Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń
|
|
- Kazimiera Pawłowska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 4 kwietnia Dodajmy kontekst! Rozważaliśmy ostatnio gramatyki bezkontekstowe, które zawierały reguły w stylu: A aab Oznaczało to, że zawsze, gdy wystąpi symbol A, możemy go zamienić na aab. Wzbogaćmy naszą gramatykę w taki sposób, żeby móc opisywać kiedy można zastosować daną regułę. Nasze nowe reguły będą zawierały dodatkową rzecz, czyli kontekst. Na przykład: aaa aaaba Ta reguła oznacza, że owszem symbol A można zamienić na aab, ale tylko jeśli stoi pomiędzy dwoma literami a. Z przyczyn technicznych wprowadźmy jeszcze dwa ograniczenia: reguła w stylu S może wystąpić tylko w przypadku symbolu początkowego oraz symbolu początkowego nie wolno generować żadną regułą. Rozważmy teraz następującą gramatykę: S T T at BC abc CB P B P B P C P C BC bb bb bc bc cc cc W tej gramatyce można wygenerować na przykład słowo aabbcc. W następujący sposób: S T at BC aabcbc aabp BC aabp CC aabbcc aabbcc aabbcc aabbcc Zaznaczone są fragmenty słowa odpowiadające stosowanym regułom. 1
2 Zadanie 1 Pokażcie, jak w tej gramatyce wygenerować słowo aaaabbbbcccc. Zadanie 2 Oczywiście ta gramatyka opisuje język słów w których kolejno występują najpierw a, potem b, a na końcu c i liczba każdej z tych liter jest taka sama. Dlaczego tak jest? Zauważ też, że blok CB P B P B P C P C BC sprowadza się do zamienienia miejscami symbolu B i C. Od tej pory zatem dla dwóch symboli roboczych X i Y, dla uproszczenia będziemy po prostu dopuszczać regułę Zadanie 3 XY Y X. Zmodyfikujcie powyższą gramatykę w taki sposób, aby rozpoznawała język słów, w których występują najpierw a, potem b, a na końcu c oraz liczba liter b jest sumą liczby liter a i c. Zadanie 4 Skonstruujcie gramatykę kontekstową generującą język wszystkich słów nad alfabetem {a, b} postaci wvw, gdzie w jest pewnym słowem, a v jest słowem w napisanym od końca. 2 Gramatyki rosnące Jest jeszcze jeden typ gramatyki, z jeszcze mniejszą liczbą ograniczeń. Są to gramatyki rosnące. Najważniejsza zasada jest po prostu taka, że w każdej regule przed strzałką jest nie więcej symboli i liter niż za strzałką. Jedynym dopuszczalnym wyjątkiem jest reguła S, z tym że symbolu S nie wolno generować. Oto przykład gramatyki rosnącej Zadanie 5 S abc at Bc T at Bc abc cb Bc bb bb Pokażcie przykłady trzech słów, które można wygenerować przy pomocy tej gramatyki. 2
3 Zadanie 6 Zaprojektujcie gramatykę rosnącą, która generuje język wszystkich słów nad alfabetem a, które są długości będącej potęgą 2. Wskazówka: Wskazówki do tego zadania umieszczamy na końcu skryptu! Okazuje się, że dla każdej gramatyki rosnącej można stworzyć gramatykę kontekstową, która jest równoważna! Zadanie 7 Zastanówcie się jak to zrobić i napiszcie gramatykę kontekstową, która jest równoważna gramatyce napisanej na początku tego rozdziału. Zadanie 8 Spróbujcie zrobić to samo z gramatyką wymyśloną w zadaniu 6. Wskazówka: Wskazówki do tego zadania umieszczamy na końcu skryptu! Ograniczone maszyny Turinga Okazuje się, że wszystko, co można wygenerować za pomocą gramatyki kontekstowej, można też rozpoznać za pomocą dość złożonego automatu nazywanego (ograniczoną) maszyną Turinga. Maszyna Turinga, podobnie jak automat, ma pewną skończoną liczbę stanów oraz przejścia pomiędzy nimi. Ma też (podobnie jak automat ze stosem) pamięć, ale tym razem nie będzie to stos, a taśma. Nie jest więc tak, że można odczytać tylko najświeższy zapisany symbol (tak było ze stosem). Po prostu będziemy sobie wyobrażać, że maszyna Turinga ma głowicę, która