PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 2012

Wielkość: px
Rozpocząć pokaz od strony:

Download "PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 2012"

Transkrypt

1 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Poprawna odpowiedź Zad. 5 Zad. 6 Zad. 7 Zad. 8 Zad. 9 SUMA PUNKTÓW Max liczba punktów Wybrana odpowiedź Liczba uzyskanych punktów Drogi Uczniu! Przed Tobą arkusz z ciekawymi zadaniami z matematyki. Przy każdym zadaniu podano liczbę punktów, jaką możesz uzyskać. Swoje rozwiązania i odpowiedzi do zadań umieszczaj wyłącznie w przeznaczonym do tego miejscu. W zadaniach zamkniętych o numerach, 2, 3 i 4 podane są cztery odpowiedzi. Wybierz tylko jedną z nich i wpisz wybraną literę w odpowiednią kratkę. Zapisuj szczegółowe komentarze do rozwiązań zadań otwartych. Pominięcie argumentacji lub istotnych obliczeń może spowodować, że za rozwiązanie nie będziesz mógł otrzymać maksymalnej liczby punktów. Rozwiązując zadania nie możesz korzystać z kalkulatora. Test trwa 60 minut. POWODZENIA! KOD ucznia

2 BRUDNOPIS 2

3 Zadanie. ( punkt) Pewna liczba trzycyfrowa ma w rzędzie jedności najmniejszą liczbę pierwszą, a w rzędzie setek największą liczbę parzystą. Jaka to liczba, jeśli cyfra rzędu dziesiątek jest połową sumy cyfr rzędu setek i jedności? Zadanie. A. 84 B. 852 C. 85 D. nie można określić jaka to liczba Zadanie 2. ( punkt) O liczbie, która jest sumą A. jest liczbą nieparzystą B. w rzędzie setek ma cyfrę większą niż w rzędzie dziesiątek C. jest podzielna przez 5 D. jest liczbą parzystą można powiedzieć, że: Zadanie 2. Zadanie 3. ( punkt) Działka babci jest prostokątem o wymiarach 35m i 20m. Działka cioci Zosi ma jeden bok o 5m dłuższy, a drugi bok o 5m krótszy niż działka babci. Wynika z tego, że : Zadanie 3. A. na ogrodzenie działki cioci Zosi potrzeba więcej siatki B. na ogrodzenie działki babci potrzeba mniej siatki C. na ogrodzenia obu działek potrzeba tyle samo siatki D. nie można obliczyć na ogrodzenie której działki potrzeba więcej siatki Zadanie 4. ( punkt) Bartek zapytał kolegów: Ile lat ma moja mama?. Chłopcy odpowiedzieli w następujący sposób: Łukasz 30 lat, Krzyś 34 lata, Grzesiek 36 lat. Bartek pomyślał chwilę i stwierdził, że dwóch chłopców pomyliło się o 2 lata, a jeden o 4 lata.. Wynika z tego, że : A. o 2 lata pomylili się Krzyś i Grzesiek B. mama Bartka ma 32 lata C. o 4 lata pomylił się Krzyś D. mama Bartka ma 33 lata. Zadanie 4. 3

4 Zadanie 5. (5 punktów) Kasia kupiła 2 jogurty, 3 batoniki i soczek i zapłaciła 7 złotych, a Bartek za takie same 3 jogurty, 2 batoniki i 4 soczki zapłacił o złotych więcej. Ile reszty z 50 złotych otrzyma Julka jeśli kupi takie same 3 jogurty, 3 batoniki i 3 soczki? Odpowiedź:.. Zadanie 6. (3 punkty) Kwotę 788 zł można wypłacić na wiele sposobów. W kasie są tylko monety o nominale 5 zł i 2 zł. W jaki sposób można wypłacić tę kwotę, aby było jak najmniej monet? Przedstaw sposób rozumowania. Odpowiedź:. 4

5 Zadanie 7. (4 punkty) W prostokącie ABCD przekątna AC ma długość 5 dm. Przekątna ta podzieliła prostokąt na dwa trójkąty, których suma obwodów wynosi 24 dm. Jaki obwód będzie miał ten prostokąt narysowany w skali : 00? Odpowiedź:.. Zadanie 8. (5 punktów) Agata, Bartek, Czarek i Diana zbierali kasztany. Kiedy Agata przełożyła do koszyka Bartka 5 kasztanów, a Bartek przełożył 2 kasztanów do koszyka Czarka, ten zaś 9 kasztanów dał Dianie, która 5 kasztanów oddała Agacie, to okazało się, że wszyscy mają po 36 kasztanów. Oblicz, ile początkowo kasztanów miało każde dziecko. Odpowiedź:.. 5

