować nadzwyczajne wskaźniki ROI 1 2 Wprowadzenie - statystyki Sprzedaż oprogramowania ZW (USA) w latach Plan i cele wykładu Wprowadzenie wiedza w biznesie Typy systemów do zarządzania wiedzą i prezentacja ich użyteczności w organizacjach Typowe systemy zarządzania wiedzą Specjalistyczne systemy zarządzania wiedzą Systemy wykorzystujące techniki AI ICT w zarządzaniu wiedzą 3 4 4/54 Co to jest WIEDZA? Co to jest WIEDZA? (cd.) Wiedza ma różne formy: jawna (dokumentowana) lub ukryta ( rezydująca w głowach ) know-how, umiejętności, rzemiosła reguły przestrzegania procedur informacja o przyczynach zdarzeń Wiedza jest zaliczana do aktywów firmy: niematerialnych tworzenie wiedzy z danych i informacji wymaga zaangażowania zasobów organizacji jest dzielona jako efekt doświadczeń sieciowych Wiedza jest umiejscowiona jest zdarzeniem poznawczym ma charakter społeczny i indywidualny jest przytwierdzona (trudna do przesunięcia), zlokalizowana ( zanurzona w firmie), kontekstualna (użyteczna tylko w pewnych sytuacjach) Wiedza jest sytuacyjna uwarunkowana: wiadomo kiedy stosować procedury kontekstualna: znane okoliczności wykorzystania określonych narzędzi 5 6 6/54 1

2 Organizacje uczące się Zarządzanie wiedzą Procesy, w ramach których organizacja się uczy: zbieranie doświadczeń przez gromadzenie danych, miar, prób, błędów i reakcji dopasowanie działania do zdobytych doświadczeń tworzenie nowych procesów biznesowych zmiany w zakresie wzorców zarządzania w procesie podejmowania decyzji Zarządzanie wiedzą (knowledge management): Zbiór procesów biznesowych wypracowanych w organizacji to tworzenia, zapamiętywania, transferu i stosowania wiedzy Łańcuch wartości ZW (knowledge management value chain) każdy z etapów dodaje wartości w procesie przekształcania danych i informacji w użyteczną wiedzę Pozyskiwanie wiedzy (knowledge acquisition) Zapamiętywanie wiedzy (knowledge storage) Upowszechnianie wiedzy (knowledge dissemination) Wykorzystanie wiedzy (knowledge application) 7 8 Łańcuch wartości zarządzania wiedzą Łańcuch wartości zarządzania wiedzą Pozyskiwanie wiedzy Dokumentowanie wiedzy niejawnej i jawnej Rejestrowanie dokumentów, raportów, prezentacji i dobrych praktyk Dokumenty nieustrukturalizowane (np. e) Budowa sieci ekspertów online Tworzenie wiedzy Śledzenie i pobieranie danych z systemów transakcyjnych i źródeł zewnętrznych 9 9/54 10 Zapamiętywanie wiedzy Bazy danych Łańcuch wartości zarządzania wiedzą Systemy zarządzania dokumentami Rola zarządzania: Wspomaganie budowy planowanych systemów zapamiętywania wiedzy Zachęcanie do budowy schematów ogólnych firmy przeznaczonych do indeksowania dokumentów Gratyfikacja pracowników zajmujących się właściwym rejestrowaniem i aktualizowaniem dokumentów Upowszechnianie wiedzy Portale Łańcuch wartości zarządzania wiedzą Propagowanie raportowania korespondencji owej Maszyny wyszukujące Narzędzia wspomagające współpracę Zalew informacyjny? Programy szkoleniowe, sieci informacyjne, dzielenie się wiedzą pomagającą menedżerom na skoncentrowanie uwagi na ważnych informacjach

3 Łańcuch wartości zarządzania wiedzą Typy systemów zarządzania wiedzą Wykorzystywanie wiedzy Zapewnienie zwrotu z inwestycji (ROI), wiedza organizacyjna powinna stać się systematyczną częścią podejmowania decyzji z ulokowaniem jej w systemach wspomagania decyzji Nowe praktyki biznesowe Nowe produkty i usługi Nowe rynki Typy systemów zarządzania wiedzą Systemy zarządzania wiedzą w biznesie Firmowe systemy zarządzania wiedzą (enterprise-wide knowledge management systems) Celowe działania firmy zachęcające do gromadzenia, zapamiętywania, upowszechniania i wykorzystywania elektronicznych zasobów i wiedzy Specjalizowane SZW (knowledgework systems ) Dedykowane systemy tworzone dla inżynierów, badaczy i innych pracowników wiedzy zaangażowanych w procesach odkrywania i tworzenia nowej wiedzy Techniki inteligentne Zróżnicowana grupa technik takich jak data mining wykorzystywanych do różnych celów: odkrywania wiedzy, doskonalenia wiedzy, odkrywanie optymalnych rozwiązań /54 Communigram Systemy zarządzania wiedzą w biznesie Kluczowy problem tworzenie taksonomii Obiekty wiedzy muszą być przypisane do kategorii (cele wyszukiwawcze) Systemy zarządzania nośnikami elektronicznymi Specjalizowane systemy zarządzania zawartością do klasyfikowania, zapamiętywania nieustrukturalizowanymi danymi Fotografie, grafiki, wideo, audio

4 Systemy wiedzy sieciowej Sieci semantyczne - Topic Maps Dostarczają bezpośrednich informacji o ekspertach dziedzinowych w dobrze zdefiniowanych obszarach wiedzy Używają technologii komunikacyjnych do ułatwienia procesu wyszukiwania właściwych ekspertów w firmie Systematyzują rozwiązania opracowane przez ekspertów i zapamiętują je w bazach wiedzy najlepszych praktyk repozytoriach często zadawanych pytań (FAQ) Topic Map is a semantic graph, that contains definitions of a set of topics and a set of association between topics called ontology of a domain. Information systems can use ontologies for a variety of purposes including inductive reasoning, classification, and problem solving, as well as communication and the sharing of information among different systems /54 20 Operation of the Intelligent Dashboard for Managers Mapa pojęć - przykład /54 22 ROA=NP/TA= 12,908/184,400= 7% Explanation/Interpretation

