Karta pracy do doświadczeń
|
|
- Nina Tomczyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub problemowego, na które ma dać odpowiedź doświadczenie Podobieństwo. Praktyczne zastosowanie zależności między polami figur podobnych. Czy mierniczy dobrze określili pole powierzchni działki Pana Michała? B. Podstawowe pojęcia - podobieństwo figur, - skala podobieństwa, - pola figur podobnych. C. Hipoteza Odpowiedź na pytanie badawcze D. Opis doświadczenia Celem doświadczenia jest sprawdzenie zweryfikowanie poprawności twojej odpowiedzi na pytanie badawcze lub problemowe. D.1. Instrukcja do doświadczenia (podkreśl materiały i przyrządy, nie zapomnij o BHP) Pan Michał kupił piękną, płaską działkę rekreacyjną o kształcie zbliżonym do prostokąta. Na działce znajduje się altanka. Mierniczy obmierzyli brzegi działki, by obliczyć pole i ustalić jaki podatek powinien być płacony. Pan Michał, przyglądając się pomiarom zgłosił wątpliwości, czy aby poprawnie udało się wyznaczyć pole, mierniczy przedstawili mu uzasadnienie:
2 2 Średnia długość działki: 19 m Średnia szerokość działki: 15 m Pd = 19 x 15 = = 285 m 2. Plan działki nr 225. Właściciel : Michał Kowalski. Ul. Drzymały 3/21; Kowalewo Górne. Sporządzili w imieniu POD Pod Dębami mierniczy: Z. Nowak i J. Wiśniewski. Zadanie A: Zapoznaj się z uzasadnieniem mierniczych i postaw swoją hipotezę przewidywaną odpowiedź na pytanie badawcze: Czy mierniczy dobrze określili pole powierzchni działki Pana Michała? Pan Michał przekonywał mierniczych, że czworokąty o danych bokach mogą mieć różne kształty, a tym samym różne pola i zaproponował zmierzenie jeszcze przekątnej tego czworokąta, bo trójkąt o danych bokach ma kształt określony jednoznacznie. Problem polegał jednak na tym, że w wymierzeniu przekątnej przeszkadzała altanka i strony pozostały przy swych stanowiskach. Pan Michał nie dał jednak za wygraną. Postanowił skorzystać z planu działek - dostępnym w domu działkowca. Rzeczywiście kształt jego działki wykony przez geodetów nieco się różnił od tego, który przedstawili mu mierniczy, choć boki miały te samą długość. Oto dokładny plan działki:
3 3 Zadanie B: W celu zweryfikowania własnej hipotezy powtórz plan badania zastosowany przez pana Michała. Oto on: Tak postanowiłem sprawdzić czy mam rację: 1. Zmierzyć najdłuższy bok w terenie i na planie, by ustalić skalę podobieństwa: działki i planu (tzn. skalę mapy, bo nie pisze nic na ten temat) 2. Podzielić plan na dwa trójkąty o wspólnej podstawie rysując jedną z przekątnych 3. Narysować wysokości opuszczone na wspólną podstawę w każdym z trójkątów 4. Zmierzyć podstawę i każdą wysokość z dokładnością do 1 mm. 5. Obliczyć pola każdego z trójkątów wg wzoru: P =1/2ah, gdzie a- to długość podstawy, zaś h to długość wysokości. 6. Dodać pola dwóch trójkątów, by obliczyć pole działki na planie. 7. Powiększyć pola do rzeczywistych wartości (tu wykorzystać obliczoną skalę) 8. Sprawdzić, czy obliczone pole znacząco różni się od wyliczeń mierniczych (więcej, niż od 1 m 2 ) Podpisano: Michał Kowalski. D.2. Zmienne występujące w doświadczeniu 1. Jaką zmienną/wielkość będziemy zmieniać? (zmienna niezależna): - wielkość (wymiary) figur podobnych na mapie i w rzeczywistości, 2. Jaką zmienną/wielkość będziemy mierzyć obserwować? (zmienna zależna): - pola figur podobnych na mapie i w rzeczywistości, 3. Czego w naszym eksperymencie nie będziemy zmieniać? (zmienne kontrolne): - uznajemy za prawidłowy kształt określony przez geodetów. Nie zawsze wypełniamy wszystkie trzy punkty; np. w niektórych obserwacjach punkt 1. może być pominięty. D.3. Odnośniki literaturowe 1) Matematyka 3. Podręcznik dla gimnazjum. Wydanie Praca zbiorowa pod redakcją M. Dobrowolskiej.