6 Zadanie 9. (4 punkty) Pewien Pers posiadał latający dywan. Chciał go sprzedać, ale nie mógł znaleźć kupca. Obniżył więc początkową jego cenę o 246 talarów. O dywanie dowiedział się sułtan i zawezwał Persa. Chytry Pers zaproponował sułtanowi cenę o 504 talary większą od nowej ceny. Sułtan targował się i kupił dywan o 79 talarów taniej niż chciał mężczyzna. Jak ci się wydaje, czy Pers sprzedał dywan drożej czy taniej niż początkowo planował i o ile talarów? Odpowiedź:.. 6

7 BRUDNOPIS 7

8 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA marzec 202 MATEMATYKA klasa IV szkoła podstawowa KARTOTEKA TESTU Nr zad. Czynności ucznia punkty wymagania Analizuje warunki zadania wskazuje poprawnie liczbę LN 2 Analizuje jaka liczbą będzie suma podanych liczb i wskazuje poprawną odpowiedź LN 3 Analizuje jak zmieni się obwód prostokąta po zmianie długości boków ZP 4 Analizuje odpowiedzi chłopców i ustala wiek mamy Bartka LN 5 Ustala strategię rozwiązania np. zapisuje warunki zadania za pomocą rysunku. Oblicza wartość zakupów Kasi i Bartka razem Oblicza wartość zestawu składającego się z jogurtu, batonika i soczku. Oblicza wartość zestawu składającego się z 3 jogurtów, 3 batoników i 3 soczków. Oblicza resztę z podanej kwoty. ZP 6 Ustala strategię rozwiązania zadania (wykonuje dzielenie lub rozwiązuje zadanie na rysunku). Oblicza maksymalną ilość monet pięciozłotowych. Oblicza ilość monet dwuzłotowych. ZP 7 Analizuje warunki zadania np. wykonuje rysunek z opisem. Ustala, że licząc sumę obwodów trójkątów dwa razy liczymy długość przekątnej Oblicz obwód prostokąta w naturalnych wymiarach Oblicza obwód prostokąta w skali : 00 G 8 9 Ustala strategię rozwiązania zadania zapisuje warunki i ustala ile kasztanów ma każde dziecko po wszystkich przekładaniach Oblicza pierwotną liczbę kasztanów każdego dziecka Zapisuje cenę po obniżce Zapisuje cenę podaną sułtanowi Zapisuje cenę, za którą sułtan kupił dywan Oblicza końcową cenę dywanu, wyciąga poprawny wniosek i zapisuje odpowiedź WYMAGANIA: 4 SUMA 25 LN ZP LN ZP G ZL Dziesiątkowy system pozycyjny. Zapis liczby wielocyfrowej, której cyfry spełniają podane warunki. Umiejętność wykonywania czterech podstawowych działań sposobem pisemnym w zbiorze liczb naturalnych. Kolejność wykonywania działań. Zadania tekstowe z zastosowaniem czterech podstawowych działań na liczbach naturalnych. Zadania uwzględniające obliczenia pieniężne. Obliczanie długości odcinków w skali. Obwód prostokąta i kwadratu. Zadania i zagadki logiczne. UMIEJĘTNOŚCI: stosowanie języka matematycznego przy zapisywaniu rozwiązań zadań; formułowanie wniosków na podstawie analizy podanego tekstu matematycznego; sprawdzanie, czy otrzymany wynik spełnia warunki zadania; rozwiązywanie łamigłówek logicznych, dostrzeganie prawidłowości. 8