wskazuje pewne pole na taśmie. Głowica ta może przesuwać się w prawo lub w lewo. Nie będzie nam potrzebne w rozważaniach osobne słowo, które maszyna ma zaakceptować lub odrzucić, po prostu uznajmy, że jest ono zapisane na taśmie. Umówmy się też, że przed i za tym słowem na taśmie stoją symbole # (żeby można było łatwo sprawdzić, że słowo się skończyło). Przymiotnik ograniczony w nazwie ograniczona maszyna Turinga, oznacza, że taśma jest ograniczona powiedzmy, że po prostu się kończy przed początkowym znakiem # i za końcowym #. W przyszłości będziemy rozważać maszyny Turinga, których taśmy są nieograniczone (a więc, które mają nieograniczenie wiele miejsca na dodatkowe robocze notatki ). Przejścia pomiędzy stanami będą więc opisane na przykład tak: a < b co oznacza, że maszyna może wykonać dane przejście, o ile na taśmie (w miejscu głowicy) widzi literę a. Zapisuje wtedy na to miejsce literę b i przesuwa głowicę o jeden w lewo. Przejście opisane jako c > c może być wykonane tylko jeśli na taśmie w miejscu głowicy jest symbol c. Maszyna wykonując to przejście pozostawia c na taśmie i przesuwa głowicę o jeden w prawo. Zatem to jest przykład maszyny Turinga. 3
4 Prześledźmy działanie tej maszyny dla słowa aa. To oznacza, że początkowy stan taśmy to #āa# (kreską na górze będziemy oznaczać, gdzie jest głowica). Działanie maszyny przebiega tak: 1. Stan P, przejście a > X do stanu A, więc na taśmie mamy #Xā#. 2. Stan A, przejście a > a do stanu A, więc na taśmie mamy #Xa #. 3. Stan A, przejście # < # do stanu KA, więc na taśmie mamy #Xā#. 4. Stan KA, przejście a < X do stanu OK, więc na taśmie mamy # XX#. 5. Stan OK, przejście X > X do stanu P, więc na taśmie mamy #X X#. 6. Stan P, przejście X < X do stanu K i zaakceptowanie. Zadanie 9 Prześledźcie działanie tej maszyny Turinga krok po kroku dla słów bab, ab oraz abaaba. Które z nich zostaną zaakceptowane? Zadanie 10 Jaki język akceptuje ta maszyna Turinga? Dlaczego? Zadanie 11 Zmodyfikujcie rozpatrywaną maszynę Turinga tak, aby akceptowała tylko te słowa, które są akceptowane przez oryginalną maszynę oraz mają parzystą liczbę liter a. 4
5 Zadanie 12 Stwórzcie ograniczoną maszynę Turinga, która akceptuje język nad alfabetem {a, b} złożony ze słów jąkających się, czyli postaci ww, gdzie w jest dowolnym niepustym słowem. Wskazówka: Wskazówka do tego zadania znajduje się na końcu skryptu. 3 Zadania dodatkowe Zadanie 13 Rozważcie gramatykę S aa bb ay T bzt T AY T BZT Aa Bb Y A AY Y B BY ZA AZ ZB BZ aa aa ab ab ba ba bb bb Y a aa Y b ab Za ba Zb bb W jaki sposób w tej gramatyce wygenerować słowo aabaaaba? Zadanie 14 Powyższa gramatyka generuje wszystkie słowa będące konkatenacją dwóch takich samych słów. Przeróbcie ją w taki sposób, żeby generowała słowa będące konkatenacją trzech takich samych słów. Wskazówka: Bądźcie bardzo ostrożni przy ostatecznym zamienianiu symboli roboczych na litery. Musicie nie dopuścić do tego, żeby mogły się zamienić zanim ustawią się w dobrej kolejności! Zadanie 15 Sprawdźcie, że wymyślona wyżej gramatyka rzeczywiście działa. To znaczy, że nie uda się wygenerować słowa nie spełniającego założonych warunków. 5