5 Systemy wiedzy sieciowej Systemy wiedzy sieciowej - cechy Rozbudowane środowisko obsługujące grafikę i złożone obliczenia Zaawansowana grafika i narzędzia analityczne Możliwości komunikacyjne i dotyczące zarządzania dokumentami Dostęp do zewnętrznych baz danych Przyjazne dla użytkownika interfejsy Optymalizacja wykonywanych zadań (inżynieria projektowania, analizy finansowe) Specjalizowane systemy wiedzy Specjalizowane systemy wiedzy - przykłady CAD (computer-aided design): Automatyzuje tworzenie i korektę inżynierską lub projektów architektonicznych z wykorzystaniem rozbudowanego środowiska sprzętowo-programowego Systemy wirtualnej rzeczywistości (Virtual reality systems): Oprogramowanie i specjalizowany sprzęt do symulowania środowiska realnego życia Np. trójwymiarowe modelowanie medyczne dla prowadzących operacje VRML: Specyfikacje dla interaktywnego trójwymiarowego modelowania przez Internet Robocze stacje obsługujące procesy inwestycyjne: Streamline dostarczanie wewnętrznych i zewnętrznych danych dla brokerów, pracowników handlu czy portfolio managers Large Graph Mining [C.Faloutsos et.al., KDD2009] Link analysis Social networks Link analysis techniques are applied to data that can be represented as nodes and links A node (vertice): person, bank account, document, A link: a relationship between two bank accounts 29 29/

6 Degree Centrality The ruling coalition of Unity, Zatler Reform Party, and the National Alliance all majority ethnic Latvian Techniki inteligentne National Alliance Unity... wykorzystywane do eksploracji i modelowania wiedzy Odwzorowywanie wiedzy niejawnej: systemy ekspertowe, wnioskowanie na podstawie przypadków, logika rozmyta,... Odkrywanie wiedzy (knowledge discovery): sieci neuronowe i data mining Generowanie rozwiązań dot. złożonych problemów: algorytmy genetyczne Systemy hybrydowe: inteligentne agenty Harmony Center 35 Zatler s Reform Party Greens/farmers

7 Systemy ekspertowe - struktura Reguły w system ekspertowym Baza wiedzy: Zestaw setek lub tysięcy reguł Maszyna wnioskująca: Strategia stosowana do przeszukiwania bazy wiedzy Wnioskowanie postępujące (forward chaining): maszyna wnioskująca zaczyna od wprowadzonych przez użytkownika informacji i przeszukuje bazę wiedzy do osiągnięcia konkluzji Wnioskowanie wsteczne (backward chaining): Start od hipotezy i uzyskiwanie informacji od użytkownika aż do momentu potwierdzenia lub zanegowania hipotezy Sieci neuronowe Sieci neuronowe Wyszukują wzorce i zależności w masowych danych, które są zbyt złożone do analizy przez człowieka Uczenie wzorców przez szukanie zależności, budowę modeli i sukcesywną korektę opracowanego modelu Sieci uczone są poprzez podawanie danych i konfrontowanie ich z oczekiwanymi rezultatami (stosowanie rozwiązań przez przykłady) Stosowane w klasyfikacji, prognozowaniu, analizach finansowych, sterowaniu i optymalizacji Maszynowe uczenie: odpowiednie technologie AI umożliwiające uczenie komputerów przez ekstrakcję informacji za pośrednictwem metod obliczeniowych i statystycznych 39 39/54 40 Data Mining - źródła Wiele pojęć z dziedzin statystyki, sztucznej inteligencji, rozpoznawania obrazów, uczenia maszynowego i baz danych Statystyka Sztuczna inteligencja Uczenie maszynowe Rozpoznawanie obrazow Data Mining Kilka definicji Nietrywialna ekstrakcja uprzednio nieznanej i potencjalnie użytecznej informacji z dużych baz danych Automatyczna analiza (eksploracja) danych w celu wykrycia istotnych motywów i wzorców Słabości tradycyjnych technik Duże bazy danych Wielowymiarowość danych Heterogeniczność danych Rozproszenie danych Bazy danych Data Mining Wizualizacja /54 7

8 Główne rodzaje algorytmów Apriori - Przykład 43 Milk Dane Tid Refund Marital Taxable Status Income Cheat 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes 11 No Married 60K No 12 Yes Divorced 220K No 13 No Single 85K Yes 14 No Married 75K No 15 No Single 90K Yes MinSupport=2 Baza danych D C 1 itemset sup. L 1 TID Items {1} Scan D {2} {3} {4} {5} 3 itemset sup itemset sup {1 2} 1 L 2 Scan D C 2 C 2 {1 3} 2 {1 3} 2 {2 3} 2 {1 5} 1 {2 5} 3 {2 3} 2 {3 5} 2 {2 5} 3 {3 5} 2 C 3 itemset Scan D L 3 itemset sup {2 3 5} {2 3 5} 2 itemset sup. {1} 2 {2} 3 {3} 3 {5} 3 itemset {1 2} {1 3} {1 5} {2 3} {2 5} {3 5} 44 44/54 Predicting corporate bankruptcy Decision tree J48 How predictable is the health of a company? Data: Compustat tapes and Moody s Industrial Manual 24 ratios computed for 132 firms two years prior to the year of bankruptcy Variables:- total assets, cash, cash flow from operations, cost of goods sold, current assets,current debt, income, inventory, receivables, sales, working capital from operations Ratios: Cash/curDebt, Cash/Sales, 45 45/ Transaction chains trees view