9 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA marzec 202 MATEMATYKA klasa IV szkoła podstawowa SZKICE PRZYKŁADOWYCH ROZWIĄZAŃ ZADAŃ UWAGA: Za prawidłowe rozwiązanie każdego zadania metodą inną niż podane poniżej przyznajemy maksymalną liczbę punktów Zadanie. Zadanie 2. Zadanie 3. Zadanie 4. Odpowiedź B Odpowiedź D Odpowiedź C Odpowiedź B Zadanie 5. (5 punktów) Kasia kupiła 2 jogurty, 3 batoniki i soczek i zapłaciła 7 złotych, a Bartek za takie same 3 jogurty, 2 batoniki i 4 soczki zapłacił o złotych więcej. Ile reszty z 50 złotych otrzyma Julka jeśli kupi takie same 3 jogurty, 3 batoniki i 3 soczki? Rozwiązanie: Bartek zapłacił za swoje zakupy 7 zł + zł = 28 zł Kasia i Bartek kupili razem 5 jogurtów, 5 batoników i 5 soczków i zapłacili za wszystko 7 zł + 28 zł = 45 zł jogurt, batonik, soczek kosztuje 45 zł : 5 = 9 zł 3 jogurty, 3 batoniki, 3 soczki kosztują 9 zł 3 = 27 zł Reszta wyniesie 50 zł 27 zł = 23 zł Odpowiedź: Julka otrzyma 23 zł reszty. Zadanie 6. (3 punkty) Kwotę 788 zł można wypłacić na wiele sposobów. W kasie są tylko monety o nominale 5 zł i 2 zł. W jaki sposób można wypłacić tę kwotę, aby było jak najmniej monet? Przedstaw sposób rozumowania. Rozwiązanie: 788 : 5 = 57 reszty 3 tzn, że nie może być 57 pięciozłotówek, bo 3 zł nie można wypłacić dwuzłotówkami czyli zł = 780 zł oraz 4. 2 zł = 8 zł Odpowiedź: Aby było najmniej monet kwotę 788zł można wypłacić 56 monetami po 5 zł i 4 monetami po 2 zł. 9

10 Zadanie 7. (4 punkty) W prostokącie ABCD przekątna AC ma długość 5 dm. Przekątna ta podzieliła prostokąt na dwa trójkąty, których suma obwodów wynosi 24 dm. Jaki obwód będzie miał ten prostokąt narysowany w skali : 00? (zapis rozwiązania ucznia nie musi być symboliczny) L ABC + L ACD = a + b a + b + 5 = 24[ dm] czyli 2 a + 2b + 0 = 24 więc 2a + 2b = 4[ dm] obwód prostokąta ABCD obwód prostokąta w skali : 00 4 dm = 40 cm = 400 mm 400mm : 00 = 4mm Odpowiedź: W skali : 00 obwód prostokąta ABCD wynosi 4mm. Zadanie 8 (5 punktów) Agata, Bartek, Czarek i Diana zbierali kasztany. Kiedy Agata przełożyła do koszyka Bartka 5 kasztanów, a Bartek przełożył 2 kasztanów do koszyka Czarka, ten zaś 9 kasztanów dał Dianie, która 5 kasztanów oddała Agacie, to okazało się, że wszyscy mają po 36 kasztanów. Oblicz, ile początkowo kasztanów miało każde dziecko. Rozwiązanie: I sposób: 36 4 = 44 tyle było wszystkich kasztanów, bo po przełożeniach wszyscy mieli tyle samo. Początkowo Agata miała = 46 Początkowo Bartek miał = 33 Początkowo Czarek miał = 33 Początkowo Diana miała = 32 II sposób: Na początku 0 Potem skoro każdy ma po 36 kasztanów, to Agata a a = a 0 a = 46 Bartek b b = b + 3 b = 33 Czarek c c = c + 3 c = 33 Diana d d = d + 4 d = 32 Odpowiedź: Początkowo Agata miała 46 kasztanów, Bartek i Czarek mieli po 33 kasztany, a Diana miała 32 kasztany.

11 Zadanie 9. (4 punkty) Pewien Pers posiadał latający dywan. Chciał go sprzedać, ale nie mógł znaleźć kupca. Obniżył więc początkową jego cenę o 246 talarów. O dywanie dowiedział się sułtan i zawezwał Persa. Chytry Pers zaproponował sułtanowi cenę o 504 talary większą od nowej ceny. Sułtan targował się i kupił dywan o 79 talarów taniej niż chciał mężczyzna. Jak ci się wydaje, czy Pers sprzedał dywan drożej czy taniej niż początkowo planował i o ile talarów? Rozwiązanie: I sposób: Początkowa cena dywanu: x Cena po obniżce: x 246 Cena dla sułtana: x Mamy więc: Cena, którą wytargował sułtan: x czyli x + 79 II sposób: I cena dywanu obniżka II cena dywanu cena zaproponowana sułtanowi II cena dywanu sułtan zapłacił I cena dywanu ostateczna cena dywanu I cena dywanu + 79 Skoro odjęto 246 i dodano 504, to w rezultacie dodano = 79 Odpowiedź: Pers sprzedał dywan drożej niż planował. Zarobił 79 talarów.