4 4 D.4. Uczniowska dokumentacja doświadczenia (wyniki pomiarów, tabelki, rysunki, obliczenia) wymiary boki czworokąta Przekątna (wspólna podstawa trojkątów) Wysokość h 1 Wysokość h 2 P 1 P 2 P d = P 1 +P 2 rzeczywiste (m) 20 m 18 m 16 m 14 m na planie (cm) skala podobieństwa Wzór na pole trójkąta P = ½ a h
5 5 E. Wnioski z doświadczenia Czy wyniki doświadczenia są zgodne z hipotezą? TAK o NIE o Wypowiedź uzasadnij. F. Podsumowanie Nauczyłam / Nauczyłem się, że: Wybierz, co najmniej jedno ze zdań i dokończ je: 1. Zaciekawiło mnie 2. Udało mi się 3. Chciałabym/ Chciałbym wiedzieć więcej 4. Zauważyłam/ Zauważyłem również G. Praca domowa Dodatkowe komentarze dla osób pragnących skorzystać z waszego pomysłu na doświadczenie.
Karta pracy do doświadczeń
Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Podobieństwo. Praktyczne zastosowanie zależności między. polami figur podobnych.
1 Podobieństwo. Praktyczne zastosowanie zależności między polami figur podobnych. Czas trwania zajęć: ok. 40 minut Kontekst w jakim wprowadzono doświadczenie: Jako uzasadnienie potrzeby wykonania doświadczenia
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
Karta pracy do doświadczeń (Karta pracy do eksperymentów, obserwacji oraz zajęć z pytaniem problemowym.) Pola zielone - wypełnia tworzący Kartę. Pola niebieski wypełniają uczniowie uczestniczący w zajęciach.
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Pomiar pól wielokątów nieregularnych w terenie.
Pomiar pól wielokątów nieregularnych w terenie. Czas trwania zajęć: 45 minut Kontekst w jakim wprowadzono doświadczenie: Pierwsza część zajęć odbywa się w terenie (boisko szkolne lub inny teren o nieutwardzonej
Dziennik laboratoryjny.
Dziennik laboratoryjny. Zespół. Kto jest w naszym zespole i jakie ma zainteresowania? Tę część Dziennika wypełniacie podczas tworzenia zespołu. Podajcie swoje imiona i jeśli chcecie, napiszcie kilka słów
Jak obracać trójkąt, by otrzymać bryłę o największej. objętości?
Jak obracać trójkąt, by otrzymać bryłę o największej objętości? Czas trwania zajęć: 40 minut Kontekst w jakim wprowadzono doświadczenie: Trójkąt o bokach długości: cm, 4 cm, 5 cm obrócono o kąt 60 o w
Wśród prostokątów o jednakowym obwodzie największe pole. ma kwadrat. Scenariusz zajęć z pytaniem problemowym dla. gimnazjalistów.