6 Zadanie 16 Wymyślcie i opiszcie ogólną procedurę pozwalającą zamienić dowolną gramatykę rosnącą na gramatykę bezkontekstową. Zadanie 17 Prześledźcie działanie maszyny Turinga skonstruowanej w zadaniu 12 dla słów aa, aba oraz abab. Zadanie 18 Udowodnijcie, że jeśli istnieje maszyna Turinga, która zawsze kończy działanie i akceptuje pewien język L nad alfabetem A, to również istnieje maszyna Turinga, która akceptuje język nad alfabetem A złożony ze wszystkich słów, które nie są w L. 4 Zadania domowe Zadanie 19 (1 punkt) Przekształć gramatykę, z pierwszej strony tego skryptu w taki sposób, aby generowała słowa, w których litery a i b mogą być dowolnie wymieszane, ale występują przed blokiem wszystkich liter c oraz liter a jest tyle samo co liter b oraz tyle samo, co liter c. Następnie przedstaw jak w tej gramatyce wygenerować słowo abbacc. Zadanie 20 (2 punkty) Znajdź gramatykę rosnącą która generuje język wszystkich słów nad alfabetem {a} które mają długość 2 i 3 j dla pewnych i, j N. Wskazówka: Dobrym punktem wyjścia jest gramatyka stworzona w zadaniu 6. Zadanie 21 (3 punkty) Skonstruuj maszynę Turinga, która akceptuje język słów postaci a... a długości będącej liczbą pierwszą. Wskazówki Zadanie 6 Wskazówka: Użyjcie specjalnych symboli na oznaczenie początku i końca słowa, a następnie zróbcie parę symboli, które będą podróżować pomiędzy nimi w tę i z powrotem (jeden idzie w prawo, zmienia się na drugi i wraca i znów zamienia się w ten pierwszy), i idąc w prawo podwaja każdą literę. Trzeba jeszcze odpowiednio dopracować zakończenie tej procedury. 6
7 Zadanie 8 Wskazówka: Problematyczne są: oraz XK ZAAA P Z AAA Trzeba je rozbić na kilka prostszych kontekstowych przejść z użyciem dodatkowych specjalnie wprowadzonych symboli. Zadanie 12 Wskazówka: Najpierw znajdźcie środek słowa zapisanego na taśmie i oznaczcie go specjalnym symbolem (np. X lub Y w zależności od tego, czy to litera a, czy b). Środek ten natomiast możecie znaleźć stosując nieco modyfikowaną procedurę w porównaniu z tą, którą zastosowaliśmy w palindromach. 7
Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń
Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 21 marca 2019 1 Gramatyki! Gramatyka to taki przepis
Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech
Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech anagram(l) = {w : w jest anagaramem v dla pewnego v L}. (a) Czy jeśli L jest
Języki formalne i automaty Ćwiczenia 1
Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...
Hierarchia Chomsky ego
Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka
Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu
Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady
Języki formalne i automaty Ćwiczenia 9
Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej
Języki formalne i automaty Ćwiczenia 7
Języki formalne i automaty Ćwiczenia 7 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Automaty... 2 Cechy automatów... 4 Łączenie automatów... 4 Konwersja automatu do wyrażenia
Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}
Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =
Hierarchia Chomsky ego Maszyna Turinga
Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór
JAO - Wprowadzenie do Gramatyk bezkontekstowych
JAO - Wprowadzenie do Gramatyk bezkontekstowych Definicja gramatyki bezkontekstowej Podstawowymi narzędziami abstrakcyjnymi do opisu języków formalnych są gramatyki i automaty. Gramatyka bezkontekstowa
Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki
Automat ze stosem Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem (1) dno stosu Stos wierzchołek stosu Wejście # B B A B A B A B a b b a b a b $ q i Automat ze
Imię, nazwisko, nr indeksu
Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za
Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:
Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich
Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych
Opracował: dr inż. Zbigniew Buchalski KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów
Jaki język zrozumie automat?
Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy
Języki formalne i automaty Ćwiczenia 3
Języki formalne i automaty Ćwiczenia 3 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Algorytm LL(1)... 2 Definicja zbiorów FIRST1 i FOLLOW1... 3 Konstrukcja tabeli parsowania
Symbol, alfabet, łańcuch
Łańcuchy i zbiory łańcuchów Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Symbol, alfabet, łańcuch Symbol Symbol jest to pojęcie niedefiniowane (synonimy: znak, litera)
Maszyna Turinga języki
Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Języki formalne i automaty Ćwiczenia 2
Języki formalne i automaty Ćwiczenia 2 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Metoda brute force... 2 Konwersja do postaci normalnej Chomskiego... 5 Algorytm Cocke a-youngera-kasamiego
Turing i jego maszyny
Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan
Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia)
Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Kamil Matuszewski 20 lutego 2017 22 lutego 2017 Zadania, które
złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa
Zadanie 1. Rozważmy jezyk złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa równe. Narysować diagram minimalnego automatu deterministycznego akceptujacego
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki
Definicja 2. Twierdzenie 1. Definicja 3
INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 205 temat: ZASTOSOWANIE JĘZYKA WYRAŻEŃ
KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 204
Opracował: prof. dr hab. inż. Jan Kazimierczak KATEDA INFOMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 204 Temat: Hardware'owa implementacja automatu skończonego pełniącego
Języki formalne i automaty Ćwiczenia 4
Języki formalne i automaty Ćwiczenia 4 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Sposób tworzenia deterministycznego automatu skończonego... 4 Intuicyjne rozumienie konstrukcji
1. Synteza automatów Moore a i Mealy realizujących zadane przekształcenie 2. Transformacja automatu Moore a w automat Mealy i odwrotnie
Opracował: dr hab. inż. Jan Magott KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 207 Temat: Automaty Moore'a i Mealy 1. Cel ćwiczenia Celem ćwiczenia jest
Dopełnienie to można wyrazić w następujący sposób:
1. (6 punktów) Czy dla każdego regularnego L, język f(l) = {w : każdy prefiks w długości nieparzystej należy do L} też jest regularny? Odpowiedź. Tak, jęsli L jest regularny to też f(l). Niech A będzie
Elementy Teorii Obliczeń
Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych
(j, k) jeśli k j w przeciwnym przypadku.
Zadanie 1. (6 punktów) Rozważmy język słów nad alfabetem {1, 2, 3}, w których podciąg z pozycji parzystych i podciąg z pozycji nieparzystych są oba niemalejące. Na przykład 121333 należy do języka, a 2111
Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka
Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową
Wprowadzenie do maszyny Turinga
Wprowadzenie do maszyny Turinga Deterministyczna Maszyna Turinga (DTM) jest pewną klasą abstrakcyjnych modeli obliczeń. W tej instrukcji omówimy konkretną maszynę Turinga, którą będziemy zajmować się podczas
1 Automaty niedeterministyczne
Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A
Algorytmy stochastyczne, wykład 05 Systemy Liendenmayera, modelowanie roślin
Algorytmy stochastyczne, wykład 5, modelowanie roślin Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 214-3-2 1 2 3 ze stosem Przypomnienie gramatyka to system (Σ, A, s,
WYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Matematyczny świat języków. Wprowadzenie i języki regularne materiały do ćwiczeń
Matematyczny świat języków. Wprowadzenie i języki regularne materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 18 maja 2017 1 Na rozgrzewkę intelektualną Poniższe dwa zadania
Wprowadzenie do programowania języki i gramatyki formalne. dr hab. inż. Mikołaj Morzy
Wprowadzenie do programowania języki i gramatyki formalne dr hab. inż. Mikołaj Morzy plan wykładu wprowadzenie gramatyki podstawowe definicje produkcje i drzewa wywodu niejednoznaczność gramatyk hierarchia