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad.

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Poprawna odpowiedź Zad. 4 Zad. 5 Zad.

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7

Bardziej szczegółowo

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014 MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Max liczba

Bardziej szczegółowo

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI PŁOCK 2014

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI PŁOCK 2014 MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Max liczba

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PZEDMIOTOWA MATEMATYKA klasa III szkoła podstawowa marzec 202 KATA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 SUMA PUNKTÓW Poprawna

Bardziej szczegółowo

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013 PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 03 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. SUMA PUNKTÓW Poprawna Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 odpowiedź

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI marzec 2015

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI marzec 2015 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI szkoła podstawowa marzec 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI szkoła podstawowa marzec 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa VI szkoła podstawowa marzec 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 SUMA PUNKTÓW Poprawna Zad.

Bardziej szczegółowo

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa II szkoła podstawowa marzec 2012

PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa II szkoła podstawowa marzec 2012 PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa II szkoła podstawowa marzec 202 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 SUMA PUNKTÓW Poprawna

Bardziej szczegółowo

V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego

V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok V Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych ETAP REJONOWY Rok szkolny 01/016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 1

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Kuratorium Oświaty w Lublinie KOD UCZNIA ZESTAW ZADAŃ KONKURSOWYCH Z MATEMATYKI DLA UCZNIÓW SZKOŁY PODSTAWOWEJ ROK SZKOLNY 2014/2015 ETAP WOJEWÓDZKI Instrukcja dla ucznia 1. Zestaw konkursowy zawiera 14

Bardziej szczegółowo

KONKURS MATEMATYCZNY STOŻEK 2007/2008. 1. Na rozwiązanie 5 zadań masz 90 minut. 2. Dokładnie czytaj treści zadań i udzielaj odpowiedzi.

KONKURS MATEMATYCZNY STOŻEK 2007/2008. 1. Na rozwiązanie 5 zadań masz 90 minut. 2. Dokładnie czytaj treści zadań i udzielaj odpowiedzi. KONKURS MATEMATYCZNY STOŻEK 007/008 1. Na rozwiązanie 5 zadań masz 90 minut.. Dokładnie czytaj treści zadań i udzielaj odpowiedzi. 3. W rozwiązaniach zadań przedstawiaj swój tok rozumowania. 4. Rozwiązania

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2015/2016 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 14 stron.

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2014/2015 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

IV KROŚNIEŃSKI KONKURS MATEMATYCZNY

IV KROŚNIEŃSKI KONKURS MATEMATYCZNY ....... pieczątka szkoły imię i nazwisko ucznia klasa IV KROŚNIEŃSKI KONKURS MATEMATYCZNY KLASA I GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na pierwszym etapie IV Krośnieńskiego Konkursu Matematycznego.

Bardziej szczegółowo

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z MATEMATYKI dla klasy V szkoły podstawowej. Opracowanie: mgr Władysława Paczesna

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z MATEMATYKI dla klasy V szkoły podstawowej. Opracowanie: mgr Władysława Paczesna XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 009 ZADANIA KONKURSOWE Z MATEMATYKI dla klasy V szkoły podstawowej Opracowanie: mgr Władysława Paczesna 1 Zapraszamy Cię do wzięcia udziału w Międzyszkolnej Lidze

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Zadania z ułamkami. Obliczenia czasowe

Zadania z ułamkami. Obliczenia czasowe Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały

Bardziej szczegółowo

Małe Olimpiady Przedmiotowe. Test z matematyki

Małe Olimpiady Przedmiotowe. Test z matematyki Małe Olimpiady Przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa nr 17 Szkoła Podstawowa nr 18 Drogi Uczniu, Test składa się z

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Drogi Uczniu ETAP REJONOWY Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

MaTeMaTYka arkusz egzaminacyjny nr 2

MaTeMaTYka arkusz egzaminacyjny nr 2 02 arkusz egzaminacyjny Imię i nazwisko Data Klasa MaTeMaTYka arkusz egzaminacyjny nr 2 Drogi Gimnazjalisto, przed Tobą arkusz egzaminacyjny sprawdzający twoją wiedzę z matematyki. Przed przystąpieniem