9 Cash Flow Chains Analysis T1 k10 T1 k10 K1 k14 K1 k14 K6 k12 T15 K6 k12 T15 T8 T18 T8 T18 K2 T3T12 k15 K2 T3 T12 k15 0 T9 T17 k11 T9 T17 0 k11 T16 T5 K5 k10 T5 K5 T16 T1 k10 K1 T1 K3 k13 k16 K3 k14 K1 k16 k14 K6 k12 T15 k13 K7 T8 T18 K7 K6 k12 T15 T8T12 T6 T14 T19 T6 0 T3 T18 T3 T14 K4 T11 k17 K4 T19 0 K2 k15 T11 K2 k17 k15 T9T7 k11 T7 T16 T9 k11 T5 K5 T16 T12 T5 k10 K5 T10T17 k10 T10T17 K1 K3 T1 k14 k13 k16 K1 K3 T1 k14 K6 k12 k13 k16 K7 T15 T14 T8 T6 K6 K7 k12 T15 T18 T19 T6 T8 T14 T18 T K2 K4 T11 k15 k17 T3 K2 K4 T11 k15 k17 T9T3 T17 T7 T12 k11 T9 T12T17 T7 T5 K5 T16 k11 T10 T5 K5 T16 T10 K3 k13 k16 K3 k13 k16 K7 T14 K7 T14 T6 T6 K4 T19T11 k17 K4 T19T11 k17 T7 T T10 T10 50 Algorytmy ewolucyjne Użyteczne przy szukaniu optymalnych rozwiązań dla specyficznych problemów poprzez badanie dużej liczby możliwych rozwiązań tego problemu Konceptualnie odwołujące się do procesu ewolucji Wyszukiwanie zmiennych rozwiązań przez zmianę i reorganizację części składowych z wykorzystaniem operatorów: dziedziczenia, selekcji, krzyżowania i mutacji Stosowane w problemach optymalizacyjnych (minimalizacja kosztu, wydajne harmonogramowanie, optymalny projekt urządzenia) w ramach których istnieje setki czy tysiące zmiennych Algorytmy ewolucyjne System ibe-at Stock trading using genetic algorithms Trading rules: Short and Long-term Moving Averages Trading expert model: a subset of trading rules Peugeot Technical trading rules and indicators [W.Colby ett. Meyers, J. Murphy] IF conditions are satisfied THEN decision financial indicators buy,hold or sell Initial wealth of expert: C 0 n 0 P t m Quality of trading expert = F(return, risk) Rule: The crossovers are the points of decisions Buy : when STMA moves above LTMA (cross the time series à la hausse) Sell : when STMA moves below LTMA (the time series à la baisse) 54 54/54 9

10 Are some rules more efficient? Hybrydowe systemy AI Algorytmy genetyczne, logika rozmyta, sieci neuronowe i systemy ekspertowe są integrowane w ramach wspólnej aplikacji wykorzystującej zalety składowych Systemy wielo-agentowe no rule consistently outperforms the others 55 55/54 56 Systemy wielo-agentowe A-Trader Inteligentne agenty Działają w tle wykonując specyficzne, powtarzalne i przewidywalne zadania na rzecz użytkowników, procesów lub programów komputerowych Wykorzystują ograniczone, wbudowane lub wygenerowane bazy wiedzy do wspomagania zadań lub podejmowania decyzji użytkowników Usuwanie niechcianej korespondencji Market Communication Agent Provides real time data, makes market transactions Store signals Database System Decision Support PUSH Communication Notify Agent Historical Data Agent Provides Historical Data Wyszukiwanie najtańszych połączeń Modelowanie systemów agentowych: Systemy autonomicznych agentów Modele zachowań klientów, giełdy; używane do prognozowania rozprzestrzeniania się epidemi Supervisor Visualization Agent Cloud of Computing Agents Basic Agents User Agents Inteligent Agents 57 57/54 58 Systemy wielo-agentowe - przykład Podsumowanie Technologie wspomagające ZW Zarządzanie dokumentami Przepływ pracy Konwersja przepływów Konferencje Web i telefony Zarządzanie projektami Przedsięwzięcia Technologie wspomagające zarządzanie wiedzą Rozwiązywanie problemów Systemy inteligentne Współpraca Intranet Praca grupowa Bazy i urtownie danych 59 59/

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Systemy Informatyki Przemysłowej

Systemy Informatyki Przemysłowej Systemy Informatyki Przemysłowej Profil absolwenta Profil absolwenta Realizowany cel dydaktyczny związany jest z: tworzeniem, wdrażaniem oraz integracją systemów informatycznych algorytmami rozpoznawania

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych

dr inż. Olga Siedlecka-Lamch 14 listopada 2011 roku Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Eksploracja danych - Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 14 listopada 2011 roku 1 - - 2 3 4 5 - The purpose of computing is insight, not numbers Richard Hamming Motywacja - Mamy informację,

Bardziej szczegółowo

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer.

I rok. semestr 1 semestr 2 15 tyg. 15 tyg. Razem ECTS. laborat. semin. ECTS. konwer. wykł. I rok. w tym. Razem ECTS. laborat. semin. ECTS. konwer. Wydział Informatyki i Nauki o Materiałach Kierunek Informatyka studia I stopnia inżynierskie studia stacjonarne 08- IO1S-13 od roku akademickiego 2015/2016 A Lp GRUPA TREŚCI PODSTAWOWYCH kod Nazwa modułu

Bardziej szczegółowo

STUDIA I MONOGRAFIE NR

STUDIA I MONOGRAFIE NR STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU

Bardziej szczegółowo

Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy

Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business www.comarch.pl Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Business Intelligence jako narzędzie do walki z praniem brudnych pieniędzy Tomasz Matysik Kołobrzeg, 19.11.2009

Bardziej szczegółowo

Prezentacja specjalności studiów II stopnia. Inteligentne Technologie Internetowe

Prezentacja specjalności studiów II stopnia. Inteligentne Technologie Internetowe Prezentacja specjalności studiów II stopnia Inteligentne Technologie Internetowe Koordynator specjalności Prof. dr hab. Jarosław Stepaniuk Tematyka studiów Internet jako zbiór informacji Przetwarzanie:

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Wprowadzenie do technologii informacyjnej.