Efektywna analiza składniowa GBK
TEORETYCZNE PODSTAWY INFORMATYKI Efektywna analiza składniowa GBK Rozbiór zdań i struktur zdaniowych jest w wielu przypadkach procesem bardzo skomplikowanym. Jego złożoność zależy od rodzaju reguł produkcji
Matematyczna wieża Babel. 6. Nieskończoność i myślaki materiały do ćwiczeń
Matematyczna wieża Babel. 6. Nieskończoność i myślaki materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 23 maja 2019 1 Nieskończoność Zbiory A i B są równoliczne (co oznaczane
Teoria układów logicznych
Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę ( Q, X,,, ) gdzie Q jest skończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, X jest skończonym zbiorem niepustym, nazwanym alfabetem
Zamiana ułamków na procenty oraz procentów na ułamki
Zamiana ułamków na procenty oraz procentów na ułamki Przedmowa Opracowanie to jest napisane z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach. Prawie wszystko
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się
Maszyna Turinga (Algorytmy Część III)
Maszyna Turinga (Algorytmy Część III) wer. 9 z drobnymi modyfikacjami! Wojciech Myszka 2018-12-18 08:22:34 +0100 Upraszczanie danych Komputery są coraz szybsze i sprawniejsze. Na potrzeby rozważań naukowych
Definiowanie języka przez wyrażenie regularne(wr)
Wykład3,str1 Definiowanie języka przez wyrażenie regularne(wr) DEFINICJA: (wyrażenia regularne) M(specjalneznakinienależącedoalfabetu:{,},, ) literyalfabetusąwr złożeniawrsąwr: jeśliw 1 iw 2 sąwr,to{w
Indukcja matematyczna
Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n
Języki i gramatyki formalne
Języki i gramatyki formalne Języki naturalne i formalne Cechy języka naturalnego - duża swoboda konstruowania zdań (brak ścisłych reguł gramatycznych), duża ilość wyjątków. Języki formalne - ścisły i jednoznaczny
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Zajęcia nr. 3 notatki
Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty
JAO - lematy o pompowaniu dla jezykow bezkontekstowy
JAO - lematy o pompowaniu dla jezykow bezkontekstowych Postać normalna Chomsky ego Gramatyka G ze zbiorem nieterminali N i zbiorem terminali T jest w postaci normalnej Chomsky ego wtw gdy każda produkcja
W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1
W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1 W tym tekście zobaczymy rozwiązanie zadania 41 z Informatora o egzaminie maturalnym z matematyki od roku szkolnego 014/015 oraz rozwiązania
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
JĘZYKI FORMALNE I METODY KOMPILACJI
Stefan Sokołowski JĘZYKI FORMALNE I METODY KOMPILACJI Inst Informatyki Stosowanej, PWSZ Elbląg, 2015/2016 JĘZYKI FORMALNE reguły gry Wykład1,str1 Zasadnicze informacje: http://iispwszelblagpl/ stefan/dydaktyka/jezform
Celem ćwiczenia jest zapoznanie się z podstawowymi możliwościami języka Prolog w zakresie definiowania faktów i reguł oraz wykonywania zapytań.
Paradygmaty Programowania Język Prolog Celem ćwiczenia jest zapoznanie się z podstawowymi możliwościami języka Prolog w zakresie definiowania faktów i reguł oraz wykonywania zapytań. Wstęp Prolog (od francuskiego
Języki formalne i automaty Ćwiczenia 5
Języki formalne i automaty Ćwiczenia 5 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 L-systemy... 2 Grafika żółwia... 2 Bibliografia... 5 Zadania... 6 Zadania na 3.0... 6 Zadania
Języki formalne i automaty Ćwiczenia 6
Języki formalne i automaty Ćwiczenia 6 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Wyrażenia regularne... 2 Standardy IEEE POSIX Basic Regular Expressions (BRE) oraz Extended
3.4. Przekształcenia gramatyk bezkontekstowych
3.4. Przekształcenia gramatyk bezkontekstowych Definicje Niech będzie dana gramatyka bezkontekstowa G = G BK Symbol X (N T) nazywamy nieużytecznym w G G BK jeśli nie można w tej gramatyce
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
Efektywność Procedur Obliczeniowych. wykład 5
Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie
Metody Kompilacji Wykład 3
Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy
Wprowadzenie do analizy składniowej. Bartosz Bogacki.