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów gimnazjów województwa kujawsko-pomorskiego

Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów gimnazjów województwa kujawsko-pomorskiego Wojewódzki Konkurs Przedmiotowy z matematyki dla uczniów gimnazjów województwa kujawsko-pomorskiego Informacja o przygotowaniu zestawu dla ucznia na etapie szkolnym Dla każdego ucznia należy: 1. wydrukować

Bardziej szczegółowo

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 20 kwietnia 2012 roku KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012 Finał 20 kwietnia 2012 roku Zestaw dla uczniów klas III Uczeń Liczba zdobytych punktów Drogi Uczniu, witaj na finale konkursu Omnibus Matematyczny. Przeczytaj

Bardziej szczegółowo

III Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego

III Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Instrukcja dla ucznia III Wojewódzki Konkurs Matematyczny dla uczniów szkół podstawowych ETAP REJONOWY Rok szkolny 2013/2014 1. Sprawdź, czy test zawiera

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012 ... pieczątka szkoły... kod pracy ucznia KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2011/2012 ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum.

Oto przykład konspektu lekcji jaką przeprowadziłam w klasie pierwszej gimnazjum. Metody aktywizujące na lekcjach matematyki. Przygotowując lekcje matematyki staram się tak dobrać metody pracy, żebybyłyone atrakcyjne dla ucznia oraz zachęcały do intensywnej nauki. Podczas lekcji utrwalających

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy

Wojewódzki Konkurs Matematyczny w gimnazjum rok szkolny 2011/2012 etap rejonowy Kod ucznia Łączna liczba punktów Numer zadania 1 14 15 17 18 19 20 Drogi Uczniu! Liczba punktów Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 40 punktów. Aby przejść

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2011 KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę z kodem E W KLASIE

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2009/2010

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2009/2010 Konkursy w województwie podkarpackim w roku szkolnym 009/010... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 009/010 ETAP SZKOLNY

Bardziej szczegółowo

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na II etapie konkursu z matematyki. Przeczytaj

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 8 maja 2012 roku

Uczeń. KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012. 90 minut. Pracuj samodzielnie. Powodzenia! Finał 8 maja 2012 roku KONKURS OMNIBUS MATEMATYCZNY rok szkolny 2011/2012 Finał 8 maja 2012 roku Zestaw dla uczniów klas III Uczeń Liczba zdobytych punktów Drogi Uczniu, witaj na finale konkursu Omnibus Matematyczny. Przeczytaj

Bardziej szczegółowo

KONKURS MATEMATYCZNY w szkole podstawowej 2010/2011 ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY w szkole podstawowej 2010/2011 ETAP WOJEWÓDZKI Kod ucznia Liczba uzyskanych punktów Nr zadania 1 14 15 16 17 18 Liczba punktów Drogi Uczniu! Witamy Cię w trzecim etapie konkursu. Przed Tobą test składający się z 14 zadań zamkniętych i 4 zadań otwartych.

Bardziej szczegółowo

SPRAWDZIAN DIAGNOZUJĄCY KLAS PIĄTYCH

SPRAWDZIAN DIAGNOZUJĄCY KLAS PIĄTYCH KOD UCZNIA SPRAWDZIAN DIAGNOZUJĄCY KLAS PIĄTYCH CZĘŚĆ MATEMATYCZNA Instrukcja dla ucznia. Na tej stronie wpisz swój kod, nie wpisuj nazwiska, imienia ani klasy. 2. Czytaj uważnie wszystkie teksty i zadania.

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010 Etap wojewódzki 13 marca 2010 r. Kod ucznia Godzina 10.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 20010/2011

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 20010/2011 Etap wojewódzki 5 marca 2011 r. Godzina 11.00 Kod ucznia M Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki. Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie instrukcję.

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki. Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie instrukcję. Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2013/2014 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 10 stron.

Bardziej szczegółowo

Małopolski Konkurs Matematyczny r. etap wojewódzki

Małopolski Konkurs Matematyczny r. etap wojewódzki Kod ucznia Miejsce na metryczkę ucznia Drogi Uczniu! Małopolski Konkurs Matematyczny dla uczniów szkół podstawowych województwa małopolskiego Etap wojewódzki rok szkolny 2015/2016 1. Sprawdź, czy na kolejno

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 .... pieczątka WKK Kod ucznia Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP WOJEWÓDZKI Drogi Uczniu! Witaj na etapie wojewódzkim konkursu matematycznego.