Wprowadzenie do technologii informacyjnej. Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja

Bardziej szczegółowo

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2)

Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Zastosowanie sztucznych sieci neuronowych w prognozowaniu szeregów czasowych (prezentacja 2) Ewa Wołoszko Praca pisana pod kierunkiem Pani dr hab. Małgorzaty Doman Plan tego wystąpienia Teoria Narzędzia

Bardziej szczegółowo

Symbol efektu kształcenia

Symbol efektu kształcenia Efekty dla studiów drugiego stopnia - profil ogólnoakademicki, na kierunku Informatyka, na specjalnościach Metody sztucznej inteligencji (Tabela 1), Projektowanie systemów CAD/CAM (Tabela 2) oraz Przetwarzanie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Systemy Decision suport systems Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia II stopnia

Bardziej szczegółowo

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2008 Zagadnienia do omówienia 1. 2. Przegląd architektury HD 3. Warsztaty

Bardziej szczegółowo

T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01

T2A_W01 T2A_W01 T2A_W02 3 SI_W03 Posiada szeroką wiedzę w zakresie teorii grafów T2A_W01 Efekty dla studiów drugiego stopnia profil ogólnoakademicki, na kierunku Informatyka w języku polskim, na specjalnościach Metody sztucznej inteligencji oraz Projektowanie systemów CAD/CAM, na Wydziale

Bardziej szczegółowo

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 INFORMATYKA I STOPNIA studia stacjonarne 1 sem. PO-W08-INF- - -ST-Ii-WRO-(2015/2016) MAP003055W Algebra z geometrią analityczną A

Bardziej szczegółowo

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska Techniki CAx dr inż. Michał Michna 1 Komputerowe techniki wspomagania projektowania 2 Techniki Cax - projektowanie Projektowanie złożona działalność inżynierska, w której przenikają się doświadczenie inżynierskie,

Bardziej szczegółowo

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Systemy ekspertowe w zarządzaniu firmą Expert systems in enterprise management Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem. Proj.

Bardziej szczegółowo

1.1 Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy. Efekty kształcenia w zakresie umiejętności

1.1 Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy. Efekty kształcenia w zakresie umiejętności 1.1 Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka i Ekonometria (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego

Bardziej szczegółowo

Zarządzanie procesami pomocniczymi w przedsiębiorstwie

Zarządzanie procesami pomocniczymi w przedsiębiorstwie WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W PŁOCKU Leszek Pruszkowski Zarządzanie procesami pomocniczymi w przedsiębiorstwie Koncepcja Facility Management Płock 2009 1 SPIS TREŚCI WPROWADZENIE...

Bardziej szczegółowo

Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski

Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,

Bardziej szczegółowo

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska

Techniki CAx. dr inż. Michał Michna. Politechnika Gdańska Techniki CAx dr inż. Michał Michna 1 Sterowanie CAP Planowanie PPC Sterowanie zleceniami Kosztorysowanie Projektowanie CAD/CAM CAD Klasyfikacja systemów Cax Y-CIM model Planowanie produkcji Konstruowanie

Bardziej szczegółowo

Informatyka studia stacjonarne pierwszego stopnia

Informatyka studia stacjonarne pierwszego stopnia #382 #379 Internetowy system obsługi usterek w sieciach handlowych (The internet systems of detection of defects in trade networks) Celem pracy jest napisanie aplikacji w języku Java EE. Główne zadania

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury

Bardziej szczegółowo

w ekonomii, finansach i towaroznawstwie

w ekonomii, finansach i towaroznawstwie w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez

Bardziej szczegółowo

Kraków, 14 marca 2013 r.

Kraków, 14 marca 2013 r. Scenariusze i trendy rozwojowe wybranych technologii społeczeństwa informacyjnego do roku 2025 Antoni Ligęza Perspektywy rozwoju systemów eksperckich do roku 2025 Kraków, 14 marca 2013 r. Dane informacja

Bardziej szczegółowo

Szkolenia SAS Cennik i kalendarz 2017

Szkolenia SAS Cennik i kalendarz 2017 Szkolenia SAS Spis treści NARZĘDZIA SAS FOUNDATION 2 ZAAWANSOWANA ANALITYKA 2 PROGNOZOWANIE I EKONOMETRIA 3 ANALIZA TREŚCI 3 OPTYMALIZACJA I SYMULACJA 3 3 ROZWIĄZANIA DLA HADOOP 3 HIGH-PERFORMANCE ANALYTICS

Bardziej szczegółowo

Cel i zawartość prezentacji

Cel i zawartość prezentacji Cel i zawartość prezentacji Głównym celem prezentacji jest przedstawienie mało popularnej i nieznanej jeszcze w Polsce metody nauczania WebQuest, wykorzystującej Internet jako źródło informacji oraz jako

Bardziej szczegółowo

Zintegrowana platforma zarządzania miastem w kontekście bezpieczeństwa publicznego. (Centrum Bezpieczeństwa Miasta)

Zintegrowana platforma zarządzania miastem w kontekście bezpieczeństwa publicznego. (Centrum Bezpieczeństwa Miasta) Zintegrowana platforma zarządzania miastem w kontekście bezpieczeństwa publicznego (Centrum Bezpieczeństwa Miasta) Gdańsk 2014 Atena Partnerem 2013 Spis treści 1 Cechy zintegrowanej platformy zarządzania

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych Rodzaj zajęć: wykład, laboratorium BAZY DANYCH I SYSTEMY EKSPERTOWE Database and expert systems Forma

Bardziej szczegółowo

STUDIA NIESTACJONARNE I STOPNIA Przedmioty kierunkowe

STUDIA NIESTACJONARNE I STOPNIA Przedmioty kierunkowe STUDIA NIESTACJONARNE I STOPNIA Przedmioty kierunkowe Technologie informacyjne prof. dr hab. Zdzisław Szyjewski 1. Rola i zadania systemu operacyjnego 2. Zarządzanie pamięcią komputera 3. Zarządzanie danymi

Bardziej szczegółowo

OBIEG INFORMACJI I WSPOMAGANIE DECYZJI W SYTUACJACH KRYZYSOWYCH

OBIEG INFORMACJI I WSPOMAGANIE DECYZJI W SYTUACJACH KRYZYSOWYCH OBIEG INFORMACJI I WSPOMAGANIE DECYZJI W SYTUACJACH KRYZYSOWYCH AGENDA Prezentacja firmy Tecna Informacja i jej przepływ Workflow i BPM Centralny portal informacyjny Wprowadzanie danych do systemu Interfejsy

Bardziej szczegółowo

Współczesna problematyka klasyfikacji Informatyki

Współczesna problematyka klasyfikacji Informatyki Współczesna problematyka klasyfikacji Informatyki Nazwa pojawiła się na przełomie lat 50-60-tych i przyjęła się na dobre w Europie Jedna z definicji (z Wikipedii): Informatyka dziedzina nauki i techniki

Bardziej szczegółowo

WIEDZA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza

WIEDZA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WIEDZA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki

Bardziej szczegółowo

STUDIA STACJONARNE JEDNOLITE MAGISTERSKIE Przedmioty kierunkowe

STUDIA STACJONARNE JEDNOLITE MAGISTERSKIE Przedmioty kierunkowe STUDIA STACJONARNE JEDNOLITE MAGISTERSKIE Przedmioty kierunkowe Programowanie komputerów dr Jakub Swacha 1. Rekurencja a iteracja w programach 2. Klasyfikacja języków programowania 3. Różnice między kompilacją

Bardziej szczegółowo

Systemy informacyjno decyzyjne w biznesie

Systemy informacyjno decyzyjne w biznesie Kilka definicji Systemy informacyjno decyzyjne w biznesie Jerzy KORCZAK Katedra Technologii Informacyjnych Uniwersytet Ekonomiczny, Wrocław email: jerzy.korczak@ue.wroc.pl http://www.korczak-leliwa.pl

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Analiza i wizualizacja danych Data analysis and visualization

Analiza i wizualizacja danych Data analysis and visualization KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Kierunek: INFORMATYKA. Studia stacjonarne. Studia drugiego stopnia. Profil: ogólnoakademicki

Kierunek: INFORMATYKA. Studia stacjonarne. Studia drugiego stopnia. Profil: ogólnoakademicki Studia drugiego stopnia Kierunek: INFORMATYKA Profil: ogólnoakademicki Studenci rozpoczynający studia w roku akademickim 2015/2016 (od semestru zimowego) Formy studiów: Stacjonarne (ścieżka 4-semestralna)

Bardziej szczegółowo

Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble

Bardziej szczegółowo

BPM vs. Content Management. Jarosław Żeliński analityk biznesowy, projektant systemów

BPM vs. Content Management. Jarosław Żeliński analityk biznesowy, projektant systemów BPM vs. Content Management Jarosław Żeliński analityk biznesowy, projektant systemów Cel prezentacji Celem prezentacji jest zwrócenie uwagi na istotne różnice pomiędzy tym co nazywamy: zarzadzaniem dokumentami,

Bardziej szczegółowo

Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych

Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Temat: Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Autorzy: Tomasz Małyszko, Edyta Łukasik 1. Definicja eksploracji danych Eksploracja

Bardziej szczegółowo

Problemy i wyzwania analizy obszaru ICT

Problemy i wyzwania analizy obszaru ICT Problemy i wyzwania analizy obszaru ICT Rafał Żelazny Główny Konsultant Zespołu ds. Wdrażania i Monitoringu Strategii Społeczeństwa Informacyjnego Województwa Śląskiego do roku 2015 22.11.2013, TECHNOPARK

Bardziej szczegółowo

Monitoring procesów z wykorzystaniem systemu ADONIS

Monitoring procesów z wykorzystaniem systemu ADONIS Monitoring procesów z wykorzystaniem systemu ADONIS BOC Information Technologies Consulting Sp. z o.o. e-mail: boc@boc-pl.com Tel.: (+48 22) 628 00 15, 696 69 26 Fax: (+48 22) 621 66 88 BOC Management

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi

Bardziej szczegółowo

INFORMATYKA Pytania ogólne na egzamin dyplomowy

INFORMATYKA Pytania ogólne na egzamin dyplomowy INFORMATYKA Pytania ogólne na egzamin dyplomowy 1. Wyjaśnić pojęcia problem, algorytm. 2. Podać definicję złożoności czasowej. 3. Podać definicję złożoności pamięciowej. 4. Typy danych w języku C. 5. Instrukcja

Bardziej szczegółowo

Razem godzin w semestrze: Plan obowiązuje od roku akademickiego 2014/15 - zatwierdzono na Radzie Wydziału w dniu r.

Razem godzin w semestrze: Plan obowiązuje od roku akademickiego 2014/15 - zatwierdzono na Radzie Wydziału w dniu r. Część wspólna dla kierunku 1 IMS1.01 Obiektowe projektowanie SI 2 2 E 3 60 3 2 IMS1.02 Teleinformatyka 2 2 E 4 60 4 3 IMS2.01 Modelowanie i analiza systemów dyskretnych 2 2 E 3 60 3 4 IMS2.02 Wielowymiarowa

Bardziej szczegółowo

Dziedzinowa Baza Wiedzy w zakresie Nauk Technicznych

Dziedzinowa Baza Wiedzy w zakresie Nauk Technicznych Jak Nas widzą, tak Nas piszą Dziedzinowa Baza Wiedzy w zakresie Nauk Technicznych Warszawa Maj 2013 Plan prezentacji 1. Stan informacji naukowej w zakresie nauk technicznych w Polsce 2. Koncepcja systemu

Bardziej szczegółowo

Portale raportowe, a narzędzia raportowe typu self- service

Portale raportowe, a narzędzia raportowe typu self- service Portale raportowe, a narzędzia raportowe typu self- service Bartłomiej Graczyk Kierownik Projektów / Architekt rozwiązań Business Intelligence E mail: bartek@graczyk.info.pl Site: www.graczyk.info.pl Agenda

Bardziej szczegółowo

Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy (cz. I)

Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy (cz. I) Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka i Ekonometria (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego

Bardziej szczegółowo

Adam Dolega Architekt Rozwiązań Biznesowych Microsoft adam.dolega@microsoft.com

Adam Dolega Architekt Rozwiązań Biznesowych Microsoft adam.dolega@microsoft.com Adam Dolega Architekt Rozwiązań Biznesowych Microsoft adam.dolega@microsoft.com Budowa rozwiązań Rozwiązania dla programistów Narzędzia integracyjne Zarządzanie infrastrukturą Zarządzanie stacjami, urządzeniami

Bardziej szczegółowo

MONITOROWANIE DOSTĘPNOŚCI USŁUG IT

MONITOROWANIE DOSTĘPNOŚCI USŁUG IT MONITOROWANIE DOSTĘPNOŚCI USŁUG IT POZIOMY MONITOROWANIA Services Transaction Application OS Network IBM TIVOLI MONITORING Proaktywnie monitoruje zasoby systemowe, wykrywając potencjalne problemy i automatycznie

Bardziej szczegółowo

Szybkość instynktu i rozsądek rozumu$

Szybkość instynktu i rozsądek rozumu$ Szybkość instynktu i rozsądek rozumu$ zastosowania rozwiązań BigData$ Bartosz Dudziński" Architekt IT! Już nie tylko dokumenty Ilość Szybkość Różnorodność 12 terabajtów milionów Tweet-ów tworzonych codziennie

Bardziej szczegółowo

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami

1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami EFEKTY KSZTAŁCENIA 1. Tabela odniesień efektów kierunkowych do efektów obszarowych z komentarzami Kierunkowy efekt kształcenia - symbol K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 Kierunkowy efekt

Bardziej szczegółowo

POLITECHNIKA LUBELSKA Wydział Elektrotechniki Kierunek: INFORMATYKA II stopień niestacjonarne i Informatyki. Część wspólna dla kierunku

POLITECHNIKA LUBELSKA Wydział Elektrotechniki Kierunek: INFORMATYKA II stopień niestacjonarne i Informatyki. Część wspólna dla kierunku Część wspólna dla kierunku 1 IMN1.01 Obiektowe projektowanie SI 15 15 E 3 3 2 IMN1.02 Teleinformatyka 15 15 E 4 4 3 IMN2.01 Modelowanie i analiza systemów dyskretnych 15 15 E 3 3 4 IMN2.02 Wielowymiarowa

Bardziej szczegółowo

Udziałowcy wpływający na poziom cen:

Udziałowcy wpływający na poziom cen: Analiza procesu wytwórczego Udziałowcy wpływający na poziom cen: - dostawcy podzespołów - kooperanci - dystrybutorzy - sprzedawcy detaliczni tworzą nowy model działania: Zarządzanie łańcuchem dostaw SCM

Bardziej szczegółowo

STUDIA STACJONARNE I STOPNIA Przedmioty kierunkowe

STUDIA STACJONARNE I STOPNIA Przedmioty kierunkowe STUDIA STACJONARNE I STOPNIA Przedmioty kierunkowe Technologie informacyjne Prof. dr hab. Zdzisław Szyjewski 1. Rola i zadania systemu operacyjnego 2. Zarządzanie pamięcią komputera 3. Zarządzanie danymi

Bardziej szczegółowo

IV. Metody genetyczne

IV. Metody genetyczne SZTUCZNA INTELIGENCJA W FINANSACH IV. Metody genetyczne Jerzy KORCZAK email: jerzy.korczak@ue.wroc.pl Metody sztucznej ewolucji Algorytmy genetyczne Programowanie genetyczne Systemy klasyfikatorow Strategie

Bardziej szczegółowo

Ewelina Dziura Krzysztof Maryański

Ewelina Dziura Krzysztof Maryański Ewelina Dziura Krzysztof Maryański 1. Wstęp - eksploracja danych 2. Proces Eksploracji danych 3. Reguły asocjacyjne budowa, zastosowanie, pozyskiwanie 4. Algorytm Apriori i jego modyfikacje 5. Przykład

Bardziej szczegółowo

Zapewnij sukces swym projektom

Zapewnij sukces swym projektom Zapewnij sukces swym projektom HumanWork PROJECT to aplikacja dla zespołów projektowych, które chcą poprawić swą komunikację, uprościć procesy podejmowania decyzji oraz kończyć projekty na czas i zgodnie

Bardziej szczegółowo

Integracja systemu CAD/CAM Catia z bazą danych uchwytów obróbkowych MS Access za pomocą interfejsu API

Integracja systemu CAD/CAM Catia z bazą danych uchwytów obróbkowych MS Access za pomocą interfejsu API Dr inż. Janusz Pobożniak, pobozniak@mech.pk.edu.pl Instytut Technologii Maszyn i Automatyzacji produkcji Politechnika Krakowska, Wydział Mechaniczny Integracja systemu CAD/CAM Catia z bazą danych uchwytów

Bardziej szczegółowo

ROZDZIAŁ 1. WPROWADZENIE DO PROBLEMATYKI SYSTEMÓW EKSPERTOWYCH 19

ROZDZIAŁ 1. WPROWADZENIE DO PROBLEMATYKI SYSTEMÓW EKSPERTOWYCH 19 SPIS TREŚCI WSTĘP 15 ROZDZIAŁ 1. WPROWADZENIE DO PROBLEMATYKI SYSTEMÓW EKSPERTOWYCH 19 1.1. Pojęcie i rozwój systemów ekspertowych 19 1.1.1. Definiowanie systemu ekspertowego w literaturze przedmiotu 20

Bardziej szczegółowo

Jak skutecznie zarządzać informacją?

Jak skutecznie zarządzać informacją? Jak skutecznie zarządzać informacją? Platforma Office 2010 jako narzędzie do efektywnego zarządzania procesami w organizacji. Zbigniew Szcześniewski Microsoft AGENDA Co ma Office do zarządzania informacją?