1 Wśród prostokątów o jednakowym obwodzie największe pole ma kwadrat. Scenariusz zajęć z pytaniem problemowym dla gimnazjalistów. Czas trwania zajęć: 45 minut Potencjalne pytania badawcze: 1. Jaki prostokąt
Karta pracy do doświadczeń
1 Karta pracy do doświadczeń UWAGA: Pola z poleceniami zapisanymi niebieską czcionką i ramkami z przerywaną linią wypełniają uczniowie uczestniczący w zajęciach. A. Temat w formie pytania badawczego lub
Klasa 6. Pola wielokątów
Klasa 6. Pola wielokątów gr. A str. 1/4... imię i nazwisko...... klasa data 1. Jedna przekątna rombu ma 6 cm, a druga jest od niej o 3 cm krótsza. Dokończ zdania. Wybierz właściwe odpowiedzi spośród A
6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV SZKOŁA
GRUPA A 6 MARCA 2018 BIALSKA LIGA MATEMATYCZNA PUBLICZNE GIMNAZJUM NR 2 W BIAŁEJ PODLASKIEJ VI EDYCJA 3 ETAP KLASA IV IMIĘ I NAZWISKO SZKOŁA KLASA Masz do rozwiązania 12 zadań, za które możesz otrzymać
I POLA FIGUR zadania łatwe i średnie
I POLA FIGUR zadania łatwe i średnie EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. W trójkącie boki mają długości a = 9 cm i b = 6 cm. Wysokość poprowadzona na bok a ma długość 4 cm. Jaką długość
I POLA FIGUR zadania średnie i trudne
I POLA FIGUR zadania średnie i trudne EWA MOLL- RYDZEWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Uzasadnij, że w dowolnym trapezie dwusieczne kątów leżących przy jednym ramieniu są prostopadłe. 2. Działka
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU CHEMIA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU CHEMIA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Jak można otrzymać mydło? Na podstawie pracy uczniów pod opieką Anny Suwińskiej.
Klasówka gr. A str. 1/3
Klasówka gr. A str. 1/3 1. Boki trójkąta ABC mają długości 9 cm, 7cm, 8 cm. Boki trójkąta podobnego A B C w skali 1 2 mają długości: A. 18 cm, 14 cm, 16 cm B. 4 1 2 cm, 3 1 2 cm, 4 cm C. 4 1 2 cm, 7 cm,
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI. prowadzonego w ramach projektu Uczeń OnLine
rojekt Uczeń online współfinansowany ze środków Unii Europejskiej w ramach Europejskiego unduszu Społecznego SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI 1. Autor: Anna Wołoszyn prowadzonego w ramach projektu
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
Podobieństwo. Badanie geometrycznych własności figur. oświetlonych punktowym źródłem światła.
1 Podobieństwo. Badanie geometrycznych własności figur oświetlonych punktowym źródłem światła. Czas trwania zajęć: ok. 40 minut Kontekst w jakim wprowadzono doświadczenie: Wprowadzając pytanie badawcze,
Konstrukcja odcinków niewymiernych z wykorzystaniem. Twierdzenia Pitagorasa.
1 Konstrukcja odcinków niewymiernych z wykorzystaniem Twierdzenia Pitagorasa. Czas trwania zajęć: ok. 40 minut + 5 minut na wykład Kontekst w jakim wprowadzono doświadczenie: Doświadczenie warto zrealizować
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Ile istnieje parkietaży platońskich Na podstawie pracy Alicji Nimirskiej
Skrypt 28. Przygotowanie do egzaminu Podstawowe figury geometryczne. 1. Przypomnienie i utrwalenie wiadomości dotyczących rodzajów i własności kątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 28 Przygotowanie do egzaminu Podstawowe figury
KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe)
Kod ucznia Liczba zdobytych punktów KONKURS PRZEDMIOTOWY Z MATEMATYKI dla uczniów szkół podstawowych 9 stycznia 2016 r. zawody II stopnia (rejonowe) Drogi Uczniu, przed Tobą test składający się z 31 zadań.
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV Opracowała: Hanna Nowakowska Szkoła Podstawowa im. Jana Pawła II w Żydowie TEMAT : ŻEGNAMY FIGURY PŁASKIE Cel ogólny: Utrwalenie wiadomości o figurach płaskich
Karta pracy w grupach
Karta pracy w grupach WIESŁAWA MALINOWSKA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Oceń prawdziwość zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. A. To jest siatka sześcianu. P
mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku
Wybrane scenariusze lekcji matematyki aktywizujące uczniów. mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku Scenariusz 1- wykorzystanie metody problemowej i czynnościowej.
Sprawdzian 1. Zadanie 3. (0 1). Dokończ poniższe zdanie wybierz odpowiedź spośród podanych.
Sprawdzian Zadanie. (0 ). Podaj poprawne wartości poniższych wyrażeń arytmetycznych. Wybierz liczbę spośród oznaczonych literami A i B oraz liczbę spośród oznaczonych literami C i D. 27 7 2 A / B A. 3
Proporcjonalność prosta i odwrotna
Literka.pl Proporcjonalność prosta i odwrotna Data dodania: 2010-02-14 14:32:10 Autor: Anna Jurgas Temat lekcji dotyczy szczególnego przypadku funkcji liniowej y=ax. Jednak można sie dopatrzeć pewnej różnicy
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1
DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników
Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis 24 marca 2012 Czas pracy: 90 minut
Strona 1 /Gimnazjum/Egzamin gimnazjalny Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 24 marca 2012 Czas pracy: 90 minut Zadanie 1 (1 pkt.) Która równość jest
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA. Temat lekcji: Liczby firankowe
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji: Liczby firankowe Na podstawie pracy Joanny Jędrzejczyk oraz jej uczniów.
DOKŁADNOŚĆ POMIARU DŁUGOŚCI
1a DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1. ZAGADNIENIA TEORETYCZNE: sposoby wyznaczania niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa;
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Czy okres i częstotliwość drgań wahadła matematycznego zależą od jego amplitudy?
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Drogi Uczniu ETAP REJONOWY Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie
Test z matematyki. Małe olimpiady przedmiotowe. Imię i nazwisko. Drogi Uczniu,
Małe olimpiady przedmiotowe Test z matematyki ORGANIZATORZY: Wydział Edukacji Urzędu Miasta w Koszalinie Centrum Edukacji Nauczycieli w Koszalinie Imię i nazwisko. Szkoła Szkoła Podstawowa nr 7 w Koszalinie
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU BIOLOGIA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU BIOLOGIA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Jak rozpoznać gatunek drzewa obserwując tylko gałązki? Na podstawie pracy
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Kryteria oceniania zadań
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Etap Wojewódzki Kryteria oceniania zadań Zadania zamknięte Zadanie 1 4 5 6 7 8 9 10 11 1 1 Odpowiedź C D D C A B C D C A B C D Zadania Prawda/Fałsz Zadanie Odpowiedź
Dziennik laboratoryjny.
Dziennik laboratoryjny. Zespół. Kto jest w naszym zespole i jakie ma zainteresowania? Tę część Dziennika wypełniacie podczas tworzenia zespołu. Podajcie swoje imiona i jeśli chcecie, napiszcie kilka słów
SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:05.03.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
Egzamin ósmoklasisty Matematyka
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka DATA: 16 kwietnia 2019 r. GODZINA
Temat: Pole równoległoboku.
Scenariusz lekcji matematyki w klasie V Temat: Pole równoległoboku. Ogólne cele edukacyjne - rozwijanie umiejętności posługiwania się językiem matematycznym - rozwijanie wyobraźni i inwencji twórczej -
KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM
... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Prąd elektryczny w obwodzie rozgałęzionym dochodzenie. do praw Kirchhoffa.
1 Prąd elektryczny w obwodzie rozgałęzionym dochodzenie do praw Kirchhoffa. Czas trwania zajęć: 1h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń:
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Suma różnych potęg liczby 2 Na podstawie pracy Beaty Dudkowiak oraz jej
Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach.
Lista NR 6 Przedstaw obliczenia we wszystkich zadaniach. Zad 1. (0-1) Długość przekątnej prostokąta przedstawionego na rysunku jest równa A. 12 B. 16 C. 20 D. 24 Zad 2. (0-2) Przedstawiony na rysunku trójkąt
Obwody i pola figur -klasa 4
Obwody i pola figur -klasa 4 str. 1/6...... imię i nazwisko lp. w dzienniku...... klasa data 1. Przyjmij za jednostkę. Zapisz, jakie pole ma narysowana figura. Pole =.......................... 2. Jakie
Zadanie 1.1. Zadanie 1.2. Zadanie 1.3. Zadanie 1.4. Zadanie 1.5. Zadanie 1.6. Zadanie 1.7. Zadanie 1.8* Zadanie 1.9. Zadanie 1.10
Zadania za 1 punkt Zadanie 1.1 Zadanie 1.2 Pole narysowanej obok figury wyrażone za pomocą trójkątów Pole narysowanej obok figury wyrażone za pomocą figur A. 10 B. 12 C. 7 D. 11 A. 4 B. 3 C. 2 D. 8 Zadanie
Powtórka przed klasówką nr 4 - pola wielokątów
Powtórka przed klasówką nr 4 - pola wielokątów MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Plakat informujący o zawodach miał kształt prostokąta o wymiarach 50 cm 60 cm. Oblicz pole prostokąta
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi.