Wprowadzenie do analizy składniowej Bartosz Bogacki Bartosz.Bogacki@cs.put.poznan.pl Witam Państwa. Wykład, który za chwilę Państwo wysłuchają dotyczy wprowadzenia do analizy składniowej. Zapraszam serdecznie
10110 =
1. (6 punktów) Niedeterministyczny automat skończony nazwiemy jednoznacznym, jeśli dla każdego akceptowanego słowa istnieje dokładnie jeden bieg akceptujący. Napisać algorytm sprawdzający, czy niedeterministyczny
Automat Moore a. Teoria układów logicznych
Automat Moore a Automatem Moore a nazywamy uporządkowaną piątkę (Q,X,Y,δ, λ )gdzie Qjestskończonym zbiorem niepustym, nazwanym zbiorem stanów automatu, Xjestskończonym zbiorem niepustym, nazwanym alfabetem
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13
35. O zdaniu 1 T (n) udowodniono, że prawdziwe jest T (1), oraz że dla dowolnego n 6 zachodzi implikacja T (n) T (n+2). Czy można stąd wnioskować, że a) prawdziwe jest T (10), b) prawdziwe jest T (11),
7. Pętle for. Przykłady
. Pętle for Przykłady.1. Bez użycia pętli while ani rekurencji, napisz program, który wypisze na ekran kolejne liczby naturalne od 0 do pewnego danego n. 5 int n; 6 cin >> n; 8 for (int i = 0; i
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 9: Własności języków bezkontekstowych Sławomir Lasota Uniwersytet Warszawski 27 kwietnia 2016 Plan 1 Pompowanie języków bezkontekstowych 2 Własności domknięcia 3 Obrazy
ZADANIA Z AUTOMATU SKOŃCZONEGO SPRAWOZDANIE NR 4
ZADANIA Z AUTOMATU SKOŃCZONEGO SPRAWOZDANIE NR 4 Dla każdego zadania określić: graf przejść tablicę stanów automatu skończonego akceptującego określoną klasę słów podać dwa przykłady ilustrujące parę AS
TEORIA ZŁOŻONOŚCI PROBLEMY I ALGORYTMY OGRANICZENIE DOLNE I GÓRNE PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI
PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI TEORIA ZŁOŻONOŚCI I MASZYNA TURINGA TEORIA ZŁOŻONOŚCI Teoria złożoności poszukuje rozwiązania dla problemów, które są algorytmicznie trudne do rozwiązania
RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.
Semantyczne twierdzenie o podstawianiu Jeżeli dana formuła rachunku zdań jest tautologią i wszystkie wystąpienia pewnej zmiennej zdaniowej w tej tautologii zastąpimy pewną ustaloną formułą, to otrzymana
R O Z D Z I A Ł V I I
R O Z D Z I A Ł V I I 1. Podstawowe definicje RozwaŜane w poprzednim rozdziale automaty Rabina-Scotta były urządzeniami o bardzo ograniczonej zdolności przechowywania informacji. Rzeczywista pojemność
LXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}
Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty. Literatura
Wprowadzenie: języki, symbole, alfabety, łańcuchy Języki formalne i automaty Dr inŝ. Janusz Majewski Katedra Informatyki Literatura Aho A. V., Sethi R., Ullman J. D.: Compilers. Principles, Techniques
GRAMATYKI BEZKONTEKSTOWE
GRAMATYKI BEZKONTEKSTOWE PODSTAWOWE POJĘCIE GRAMATYK Przez gramatykę rozumie się pewien układ reguł zadający zbiór słów utworzonych z symboli języka. Słowa te mogą być i interpretowane jako obiekty językowe
znajdowały się różne instrukcje) to tak naprawdę definicja funkcji main.
Część XVI C++ Funkcje Jeśli nasz program rozrósł się już do kilkudziesięciu linijek, warto pomyśleć o jego podziale na mniejsze części. Poznajmy więc funkcje. Szybko się przekonamy, że funkcja to bardzo
Matematyka Dyskretna Zestaw 2
Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje
Automaty Büchi ego i równoważne modele obliczeń
Politechnika Krakowska im. Tadeusza Kościuszki Wydział Fizyki, Matematyki i Informatyki Kierunek Matematyka Paulina Barbara Rozwód Automaty Büchi ego i równoważne modele obliczeń praca magisterska studia
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ
Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ 1 Inferencyjna równoważność formuł Definicja 9.1. Formuła A jest
zaznaczymy na osi liczbowej w ten sposób:
1. Zagadnienia teoretyczne. 1.1. Przedział domknięty Przykład 1. Pisząc mamy na myśli wszystkie liczby rzeczywiste od -4 do 7, razem z -4 i 7. Jeśli napiszemy, będziemy mówić o zbiorze wszystkich liczb
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
Jȩzyki, automaty, zlożoność obliczeniowa
Jȩzyki, automaty, zlożoność obliczeniowa Joanna Jȩdrzejowicz Andrzej Szepietowski 23 października 2007 Przedmowa Podręcznik niniejszy jest przeznaczony dla studentów drugiego roku kierunku informatyki
Maszyna Turinga, ang. Turing Machine (TM)
Maszyna Turinga, ang. Turing Machine (TM) Alan Turing wybitny angielski matematyk, logik i kryptolog, jeden z najważniejszych twórców informatyki teoretycznej, któremu zawdzięczamy pojęcie maszyny Turinga
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 4/14 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
JĘZYKIFORMALNE IMETODYKOMPILACJI
Stefan Sokołowski JĘZYKIFORMALNE IMETODYKOMPILACJI Inst. Informatyki Stosowanej, PWSZ Elbląg, 2009/2010 JĘZYKI FORMALNE reguły gry Wykład1,2X2009,str.1 Zasadnicze informacje: http://iis.pwsz.elblag.pl/
W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1
W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu
Odwrotna Notacja Polska
Odwrotna Notacja Polska Odwrotna Notacja Polska w skrócie ONP) jest sposobem zapisu wyrażeń arytmetycznych. Znak wykonywanej operacji umieszczany jest po operandach, argumentach tzw. zapis postfiksowy).
Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.
3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy
MASZYNA TURINGA UPRASZCZANIE DANYCH
MASZYNA TURINGA Maszyna Turinga jest prostym urządzeniem algorytmicznym, uderzająco prymitywnym w porównaniu z dzisiejszymi komputerami i językami programowania, a jednak na tyle silnym, że pozwala na
AUTOMATY SKOŃCZONE. Automat skończony przedstawiamy formalnie jako uporządkowaną piątkę:
AUTOMATY SKOŃCZONE DETERMINISTYCZNY AUTOMAT SKOŃCZONY - DAS Automat skończony jest modelem matematycznym systemu o dyskretnych wejściach i wyjściach. System taki w danej chwili może znajdować się w jednym
1. Maszyna Turinga, gramatyki formalne i ONP
1. Maszyna uringa, gramatyki formalne i OP 1.1.Maszyna uringa Automat skończony składa się ze skończonego zbioru stanów i zbioru przejść ze stanu do stanu, zachodzących przy różnych symbolach wejściowych
Odmiany maszyny Turinga. dr hab. inż. Joanna Józefowska, prof. PP 1
Odmiany maszyny Turinga 1 Uniwersalna maszyna Turinga Uniwersalna maszyna U nad alfabetem A k jest to maszyna definiująca funkcje: f U, n+1 = {((w(i 1, I 2,..., I n )),y) w - opis maszyny T za pomocą słowa,