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z MATEMATYKI dla klasy VI szkoły podstawowej. Opracowanie: mgr Władysława Paczesna

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z MATEMATYKI dla klasy VI szkoły podstawowej. Opracowanie: mgr Władysława Paczesna XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 009 ZADANIA KONKURSOWE Z MATEMATYKI dla klasy VI szkoły podstawowej Opracowanie: mgr Władysława Paczesna Zapraszamy Cię do wzięcia udziału w Międzyszkolnej Lidze

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2013/2014

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2013/2014 . kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2013/2014 Drogi Uczniu! ETAP SZKOLNY Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

Przykładowe zadania z matematyki

Przykładowe zadania z matematyki Przykładowe zadania z matematyki przygotowujące do NOWEGO egzaminu maturalnego na poziomie rozszerzonym WYPEŁNIA UCZEŃ Kod ucznia Sprawdzian z matematyki na zakończenie nauki w drugiej klasie szkoły ponadgimnazjalnej.

Bardziej szczegółowo

Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I

Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Kod ucznia: Bydgoszcz, 31.01.2015r. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Wypełnia komisja konkursowa Numer zadania 1 2 3 4 5 Razem Punktacja

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ...................................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

Informacja dla ucznia

Informacja dla ucznia Informacja dla ucznia Test, który będziesz rozwiązywać, składa się z zadań o róŝnym stopniu trudności. W zadaniach tych wystarczy znaleźć jedyną prawidłową odpowiedź spośród czterech podanych (oznaczonych

Bardziej szczegółowo

8 + 66 =.. 48 + 20 =... 35 + 46 =... 53 7 =... 89 50 =... 72 58 =...

8 + 66 =.. 48 + 20 =... 35 + 46 =... 53 7 =... 89 50 =... 72 58 =... Matematyka test dla uczniów klas trzecich szkół podstawowych w roku szkolnym 2011/2012 Etap szkolny (60 minut) Ryzyko dysleksji [suma punktów].... Imię i nazwisko Klasa 1. Oblicz. 8 + 66 =.. 48 + 20 =...

Bardziej szczegółowo

Konkurs matematyczny 2013/ etap wojewódzki

Konkurs matematyczny 2013/ etap wojewódzki Konkurs matematyczny 2013/2014 - etap wojewódzki Kod ucznia Liczba uzyskanych punktów Nr zadania 1-10 (1p) Liczba punktów 11-14 (2p) 15 (4p) 16 (4p) 17 (4p) Drogi Uczniu! Przed Tobą wojewódzki etap konkursu.

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny Kod ucznia.. KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM zawody I stopnia etap szkolny Witamy Cię na pierwszym etapie Konkursu Matematycznego. Przed przystąpieniem do rozwiązywania zadań przeczytaj uważnie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR 2015. MATEMATYKA - poziom rozszerzony klasa I

LUBELSKA PRÓBA PRZED MATUR 2015. MATEMATYKA - poziom rozszerzony klasa I 1 MATEMATYKA - poziom rozszerzony klasa I CZERWIEC 2015 Instrukcja dla zdaj cego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 17). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

Życzymy Ci satysfakcji z uczestnictwa w konkursie i powodzenia

Życzymy Ci satysfakcji z uczestnictwa w konkursie i powodzenia Kod ucznia Miejsce na metryczkę ucznia Małopolski Konkurs Matematyczny dla uczniów szkół podstawowych województwa małopolskiego Etap rejonowy rok szkolny 2015/2016 Drogi Uczniu! 1. Sprawdź, czy zestaw

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne

LUBELSKA PRÓBA PRZED MATUR pola do tego przeznaczone. Błędne 1 MATEMATYKA - poziom podstawowy klasa 2 CZERWIEC 2015 Instrukcja dla zdaj cego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 17 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to

Bardziej szczegółowo

KONKURS z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ...... kod pracy ucznia pieczątka nagłówkowa szkoły KONKURS z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

MATEMATYCZNY DLA KLAS III

MATEMATYCZNY DLA KLAS III GMINNY KONKURS MATEMATYCZNY DLA KLAS III Wszystkich uczniów kl. III lubiących potyczki z matematyką zapraszamy do wzięcia udziału w konkursie sprawności matematycznych. Regulamin konkursu 1. Konkurs odbędzie

Bardziej szczegółowo

MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ

MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ MATEMATYKA SZKOŁA PODSTAWOWA TEST CAŁOROCZNY PO KLASIE PIĄTEJ Drogi uczniu, przed Tobą test sprawdzający wiadomości i umiejętności matematyczne po klasie V. Rozwiązując zadania dowiesz się, co z matematyki

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 19 stycznia 2009 r.

KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy 19 stycznia 2009 r. KOD Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 Razem Maksym. liczba punktów Liczba zdobytych punktów 3 3 3 3 3 3 3 3 4 5 3 4 40 Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap rejonowy

Bardziej szczegółowo

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R.

III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. III POWIATOWY KONKURS MATEMATYCZNY DLA KLAS CZWARTYCH CO DWIE GŁOWY TO NIE JEDNA 2013 R. CZĘŚĆ I 7 KONKURENCJI ( CZAS 45 MINUT) DO ZDOBYCIA 25 PUNKTÓW KWADRAT MAGICZNY (3 pkt) INTRUZ (4 pkt) PIRAMIDA (3

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2010/2011

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2010/2011 Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2010/2011 ETAP WOJEWÓDZKI Drogi Uczniu! Witaj na III etapie konkursu matematycznego.

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM

SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM WYPEŁNIA UCZEŃ Data urodzenia ucznia dzień miesiąc rok Kod ucznia SPRAWDZIAN Z MATEMATYKI NA ROZPOCZĘCIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 10 stron. Ewentualny

Bardziej szczegółowo

Sprawdzian z matematyki na rozpoczęcie nauki w pierwszej klasie gimnazjum

Sprawdzian z matematyki na rozpoczęcie nauki w pierwszej klasie gimnazjum WYPEŁNIA UCZEŃ Kod ucznia Sprawdzian z matematyki na rozpoczęcie nauki w pierwszej klasie gimnazjum Informacje dla ucznia. Sprawdź, czy sprawdzian ma 7 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy. Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję.

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy. Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie instrukcję. Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Rejonowy Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

UMIEJĘTNOŚCI TRZECIOKLASISTÓW OBUT 2013, TIMSS, PIRLS

UMIEJĘTNOŚCI TRZECIOKLASISTÓW OBUT 2013, TIMSS, PIRLS UMIEJĘTNOŚCI TRZECIOKLASISTÓW OBUT 2013, TIMSS, PIRLS Po co OBUT Cele OBUT dostarczenie szkołom: profesjonalnych narzędzi badania umiejętności językowych i matematycznych trzecioklasistów danych pozwalających

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2014/2015 Etap szkolny 4 listopada 2014 r. Kod ucznia Godzina 10.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1. Sprawdź, czy arkusz zawiera

Bardziej szczegółowo

Zestaw M1 / 1. imię i nazwisko ucznia. nr w dzienniku. DUMa. Czas rozwiązywania zadań 45 minut. Zestaw M1

Zestaw M1 / 1. imię i nazwisko ucznia. nr w dzienniku. DUMa. Czas rozwiązywania zadań 45 minut. Zestaw M1 Zestaw M1 / 1 imię i nazwisko ucznia klasa UMa iagnoza umiejętnosci matematycznych uczniów szkół podstawowych zas rozwiązywania zadań 45 minut. Zestaw M1 nr w dzienniku Instrukcja dla ucznia Sprawdź, czy

Bardziej szczegółowo

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum

Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Wypełnia uczeń Kod ucznia Sprawdzian z matematyki na zakończenie nauki w drugiej klasie gimnazjum Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

Instrukcja dla zdającego Czas pracy: 170 minut

Instrukcja dla zdającego Czas pracy: 170 minut MATEMATYKA klasa pierwsza (pp) CZERWIEC 015 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 14 stron (zadania 1-). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL PESEL Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL PESEL miejsce na naklejkę

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ...................................... pieczątka nagłówkowa szkoły kod pracy ucznia KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

Sprawdzian kompetencji trzecioklasisty

Sprawdzian kompetencji trzecioklasisty Imię i nazwisko... Klasa III....Numer w dzienniku... (wypełnia nauczyciel) Sprawdzian kompetencji trzecioklasisty Zestaw matematyczny Grupa B Instrukcja dla ucznia 1. Upewnij się, czy sprawdzian ma 8 kolejnych