Bardziej szczegółowo

KIERUNKOWE EFEKTY KSZTAŁCENIA

KIERUNKOWE EFEKTY KSZTAŁCENIA WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA II STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina

Bardziej szczegółowo

Ulotka informacyjna HelpDesk SoftwareStudio Sp. Z o.o. (Oparte na OTRS 3.1.10)

Ulotka informacyjna HelpDesk SoftwareStudio Sp. Z o.o. (Oparte na OTRS 3.1.10) 60-349 Poznań, ul. Ostroroga 5 Tel. 061 66 90 641, 061 66 90 642 061 66 90 643, 061 66 90 644 Fax. 061 86 71 151 mail: poznan@softwarestudio.com.pl Ulotka informacyjna HelpDesk SoftwareStudio Sp. Z o.o.

Bardziej szczegółowo

ZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN

ZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 37, s. 141-146, Gliwice 2009 ZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN KRZYSZTOF HERBUŚ, JERZY ŚWIDER Instytut Automatyzacji Procesów

Bardziej szczegółowo

Projektowanie Wirtualne bloki tematyczne PW I

Projektowanie Wirtualne bloki tematyczne PW I Podstawowe zagadnienia egzaminacyjne Projektowanie Wirtualne - część teoretyczna Projektowanie Wirtualne bloki tematyczne PW I 1. Projektowanie wirtualne specyfika procesu projektowania wirtualnego, podstawowe

Bardziej szczegółowo

Systemy z bazą wiedzy (spojrzenie bardziej korporacyjne) Baza wiedzy. Baza wiedzy. Baza wiedzy. Baza wiedzy

Systemy z bazą wiedzy (spojrzenie bardziej korporacyjne) Baza wiedzy. Baza wiedzy. Baza wiedzy. Baza wiedzy Zarządzanie wiedzą z bazą wiedzy (spojrzenie bardziej korporacyjne) Wybrane aspekty technologiczne związane z wiedzą i zarządzaniem wiedzą Google: baza wiedzy 1,180,000 znalezionych systemy zarządzania

Bardziej szczegółowo

Istnieje możliwość prezentacji systemu informatycznego MonZa w siedzibie Państwa firmy.

Istnieje możliwość prezentacji systemu informatycznego MonZa w siedzibie Państwa firmy. system informatyczny wspomagający monitorowanie i planowanie zapasów w przedsiębiorstwie System informatyczny MonZa do wspomagania decyzji managerskich w obszarze zarządzania zapasami jest odpowiedzią

Bardziej szczegółowo

Bazy danych 2. Wykład 1

Bazy danych 2. Wykład 1 Bazy danych 2 Wykład 1 Sprawy organizacyjne Materiały i listy zadań zamieszczane będą na stronie www.math.uni.opole.pl/~ajasi E-mail: standardowy ajasi@math.uni.opole.pl Sprawy organizacyjne Program wykładu

Bardziej szczegółowo

Co to jest jest oprogramowanie? 8. Co to jest inżynieria oprogramowania? 9. Jaka jest różnica pomiędzy inżynierią oprogramowania a informatyką?

Co to jest jest oprogramowanie? 8. Co to jest inżynieria oprogramowania? 9. Jaka jest różnica pomiędzy inżynierią oprogramowania a informatyką? ROZDZIAŁ1 Podstawy inżynierii oprogramowania: - Cele 2 - Zawartość 3 - Inżynieria oprogramowania 4 - Koszty oprogramowania 5 - FAQ o inżynierii oprogramowania: Co to jest jest oprogramowanie? 8 Co to jest

Bardziej szczegółowo

Konferencja. Business Intelligence Trends 24 czerwca 2014 r.

Konferencja. Business Intelligence Trends 24 czerwca 2014 r. Konferencja Business Intelligence Trends 24 czerwca 2014 r. O FIRMIE PRODUKCJA OPROGRAMOWANIA ZARZĄDZANIE ZASOBAMI IT WDROŻENIA POLITYKA ZARZĄDZANIA LICENCJAMI SZKOLENIA KONSULTACJE KOMPETENCJE PRODUKCJA

Bardziej szczegółowo

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia

ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia ZP/ITS/11/2012 Załącznik nr 1a do SIWZ ZMODYFIKOWANY Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych

Bardziej szczegółowo

Wydział Informtyki i Nauki o Materiałach Kierunek Informatyka. kod kierunku (dodaj kod przedmiotu)

Wydział Informtyki i Nauki o Materiałach Kierunek Informatyka. kod kierunku (dodaj kod przedmiotu) 08-IN-N2- A GRUPA TREŚCI PODSTAWOWYCH Wydział Informtyki i Nauki o Materiałach Kierunek Informatyka kod kierunku (dodaj kod przedmiotu) Lp Nazwa modułu 1 0 0 RAZEM B: forma zajęć studia drugiego stopnia

Bardziej szczegółowo

VENDIO SPRZEDAŻ kompleksowa obsługa sprzedaży. dcs.pl Sp. z o.o. vendio.dcs.pl E-mail: info@dcs.pl Warszawa, 16-10-2014

VENDIO SPRZEDAŻ kompleksowa obsługa sprzedaży. dcs.pl Sp. z o.o. vendio.dcs.pl E-mail: info@dcs.pl Warszawa, 16-10-2014 VENDIO SPRZEDAŻ kompleksowa obsługa sprzedaży dcs.pl Sp. z o.o. vendio.dcs.pl E-mail: info@dcs.pl Warszawa, 16-10-2014 Agenda Jak zwiększyć i utrzymać poziom sprzedaży? VENDIO Sprzedaż i zarządzanie firmą

Bardziej szczegółowo

Metadane. Data Maining. - wykład VII. Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006

Metadane. Data Maining. - wykład VII. Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Metadane. Data Maining. - wykład VII Paweł Skrobanek, C-3 pok. 323 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2006 Plan 1. Metadane 2. Jakość danych 3. Eksploracja danych (Data mining) 4. Sprawy róŝne

Bardziej szczegółowo

Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu

Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu Załącznik nr 1 do Uchwały nr 9/12 Rady Instytutu Inżynierii Technicznej PWSTE w Jarosławiu z dnia 30 marca 2012r Państwowa Wyższa Szkoła Techniczno-Ekonomiczna w Jarosławiu EFEKTY KSZTAŁCENIA DLA KIERUNKU

Bardziej szczegółowo

Inteligentna analiza danych operacyjnych

Inteligentna analiza danych operacyjnych Inteligentna analiza danych operacyjnych Nowa generacja narzędzi HP do monitorowania systemów IT Piotr Kuljon 14 Kwietnia 2015 Jak znaleźć jednego winnego? 2 Jak go powtrzymać? 3 HP Operations Analytics

Bardziej szczegółowo

NAUKOWA I AKADEMICKA SIEĆ KOMPUTEROWA Jak usprawnić pracę w zespole IT? Wykorzystanie narzędzi do pracy grupowej na przykładzie zespołu Polska.pl Agnieszka Kukałowicz-Kolaszyńska, Starszy Specjalista IT

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

MODELOWANIE SYSTEMU OCENY WARUNKÓW PRACY OPERATORÓW STEROWNI

MODELOWANIE SYSTEMU OCENY WARUNKÓW PRACY OPERATORÓW STEROWNI Inżynieria Rolnicza 7(105)/2008 MODELOWANIE SYSTEMU OCENY WARUNKÓW PRACY OPERATORÓW STEROWNI Agnieszka Buczaj Zakład Fizycznych Szkodliwości Zawodowych, Instytut Medycyny Wsi w Lublinie Halina Pawlak Katedra

Bardziej szczegółowo

*Odniesienie - kształcenia EFEKT KSZTAŁCENIA. Absolwent studiów drugiego stopnia na kierunku Informatyka: symbol Wiedza 1 AI_W01

*Odniesienie - kształcenia EFEKT KSZTAŁCENIA. Absolwent studiów drugiego stopnia na kierunku Informatyka: symbol Wiedza 1 AI_W01 Efekty dla studiów drugiego stopnia profil ogólnoakademicki, na kierunku Informatyka w języku angielskim (Computer Science), na specjalnościach Sztuczna inteligencja (Artificial Intelligence) oraz Projektowanie

Bardziej szczegółowo

Zakład Sterowania Systemów

Zakład Sterowania Systemów Zakład Sterowania Systemów Zespół ZłoŜonych Systemów Kierownik zespołu: prof. dr hab. Krzysztof Malinowski Tematyka badań i prac dyplomowych: Projektowanie algorytmów do podejmowania decyzji i sterowania

Bardziej szczegółowo

System Obsługi Wniosków

System Obsługi Wniosków System Obsługi Wniosków Wersja 2.0 1 System Obsługi Wniosków wersja 2.0 System Obsługi Wniosków to nowoczesne rozwiązanie wspierające proces obsługi wniosków o produkty bankowe. Pozwala na przyjmowanie,

Bardziej szczegółowo

Co to jest Business Intelligence?

Co to jest Business Intelligence? Cykl: Cykl: Czwartki z Business Intelligence Sesja: Co Co to jest Business Intelligence? Bartłomiej Graczyk 2010-05-06 1 Prelegenci cyklu... mariusz@ssas.pl lukasz@ssas.pl grzegorz@ssas.pl bartek@ssas.pl

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj

Bardziej szczegółowo

Automatyzacja Procesów Biznesowych. Systemy Informacyjne Przedsiębiorstw

Automatyzacja Procesów Biznesowych. Systemy Informacyjne Przedsiębiorstw Automatyzacja Procesów Biznesowych Systemy Informacyjne Przedsiębiorstw Rodzaje przedsiębiorstw Produkcyjne największe zapotrzebowanie na kapitał, największe ryzyko Handlowe kapitał obrotowy, średnie ryzyko

Bardziej szczegółowo

Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA

Efekty kształcenia dla kierunku studiów INFORMATYKA, Absolwent studiów I stopnia kierunku Informatyka WIEDZA Symbol Efekty kształcenia dla kierunku studiów INFORMATYKA, specjalność: 1) Sieciowe systemy informatyczne. 2) Bazy danych Absolwent studiów I stopnia kierunku Informatyka WIEDZA Ma wiedzę z matematyki

Bardziej szczegółowo

INŻYNIERIA OPROGRAMOWANIA

INŻYNIERIA OPROGRAMOWANIA INSTYTUT INFORMATYKI STOSOWANEJ 2013 INŻYNIERIA OPROGRAMOWANIA Inżynieria Oprogramowania Proces ukierunkowany na wytworzenie oprogramowania Jak? Kto? Kiedy? Co? W jaki sposób? Metodyka Zespół Narzędzia

Bardziej szczegółowo

Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 2015 r.

Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 2015 r. PLAN STUDIÓW DLA KIERUNKU INFORMATYKA STUDIA: INŻYNIERSKIE TRYB STUDIÓW: STACJONARNE Zatwierdzono na Radzie Wydziału w dniu 11 czerwca 201 r. Egzamin po semestrze Obowiązuje od naboru na rok akademicki

Bardziej szczegółowo

2014-03-17. Misja. Strategia. Cele UNIT4 TETA BI CENTER. Plan prezentacji. Grupa UNIT4 TETA. Grupa kapitałowa UNIT4 UNIT4 TETA BI CENTER

2014-03-17. Misja. Strategia. Cele UNIT4 TETA BI CENTER. Plan prezentacji. Grupa UNIT4 TETA. Grupa kapitałowa UNIT4 UNIT4 TETA BI CENTER Plan prezentacji Prowadzący: Mateusz Jaworski m.jaworski@tetabic.pl 1. Grupa kapitałowa UNIT4. 2. Grupa UNIT4 TETA. 3. UNIT4 TETA BI CENTER. 4. TETA Business Intelligence. 5. Analiza wielowymiarowa. 6..

Bardziej szczegółowo