ZADANIA MATEMATYCZNE DLA UCZNIÓW KLAS VI zestaw drugi. 21. Za bilety wstępu do pijalni wód mineralnych dla 4 osób dorosłych i 40 dzieci zapłacono 106 zł. Bilet dla osoby dorosłej kosztował 3,50 zł. Ile
1 Pole figury. P 1. Oblicz pole prostokąta o podanych bokach. a) 7 cm i 5 cm b) cm i cm c) 15 cm i 5,2 dm
68 Pola figur 6 Pola figur Pole figury P. Oblicz pole prostokąta o podanych bokach. a) 7 cm i 5 cm b) 3 2 cm i 2 7 cm c) 5 cm i 5,2 dm P 2. Oblicz pole prostokąta o podanych bokach. a) 8 cm i 6 cm b) 4
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 2015
PŁOCKA MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa V szkoła podstawowa marzec 205 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7
Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I
Kod ucznia: Bydgoszcz, 31.01.2015r. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Wypełnia komisja konkursowa Numer zadania 1 2 3 4 5 Razem Punktacja
Scenariusz lekcji matematyki, klasa 1 LO.
Scenariusz lekcji matematyki, klasa 1 LO. Temat lekcji: Czworokąty: rodzaje, własności, pola czworokątów. Cele: po lekcji uczeń: - rozpoznaje czworokąty, - zna własności czworokątów, - potrafi wskazać
Egzamin ósmoklasisty Matematyka
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka DATA: 16 kwietnia 2019 r. GODZINA
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 2014/2015 ETAP SZKOLNY 4 listopada 2014 roku
Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla uczniów gimnazjów Rok szkolny 201/2015 ETAP SZKOLNY listopada 201 roku 1. Przed Tobą zestaw 21 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Jakie są skutki oddziaływania pola magnetycznego? Na podstawie pracy Heleny
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU FIZYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Czy różne przedmioty mogą działać jak magnes? Na podstawie pracy Agaty Rogackiej
Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B. Stopnie: bdobry (5) dobry (4) (2) 20 1 3 5 7 3 1. chłopcy 15 3 5 3 2 2
Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B Zadanie. ( pkt.) W baku samochodu Fiat Uno mieści się 40 l benzyny. Samochód ten spala przeciętnie 5, l benzyny na 00 km. Czy trzeba będzie
SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:17.04.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa II
1 MATEMATYKA - poziom rozszerzony klasa II CZERWIEC 2015 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 17). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego
Skrypt 12. Figury płaskie Podstawowe figury geometryczne. 7. Rozwiązywanie zadao tekstowych związanych z obliczeniem pól i obwodów czworokątów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 12 Figury płaskie Podstawowe figury geometryczne
SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.
1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:15.05.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI
Kod ucznia - - Dzień Miesiąc Rok pieczątka WKK DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP WOJEWÓDZKI Drogi Uczniu Witaj na III etapie konkursu matematycznego. Przeczytaj uważnie
Wyznaczanie warunku równowagi dźwigni dwustronnej.
1 Wyznaczanie warunku równowagi dźwigni dwustronnej. Czas trwania zajęć: 1h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń: - wie, że maszyny proste
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 23 listopada 2017 Czas 90 minut
pieczęć szkoły pesel nazwisko imiona Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Szkolny 23 listopada 2017 Czas 90 minut 1. Otrzymujesz do rozwiązania
Oto przykłady przedmiotów, które są bryłami obrotowymi.
1.3. Bryły obrotowe. Walec W tym temacie dowiesz się: co to są bryły obrotowe, jak rozpoznawać walce wśród innych brył, jak obliczać pole powierzchni bocznej i pole powierzchni całkowitej walca, jak obliczać
SCENARIUSZ LEKCJI. Uczeń zapisuje: wzór na pole prostokąta i kwadratu ( B 1 ) jednostki długości ( B 2 ) podstawowe jednostki miar pola ( B 3 )
SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 07.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU BIOLOGIA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA
SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU BIOLOGIA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Występowanie glukozy i jej zawartość w wybranych owocach Na podstawie pracy
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2016/2017 18.11.2016 1. Test konkursowy zawiera 22 zadania. Są to zadania zamknięte
WYPEŁNIA KOMISJA KONKURSOWA
WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016 MATEMATYKA Informacje dla ucznia 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod
Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis
Strona 1 /Gimnazjum/Egzamin gimnazjalny/egzamin 2012 Próbny Egzamin Gimnazjalny z Matematyki Zestaw przygotowany przez serwis www.zadania.info 31 marca 2012 Czas pracy: 90 minut Zadanie 1 (1 pkt.) Kierowca
KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM
... kod pracy ucznia... pieczątka nagłówkowa szkoły KONKURS PRZEDMIOTOWY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie konkursu matematycznego. Przeczytaj uważnie instrukcję
Test na koniec nauki w klasie trzeciej gimnazjum
8 Test na koniec nauki w klasie trzeciej gimnazjum imię i nazwisko ucznia...... data klasa Test 2 1 Na przeciwległych ścianach każdej z pięciu sześciennych kostek umieszczono odpowiednio liczby: 1 i 1,
Skrypt 17. Podobieństwo figur. 1. Figury podobne skala podobieństwa. Obliczanie wymiarów wielokątów powiększonych bądź pomniejszonych.
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 17 Podobieństwo figur 1. Figury podobne skala
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut
kod ucznia Zadanie 1-10 11 12 13 14 15 suma punkty (wypełnia komisja) Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 17 lutego 2016 Czas 90 minut 1. Otrzymujesz do rozwiązania 10
WOJEWÓDZKI KONKURS MATEMATYCZNY
Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 017/018 08.11.017 1. Test konkursowy zawiera zadania. Są to zadania zamknięte i otwarte.
A co oznacza samo słowo geometria? W dosłownym znaczeniu to "mierzyć Ziemię", ponieważ "GEO-ZIEMIA", a "METRIA-MIERZYĆ".
Podstawowe figury geometryczne i ich własności WSTĘP Geometria... na pewno spotkałeś/łaś się już z takim określeniem. Jest to jeden z działów matematyki, który dotyczy różnych figur (takich jak odcinek,
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)
Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm
IV KROŚNIEŃSKI KONKURS MATEMATYCZNY
....... pieczątka szkoły imię i nazwisko ucznia klasa IV KROŚNIEŃSKI KONKURS MATEMATYCZNY KLASA I GIMNAZJUM ETAP SZKOLNY Drogi Uczniu Witaj na pierwszym etapie IV Krośnieńskiego Konkursu Matematycznego.
KURS MATURA PODSTAWOWA Część 2
KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:
r., godz Czas trwania 60 minut. Przepisz tutaj Twój kod
zdolny Ślązaczek MATEMATYKA XVI DOLNOŚLĄSKI KONKURS DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH II ETAP - POWIATOWY 13.11.2018 r., godz. 12 00 Czas trwania 60 minut TWÓJ KOD Przepisz tutaj Twój kod Przepisz tutaj Twój
Zadanie 1. ( 0-5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe.
Zadanie 1. ( -5. ) Oceń prawdziwość zdań. Wybierz P, jeśli zdanie jest prawdziwe lub F jeśli jest fałszywe. a) Liczby: 1,15 i 3 1: są równe. P F b) Liczba 5 5 5 jest większa od liczby 6 6. 6 P F c) Średnia