Bardziej szczegółowo

MaTeMaTYKa arkusz egzaminacyjny nr 2

MaTeMaTYKa arkusz egzaminacyjny nr 2 egzamin próbny 2 Imię i nazwisko Data Klasa Zadanie 1. (0 1) MaTeMaTYKa arkusz egzaminacyjny nr 2 Pierwsza polska kawiarnia powstała w Warszawie w XVIII wieku. Nie zyskała uznania wśród klientów i zbankrutowała,

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA UCZEŃ PESEL miejsce na naklejkę EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ 2. MATEMATYKA Instrukcja dla

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI STYCZEŃ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut

Bardziej szczegółowo

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z EDUKACJI MATEMATYCZNEJ dla klasy II szkoły podstawowej

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z EDUKACJI MATEMATYCZNEJ dla klasy II szkoły podstawowej XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 009 ZADANIA KONKURSOWE Z EDUKACJI MATEMATYCZNEJ dla klasy II szkoły podstawowej Opracowanie: mgr Władysława Paczesna 1 Zapraszamy Cię do wzięcia udziału w Międzyszkolnej

Bardziej szczegółowo

Matematyka. Repetytorium szóstoklasisty

Matematyka. Repetytorium szóstoklasisty Matematyka Repetytorium szóstoklasisty 7 do sprawdzianu Najpierw... Potem... 4 1 2 + 8 Powodzenia!!! 7 Szóstoklasisto, już wkrótce ukończysz naukę w szkole podstawowej. Zanim to jednak nastąpi, w kwietniu

Bardziej szczegółowo

Matematyka test dla uczniów klas trzecich

Matematyka test dla uczniów klas trzecich Matematyka test dla uczniów klas trzecich szkół podstawowych w roku szkolnym 2009/2010 Czas pracy: 60 minut Ryzyko dysleksji [suma punktów] Imię i nazwisko... kl.3... W zadaniach od 1. do 5. podkreśl poprawne

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na II etapie konkursu matematycznego. Przeczytaj

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE

ZADANIA PRZYGOTOWAWCZE Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X I Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Konkurs

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH . kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie instrukcję

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap rejonowy

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap rejonowy Punktacja Numer zadania Kod ucznia: 29.11.2014r. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap rejonowy.. Wypełnia komisja konkursowa 1 2 3 4 5 Razem.. Wskazówki dla

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZYKŁADOWY

Bardziej szczegółowo

Wybrane wyniki w zakresie umiejętności matematycznych

Wybrane wyniki w zakresie umiejętności matematycznych Wybrane wyniki w zakresie umiejętności matematycznych Struktura badanych umiejętności matematycznych Umiejętności narzędziowe, stosowane w sytuacji typowej stosowane w sytuacji nietypowej Umiejętności

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-052 POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4

Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Anna Konstantynowicz, Adam Konstantynowicz, Bożena Kiljańska, Małgorzata Pająk, Grażyna Ukleja [ ] 2. Szczegółowe cele kształcenia

Bardziej szczegółowo

Zadania po 4 punkty. 7. Na rysunku z prawej dana jest gwiazda pięcioramienna ABCDE. Kąt przy wierzchołku C ma miarę: A) 22 B) 50 C) 52 D) 58 E) 80

Zadania po 4 punkty. 7. Na rysunku z prawej dana jest gwiazda pięcioramienna ABCDE. Kąt przy wierzchołku C ma miarę: A) 22 B) 50 C) 52 D) 58 E) 80 VI Piotrkowski Maraton Matematyczny 9-.06.0 Test jednokrotnego wyboru Czas na rozwiązanie: godz. 5 min. Do zdobycia: 80 punktów. Przed Tobą 0 zadań testowych. W kaŝdym zadaniu jest dokładnie jedna poprawna

Bardziej szczegółowo

MATEMATYKA KWIECIEŃ 2014 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA. Instrukcja dla ucznia

MATEMATYKA KWIECIEŃ 2014 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA. Instrukcja dla ucznia Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 . kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH 2012/2013 ETAP SZKOLNY Drogi Uczniu! Witaj na etapie szkolnym konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA 2015. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej

Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej Sprawdzian Sprawdzian umiejętności matematycznych po klasie V szkoły podstawowej Grupa A Powodzenia!... imi i nazwisko ucznia 1 a) Zapisz liczby cyframi arabskimi. XIX XXIV b) Zapisz liczby cyframi rzymskimi.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI WPISUJE ZDAJĄCY IMIĘ I NAZWISKO UCZNIA NUMER UCZNIA W DZIENNIKU PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). Ewentualny

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo