ARCHITEKTURA SYSTEMÓW MIKROPROCESOROWYCH. dr inż. Małgorzata Langer B9, pok. 310 Instytut Elektroniki

Wielkość: px
Rozpocząć pokaz od strony:

Download "ARCHITEKTURA SYSTEMÓW MIKROPROCESOROWYCH. dr inż. Małgorzata Langer B9, pok. 310 Instytut Elektroniki"

Transkrypt

1 ARCHITEKTURA SYSTEMÓW MIKROPROCESOROWYCH część 3 dr inż. Małgorzata Langer B9, pok. 310 Instytut Elektroniki

2 Podstawowa architektura systemu mikroprocesorowegow aspekcie jego budowy Projektant systemu wybiera architekturę maszyny w oparciu o koszt i korzyści płynące z możliwej zoptymalizowanej organizacji przy wykorzystaniu dostępnych elementów sprzętu (hardware) i oprogramowania (software). Każdy element może być wdrożony w różnych postaciach zależnie od postawionych wymagań i dostępnej (lub wybranej) technologii. W SZCZEGÓLNOŚCI BUDOWA SYSTEMU MUSI ODZWIERCIEDLIĆ WSZYSTKIE MINIMALNE WYMAGANIA POSTAWIONE PRZEZ ASPEKT ORGANIZACJI PRACY (poprzedni wykład) 2

3 Parametry podstawowe dla konstrukcji Wybrany zestaw instrukcji Długość słowa Ustalone formaty instrukcji i danych Sposób zaprojektowania (i technologia) rejestrów i pamięci Ścieżka przepływu danych i instrukcji Projekt jednostki arytmetycznej i logicznej Mechanizm I/O Generowanie sygnałów sterujących Projekt jednostki sterującej 3

4 Wykonanie programu Po załadowaniu kodu obiektu do pamięci, można rozpocząć jego wykonywanie poprzez ustawienie licznika programu na adres startu i aktywację (przycisku, rozkazu, ) START Instrukcje są wtedy pobierane z pamięci i kolejno wykonywane, aż pojawi się instrukcja HLT, albo wcześniej wystąpi błąd (i wtedy: co dalej? ) Wykonywanie instrukcji składa się z dwóch etapów: - pobieranie instrukcji - wykonanie instrukcji 4

5 Pobieranie instrukcji Słowo z instrukcją musi zostać pobrane z pamięci do rejestru instrukcji (IR) W tym celu zawartość licznika programu (PC) przeniesiona zostaje do MAR i wykonana zostaje operacja odczytu pamięci słowo zostaje przeniesione do MBR Następnie instrukcja zostaje przeniesiona do IR, a wewnętrzna logika sterowania musi dodać 1 do zawartości PC, aby wskazywał instrukcję następną Taka sekwencja pobierania instrukcji jest niezmienna obowiązuje dla wszystkich instrukcji 5

6 Wykonywanie instrukcji Po zdekodowaniu kodu instrukcji (opcode) następuje faza wykonywania, unikalna dla każdej instrukcji Najczęściej jest to sekwencja operacji, jeżeli potrzeba, z wczytywaniem danych, obliczaniem adresu, itp. Po fazie wykonywania maszyna wraca do fazy pobierania Jeżeli instrukcja używa trybu pośredniego adresowania, potrzebna jest faza dodatkowa do obliczenia efektywnego adresu tzw. Faza opóźniająca (defer phase) POBIERANIE, WYKONYWANIE ORAZ OPÓŹNIENIE (ewentualnie) SKŁADAJĄ SIĘ NA CYKL INSTRUKCJI 6

7 Ścieżki przepływu pomiędzy rejestrami Faza pobierania i obliczania adresu (A) adres; (I) instrukcja; 1 zwiększenie o 1 7

8 Struktura magistrali Połączenia rejestrów mogłyby być realizowane jako każdy indywidualnie ze wszystkimi potrzebnymi NIEREALNE! Lub przy pomocy MAGISTRALI (bus), która łączy wszystkie rejestry Single bus magistrala pojedyncza wszystkie dane i adresy płyną przez jedną magistralę Multibus wiele magistral każda przeznaczona do wyznaczonych transferów, np. oddzielna dla danych a inna dla adresów MULTIBUS pozwala na równoległy przepływ operacje wykonywane równolegle 8

9 Przykładowa struktura magistrali w ASC [S.G.Shiva; Computer Organization, Design and Architecture] Przy wykonywaniu np. dodawania BUS1 i BUS2 podadzą składniki a wynik zostanie podany na BUS3 9

10 Czas przesyłu Dane wchodzą do rejestru przy dodatnim (rosnącym) zboczu zegara Sygnał zegarowy jest generowany przez jednostkę sterującą (oraz inne sygnały sterujące do wyboru źródła i przeznaczenia) Zegar musi mieć podłączenie do wszystkich rejestrów Czas potrzebny na przeniesienie jednostki danych ze źródła do przeznaczenia poprzez ALU jest czasem TRANSFERU REJESTRU Częstotliwość zegara musi być maksymalnie taka, aby podczas okresu zegara zakończył się najwolniejszy transfer CZAS TRANSFERU REJESTRU DECYDUJE O PRĘDKOŚCI PRZETWARZANIA 10

11 Praca przy pojedynczej magistrali W takiej strukturze konieczne są rejestry buforowe. Przy dodawaniu, albo jeden ze składników, albo wynik, musi być zapisany w buforze, zanim można go przesłać do rejestru przeznaczenia Przy pojedynczej magistrali konieczne są więc dodatkowe transfery NIEKTÓRE OPERACJE BĘDĄ WYMAGAŁY WIĘCEJ CZASU Praca komputera z pojedynczą magistralą jest WOLNIEJSZA niż z multibus 11

12 ALU jednostka arytmetyczna i logiczna ALU jest strukturą, która wykonuje wszystkie działania arytmetyczne i logiczne W PROSTYM KOMPUTERZE zestaw instrukcji musi obejmować przynajmniej: - dodawanie dwóch liczb - obliczanie uzupełnienia dwójkowego do liczby - przesuwanie zawartości akumulatora o jeden bit w prawo, lub w lewo - bezpośredni transfer dowolnego ze swoich wejść na wyjście, aby umożliwić operacje przesyłu danych, typu IR MBR oraz MAR IR 12

13 Minimalny zestaw instrukcji: Założenie 1: Jednostka sterująca maszyny dostarczy odpowiednie sygnały sterujące do ALU, aby wykonać operacje (identyfikowane jako nazwy instrukcji) Założenie 2: Mamy 3 magistrale BUS1 i BUS2 na wejścia, BUS3 wyjście ALU; pozycje bitów numerowane są od lewej (15) do prawej (0) ADD: BUS3 BUS1 + BUS2 COMP: BUS3 BUS SHR: BUS3 BUS1 15 BUS SHL: BUS3 BUS TRA1: BUS3 BUS1 TRA2: BUS3 BUS2 13

14 ADD Obwód dodawania musi się składać z 15 sumatorów pełnych i jednego półsumatora dla najmniej znaczącego bitu (0) Wyjście sumy każdego bitu jest bramkowane w bramce AND z sygnałem sterującym ADD Wyjście przeniesienia z każdego bitu jest wejściem na wejście bitu przeniesienia kolejnego bardziej znaczącego bitu. (Pół-sumator nie posiada wejścia na bit przeniesienia, a najbardziej znaczący sumator (15) bit przeniesienia podaje jako znacznik błędu do rejestru stanu PSR) Zawartość bitów akumulatora na magistrali BUS1 dodawana jest do zawartości MBR na BUS2 i zawartość zapisana zostaje w akumulatorze 14

15 Obwód dla pojedynczego bitu Bit 0 dla SHR nie jest podłączony do bitu mniej znaczącego BUS3, więc sygnał jest tracony 15

16 COMP Logiczny obwód to 16 bramek NOT, po jednej dla każdego bitu BUS1 Otrzymujemy w ten sposób uzupełnienie jedynkowe do liczby. Wyjście z każdej bramki NOT jest bramkowane na bramce AND z sygnałem COMP Wynik pośredni jest zawartością akumulatora i wynik zostaje zapisany w akumulatorze Dwójkowe uzupełnienie to uzupełnienie jedynkowe i dodanie 1 do wyniku (TCA uzupełnienie dwójkowe z zapisem w akumulatorze) 16

17 SHR Przesuwanie w prawo odbywa się poprzez połączenie każdego bitu BUS1 do sąsiadującego mniej znaczącego bitu BUS3 Transfer jest bramkowany przez sygnał sterujący SHR Najmniej znaczący bit z BUS1 (BUS1 0 ) jest tracony w procesie przesuwania Najbardziej znaczący bit BUS3 15 jest wypełniony bitem znaku 17

18 SHL Przesuwanie w lewo odbywa się poprzez połączenie każdego bitu BUS1 do sąsiadującego bardziej znaczącego bitu BUS3 Transfer jest bramkowany przez sygnał sterujący SHL Najbardziej znaczący bit z BUS1 (BUS1 15 ) jest tracony w procesie przesuwania Najmniej znaczący bit z BUS3 (BUS3 0 ) zostaje wypełniony zerem 18

19 Schemat logiczny ALU dla typowego bitu 19

20 Rejestr stanu - PSR Bity PSR są uaktualniane równocześnie z aktualizacją akumulatora C N Z O I Zapisywane są następujące bity: - C bit przeniesienia (C out ) przy dodawaniu bit przeniesienia z najbardziej znaczącej pozycji N znak ujemny (bit BUS3 15 ) - Z bit zera (gdy wszystkie bity BUS3 są zerami) - O bit przepełnienia (gdy podczas dodawania suma przekracza (2 15 1), czyli gdy oba bity znaku składników są jedynkami, a wyniku zerem lub odwrotnie), (lub przy SHL, gdy zmienia się bit znaku) - I przerwanie bit podawany z układu sterującego Architektura komputerów, część 5 20

21 CPU Central Processing Unit Jest to połączenie ALU i jednostki sterującej Jego funkcją jest GENEROWANIE SYGNAŁÓW STERUJĄCYCH potrzebnych przez inne bloki urządzenia, WE WCZEŚNIEJ OKREŚLONEJ KOLEJNOŚCI, tak, aby spowodować sekwencję działań wywoływanych przez każdą instrukcję Schemat blokowy Uwaga: CLOCK jest podłączony do wszystkich rejestrów 21

22 CPU DATA przerzutnik ułatwiający handshake (nawiązanie kontaktu) między CPU a urządzeniami I/O RUN przerzutnik ustawiany sygnałem START (np. z zewnętrznego panelu sterującego) aby uaktywnić dowolną mikrooperację STATE dwubitowy rejestr stanu umożliwiający rozróżnienie trzech faz (pobierz, opóźnij, wykonaj) 22

23 SYGNAŁY CPU Wejścia zewnętrzne: z rejestrów (PSR, IR, indeksowych), urządzeń I/O Wejścia wewnętrzne: zawartości (bity przerzutników) danych, rejestru stanu (STATE), rejestru RUN, zegar (CLOCK) Sygnały generowane na potrzeby wewnętrzne: sygnały zmiany stanu (pobierz, opóźnij, wykonaj, reset dla DATA, reset dla RUN) WYJŚCIA: - do pamięci (READ, WRITE) - do ALU (TRA1, TRA2, ADD, COMP, SHR, SHL) - do I/O (INPUT, OUTPUT) - do magistrali 23

24 Sygnały CPU do struktury magistrali ACC do BUS1 MAR do BUS1 IR 7-0 do BUS1 PC do BUS1 1 do BUS1-1 do BUS1 INDEX do BUS2 MBR do BUS2 1 do BUS2 SWITCHBANK do BUS2 BUS3 do ACC BUS3 do INDEX BUS3 do MAR BUS3 do MBR BUS3 do PC BUS3 do MONITOR BUS3 do IR DIL do ACC ACC do DOL 24

25 WEJŚCIE / WYJŚCIE Nawet najprostszy komputer musi posiadać przynajmniej jedno urządzenie wejściowe (np. klawiatura) i jedno wyjściowe (np. wyświetlacz, lub drukarka) Najprostszym jest programowalne urządzenie I/O RWD podczas wykonywania tej instrukcji CPU wydaje komendę urządzeniu wejściowemu do przesłania słowa danych i czeka Kiedy urządzenie wejściowe ma gotowe słowo w buforze danych, informuje o tym CPU CPU bramkuje wtedy przepływ danych do ACC poprzez DIL (data input line) 25

26 WEJŚCIE / WYJŚCIE WWD CPU bramkuje wyjściowe słowo danych z ACC do DOL (data outputline), wydaje komendę urządzeniu wyjściowemu do przyjęcia danych i czeka Gdy urządzenie wyjściowe poprzez swoje bramki umieści słowo danych w swoim buforze informuje CPU o akceptacji danych. CPU może przystąpić do wykonywania następnej instrukcji Wymieniane sygnały informacyjne handshaking W obu operacjach największy czas zabiera czekanie urządzenia I/O są zawsze znacznie wolniejsze od CPU WNIOSEK: Programowalne urządzenia I/O są co prawda bardzo proste, ale bardzo wolne. W takim schemacie CPU nie może podczas czekania robić nic innego (nie otrzymało sygnału o zakończeniu instrukcji) 26

27 Rodzaje jednostek sterujących Każdy cykl instrukcji składa się z trzech faz, a każda z faz składa się z sekwencji mikrooperacji Mikrooperacja może oznaczać jedno z następujących działań: - pojedynczy transfer rejestru (zawartość jednego rejestru przeniesiona do innego rejestru) - złożony transfer rejestru, zatrudniający ALU (np. suma z dwóch rejestrów przeniesiona do trzeciego rejestru przeznaczenia) - operacja zapisu do pamięci lub odczytu z pamięci Jednostki sterujące mogą być: - wykonaną strukturą bramek, przerzutników i połączeń, która generuje sygnały sterujące (HCU hardwared control unit) - programowalną jednostką, gdzie mikrooperacje dla każdej instrukcji są zapisane w pamięci (MCU microprogrammed control unit) sygnały sterujące są generowane poprzez dekodowanie mikroinstrukcji 27

28 HCU może być: SYNCHRONICZNE każda operacja jest sterowana zegarem; stan jednostki sterującej można określić znając stan zegara Częstotliwość zegara musi być taka, że odległość między kolejnymi pulsami musi pozwolić na wykonanie najwolniejszej mikrooperacji. ASYNCHRONICZNE zakończenie jednej operacji wyzwala początek następnej; nie istnieje sygnał zegarowy Konstrukcja jest nieco bardziej skomplikowana, ale ograniczone funkcjonalnie asynchroniczne HCU mogą być znacznie szybsze od ich synchronicznych odpowiedników 28

29 Pamięć a prędkość procesora Czas dostępu pamięci równy jest dwóm czasom transferu rejestru Podczas odczytu, jeżeli adres jest bramkowany do MAR razem z instrukcją READ, dane będą dostępne w MBR na koniec następnego czasu transferu rejestru Podczas zapisywania, jeżeli dane i adres są odpowiednio dostarczone do MAR i MBR, z sygnałem sterującym WRITE, pamięć kończy zapisywanie danych z końcem drugiego czasu transferu rejestru Zawartość MAR nie może zostac zmieniona aż do zakończenia instrukcji READ lub WRITE 29

30 Charakterystyki czasowe pamięci 30

31 Cykl maszynowy W synchronicznych układach sterujących czas pomiędzy kolejnymi impulsami zegara takt - (czas transferu rejestru) jest określony przez operację transferu najwolniejszego rejestru. W przypadku ASC jest to sumator w ALU. Takt, inaczej czas transferu rejestru, nazywany jest czasem cyklu procesora, lub małym cyklem Przejście pomiędzy stanami pobierz, opóźnij, wykonaj konstrukcyjnie uważa się za dodatkowy mały cykl (CP 4 ) Główny cykl procesora składa się z kilku cykli małych Cykl instrukcji składa się z jednego lub więcej głównych cyklów procesora 31

32 MCU Mikroprogramy odpowiadające każdej instrukcji przechowywane są w pamięci ROM (Read Only Memory) Nazwa CROM oznacza pamięć sterującą Control ROM; µcu microcontrol unit µcu jest zwykle prostym HCU, którego funkcją jest wykonywanie mikroprogramów zawartych w CROM W CROM mikroprogram zapisywany jest w postaci binarnej Czas wymagany do wykonania instrukcji jest funkcją ilości mikroinstrukcji w danej sekwencji (każda mikroinstrukcja pobierana jest w dwóch taktach (czas transferu najwolniejszego rejestru + czas dostępu CROM) EMULACJA dowolnego procesora w złożonych systemach komputerowych polega na wpisaniu do pamięci mikroprogramów i tym samym utworzenie namiastki CROM 32

33 Schemat blokowy MCU 33

34 URZĄDZENIA PERYFERYJNE sposób obsługi Tryb programowalnych I/O jest nie tylko wolny (procesor wciąż CZEKA), ale nie zawsze możliwy do realizacji (np. gdy urządzenie I/O musi zgłosić ALARM i wymaga natychmiastowej obsługi a dzieje się to w sposób całkowicie nieprzewidywalny) PRZEPŁYW INFORMACJI pomiędzy dowolnym I/O a procesorem składa się z następujących kroków: - wybór urządzenia i sprawdzenie jego gotowości - inicjacja transferu (jeżeli urządzenie jest gotowe) - transfer informacji - zakończenie Kroki te mogą być kontrolowane tylko przez procesor, tylko przez urządzenie, lub i przez procesor i urządzenie 34

35 W zależności od tego, gdzie jest kontrola Istnieją trzy tryby I/O: 1. Programowany I/O 2. Tryb przerwań I/O 3. Bezpośredni dostęp do pamięci (DMA Direct memory access) 35

36 Ogólny model I/O 36

37 Ogólny model I/O Komunikacja ASC peryferia przebiega po liniach DIL (wejście) oraz DOL (wyjście). W praktyce jest to jedna, dwukierunkowa magistrala danych Przerzutnik DATA w jednostce sterującej koordynuje działania I/O Jeżeli (prawie zawsze) jest więcej urządzeń I/O, każde z nich musi mieć swój numer lub adres Wykorzystuje się tu wolny operand z instrukcji RWD i WWD (pole 8 bitów) a nawet 11 bitów (bo w tych instrukcjach wolne są również pole indeksowe i pośrednie) 4 bity pozwalają na 16 urządzeń wejścia i 16 wyjścia 37

38 Ogólna struktura I/O Adres urządzenia niesiony jest przez magistralę danych i dekodowany przez każde urządzenie. Tylko jedno urządzenie ma zgodny adres i uczestniczy w dalszej operacji Magistrala danych jest dwukierunkowa, Magistrala sterująca niesie sygnały sterujące od CPU oraz stanu generowane przez interfejsy urządzenia (DEVICE BUSY, ERROR, ) 38

39 Adresy Struktura taka, jak na poprzednim slajdzie wyraźnie oddziela obszar adresów pamięci od obszaru adresów I/O (oddzielne magistrale) tryb IZOLOWANEGO I/O Może być wspólna szyna dla pamięci i urządzeń I/O i wtedy adresy I/O są częścią obszaru adresów pamięci Pamięć CPU Urządz.1 Urządz.N Wspólna magistrala systemowa I/O z mapowaną pamięcią (memory-mapped I/O) 39

40 Adresy uwaga Pojedyncza (fizycznie) magistrala nie zawsze świadczy o mapowaniu pamięci dla I/O. Można multipleksować adresy do I/O i pamięci na tej samej magistrali poprzez odpowiednie sygnały sterujące (logicznie odpowiada to dwóm magistralom) 40

41 Interfejs urządzenia Interfejs urządzenia I/O jest unikalny dla danego urządzenia. Zależy od sposobu prezentacji danych, nośnika, konstrukcji, itd. Każdy interfejs zawiera sterownik otrzymujący sygnały sterujące (rozkazy) od CPU i raportujący CPU stan urządzenia Sygnały stanu, to np.: DEVICE BUSY, DATA READY, itp. W interfejsie znajduje się dekoder adresu wybierającego urządzenie Najczęściej jest przetwornik dekodujący odczytane dane i umieszczający je w buforze (skąd zostaną pobrane jako input data) lub pobierający umieszczone w buforze dane (output data), i dekodujący je do formatu zapisu na zewnętrznym medium (np. ASCII do drukarki, 0/1 na nośnik magnetyczny) 41

42 Interfejs zasadnicze funkcje Główne funkcje interfejsu urządzenia I/O to: - taktowanie (timing) (urządzenie I/O posiada inną prędkość działania niż CPU) - sterowanie - konwersja danych - wykrywanie błędów - korekta błędów 42

43 Sekwencja operacji - READ Nie ma znaczenia które urządzenie (również CPU) rządzi przy sterowaniu magistralą. Gdy komunikują się dwa urządzenia, zawsze jedno z nich jest MASTER a drugie SLAVE Przesył danych po magistrali może być synchroniczny lub asynchroniczny; wobec CPU urządzenia peryferyjne działają najczęściej asynchronicznie MASTER aktywuje sygnał READ i umieszcza ADRES urządzenia SLAVE (z którego chce odczytać dane). Wszystkie urządzenia podłączone do magistrali dekodują adres, tylko jedno w krótkim czasie (jakim?) ma umieścić dane na magistrali. Aby powiadomić MASTER, że dane już są do pobrania, SLAVE musi przesłać ACK (acknowledge) potwierdzenie o gotowości. Po stwierdzeniu sygnału ACK, MASTER bramkuje dane do swoich wewnętrznych rejestrów 43

44 Sekwencja operacji - WRITE MASTER aktywuje sygnał WRITE i umieszcza ADRES urządzenia SLAVE (na którym chce zapisać dane) na liniach adresowych magistrali. Podczas gdy urządzenia dekodują adres, MASTER umieszcza dane na magistrali danych. Po pewnym czasie wybrany SLAVE bramkuje dane do swojego bufora i odpowiada sygnałem ACK (data accepted) Po wykryciu sygnału ACK, MASTER usuwa dane i sterujący sygnał WRITE z magistrali Sekwencja wydarzeń opisujących transfer nazywana jest protokołem lub handshake 44

45 Transfer synchroniczny Transfer asynchroniczny 45

46 Sterowanie tryb programowanego I/O Procesor 1. Wybiera urządzenie i sprawdza stan urządzenia 3. Jeżeli urządzenie nie jest gotowe powrót do kroku 1; jeżeli gotowe, do 4 4. Daje sygnał do urządzenia o zainicjowaniu przesyłu danych. W przypadku OUTPUT bramkuje dane na linii danych i ustawia linię sterującą wyjście 6. Przy INPUT akceptuje dane; przy OUTPUT usuwa dane z linii danych 7. Odłącza urządzenie (usuwa adres z linii adresowych) Sterownik urządzenia 2. Sygnalizuje procesorowi, że jest lub nie jest gotowe 5. Przy OUTPUT sygnalizuje procesorowi, że dane zostały przyjęte; przy INPUT gromadzi dane i sygnalizuje procesorowi, że są gotowe na liniach danych W danym momencie urządzenie może być albo w trybie OUTPUT, albo INPUT 46

47 Przerwania (InterruptmodeI/O) Dla poprawy efektywności (aby CPU nie czekał bezczynnie), część czynności kontrolnych przenoszone jest do urządzenia. Procesor wysyła do sterownika urządzenia rozkaz OUTPUT lub INPUT i powraca do przetwarzania następnych instrukcji Sterownik urządzenia odpowiednio zbiera dane z lub przesyła do urządzenia i PRZERYWA procesorowi w jego przetwarzaniu CPU OBSŁUGUJE PRZERWANIE, tzn. odłącza urządzenie jeżeli transfer jest zakończony Również sama inicjalizacja transferu może rozpocząć się od urządzenia przerwaniem; wtedy CPU podczas handshaking określa, czy jest to INPUT, czy OUTPUT 47

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 11 Wejście - wyjście Urządzenia zewnętrzne Wyjściowe monitor drukarka Wejściowe klawiatura, mysz dyski, skanery Komunikacyjne karta sieciowa, modem Urządzenie zewnętrzne

Bardziej szczegółowo

LEKCJA TEMAT: Zasada działania komputera.

LEKCJA TEMAT: Zasada działania komputera. LEKCJA TEMAT: Zasada działania komputera. 1. Ogólna budowa komputera Rys. Ogólna budowa komputera. 2. Komputer składa się z czterech głównych składników: procesor (jednostka centralna, CPU) steruje działaniem

Bardziej szczegółowo

Architektura komputera

Architektura komputera Architektura komputera Architektura systemu komputerowego O tym w jaki sposób komputer wykonuje program i uzyskuje dostęp do pamięci i danych, decyduje architektura systemu komputerowego. Określa ona sposób

Bardziej szczegółowo

Struktura i działanie jednostki centralnej

Struktura i działanie jednostki centralnej Struktura i działanie jednostki centralnej ALU Jednostka sterująca Rejestry Zadania procesora: Pobieranie rozkazów; Interpretowanie rozkazów; Pobieranie danych Przetwarzanie danych Zapisywanie danych magistrala

Bardziej szczegółowo

Urządzenia zewnętrzne

Urządzenia zewnętrzne Urządzenia zewnętrzne SZYNA ADRESOWA SZYNA DANYCH SZYNA STEROWANIA ZEGAR PROCESOR PAMIĘC UKŁADY WE/WY Centralna jednostka przetw arzająca (CPU) DANE PROGRAMY WYNIKI... URZ. ZEWN. MO NITORY, DRUKARKI, CZYTNIKI,...

Bardziej szczegółowo

Organizacja typowego mikroprocesora

Organizacja typowego mikroprocesora Organizacja typowego mikroprocesora 1 Architektura procesora 8086 2 Architektura współczesnego procesora 3 Schemat blokowy procesora AVR Mega o architekturze harwardzkiej Wszystkie mikroprocesory zawierają

Bardziej szczegółowo

Logiczny model komputera i działanie procesora. Część 1.

Logiczny model komputera i działanie procesora. Część 1. Logiczny model komputera i działanie procesora. Część 1. Klasyczny komputer o architekturze podanej przez von Neumana składa się z trzech podstawowych bloków: procesora pamięci operacyjnej urządzeń wejścia/wyjścia.

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 3 Jan Kazimirski 1 Podstawowe elementy komputera. Procesor (CPU) 2 Plan wykładu Podstawowe komponenty komputera Procesor CPU Cykl rozkazowy Typy instrukcji Stos Tryby adresowania

Bardziej szczegółowo

Architektura komputera. Cezary Bolek. Uniwersytet Łódzki. Wydział Zarządzania. Katedra Informatyki. System komputerowy

Architektura komputera. Cezary Bolek. Uniwersytet Łódzki. Wydział Zarządzania. Katedra Informatyki. System komputerowy Wstęp do informatyki Architektura komputera Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki System komputerowy systemowa (System Bus) Pamięć operacyjna ROM,

Bardziej szczegółowo

Wstęp do informatyki. System komputerowy. Magistrala systemowa. Architektura komputera. Cezary Bolek

Wstęp do informatyki. System komputerowy. Magistrala systemowa. Architektura komputera. Cezary Bolek Wstęp do informatyki Architektura komputera Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki System komputerowy systemowa (System Bus) Pamięć operacyjna ROM,

Bardziej szczegółowo

Magistrala systemowa (System Bus)

Magistrala systemowa (System Bus) Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki systemowa (System Bus) Pamięć operacyjna ROM, RAM Jednostka centralna Układy we/wy In/Out Wstęp do Informatyki

Bardziej szczegółowo

Standard transmisji równoległej LPT Centronics

Standard transmisji równoległej LPT Centronics Standard transmisji równoległej LPT Centronics Rodzaje transmisji szeregowa równoległa Opis LPT łącze LPT jest interfejsem równoległym w komputerach PC. Standard IEEE 1284 został opracowany w 1994 roku

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 12 Jan Kazimirski 1 Magistrale systemowe 2 Magistrale Magistrala medium łączące dwa lub więcej urządzeń Sygnał przesyłany magistralą może być odbierany przez wiele urządzeń

Bardziej szczegółowo

Architektura komputera. Dane i rozkazy przechowywane są w tej samej pamięci umożliwiającej zapis i odczyt

Architektura komputera. Dane i rozkazy przechowywane są w tej samej pamięci umożliwiającej zapis i odczyt Architektura komputera Architektura von Neumanna: Dane i rozkazy przechowywane są w tej samej pamięci umożliwiającej zapis i odczyt Zawartośd tej pamięci jest adresowana przez wskazanie miejsca, bez względu

Bardziej szczegółowo

Mikroprocesor Operacje wejścia / wyjścia

Mikroprocesor Operacje wejścia / wyjścia Definicja Mikroprocesor Operacje wejścia / wyjścia Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz Operacjami wejścia/wyjścia nazywamy całokształt działań potrzebnych

Bardziej szczegółowo

Budowa i zasada działania komputera. dr Artur Bartoszewski

Budowa i zasada działania komputera. dr Artur Bartoszewski Budowa i zasada działania komputera 1 dr Artur Bartoszewski Jednostka arytmetyczno-logiczna 2 Pojęcie systemu mikroprocesorowego Układ cyfrowy: Układy cyfrowe służą do przetwarzania informacji. Do układu

Bardziej szczegółowo

Pośredniczy we współpracy pomiędzy procesorem a urządzeniem we/wy. W szczególności do jego zadań należy:

Pośredniczy we współpracy pomiędzy procesorem a urządzeniem we/wy. W szczególności do jego zadań należy: Współpraca mikroprocesora z urządzeniami zewnętrznymi Urządzenia wejścia-wyjścia, urządzenia których zadaniem jest komunikacja komputera z otoczeniem (zwykle bezpośrednio z użytkownikiem). Do najczęściej

Bardziej szczegółowo

Architektura komputerów. Układy wejścia-wyjścia komputera

Architektura komputerów. Układy wejścia-wyjścia komputera Architektura komputerów Układy wejścia-wyjścia komputera Wspópraca komputera z urządzeniami zewnętrznymi Integracja urządzeń w systemach: sprzętowa - interfejs programowa - protokół sterujący Interfejs

Bardziej szczegółowo

Architektura typu Single-Cycle

Architektura typu Single-Cycle Architektura typu Single-Cycle...czyli budujemy pierwszą maszynę parową Przepływ danych W układach sekwencyjnych przepływ danych synchronizowany jest sygnałem zegara Elementy procesora - założenia Pamięć

Bardziej szczegółowo

UTK Można stwierdzić, że wszystkie działania i operacje zachodzące w systemie są sterowane bądź inicjowane przez mikroprocesor.

UTK Można stwierdzić, że wszystkie działania i operacje zachodzące w systemie są sterowane bądź inicjowane przez mikroprocesor. Zadaniem centralnej jednostki przetwarzającej CPU (ang. Central Processing Unit), oprócz przetwarzania informacji jest sterowanie pracą pozostałych układów systemu. W skład CPU wchodzą mikroprocesor oraz

Bardziej szczegółowo

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne

Spis treœci. Co to jest mikrokontroler? Kody i liczby stosowane w systemach komputerowych. Podstawowe elementy logiczne Spis treści 5 Spis treœci Co to jest mikrokontroler? Wprowadzenie... 11 Budowa systemu komputerowego... 12 Wejścia systemu komputerowego... 12 Wyjścia systemu komputerowego... 13 Jednostka centralna (CPU)...

Bardziej szczegółowo

Architektura komputerów Wykład 2

Architektura komputerów Wykład 2 Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana

Bardziej szczegółowo

Architektura systemów komputerowych. dr Artur Bartoszewski

Architektura systemów komputerowych. dr Artur Bartoszewski Architektura systemów komputerowych dr Artur Bartoszewski Układy we/wy jak je widzi procesor? Układy wejścia/wyjścia Układy we/wy (I/O) są kładami pośredniczącymi w wymianie informacji pomiędzy procesorem

Bardziej szczegółowo

WPROWADZENIE Mikrosterownik mikrokontrolery

WPROWADZENIE Mikrosterownik mikrokontrolery WPROWADZENIE Mikrosterownik (cyfrowy) jest to moduł elektroniczny zawierający wszystkie środki niezbędne do realizacji wymaganych procedur sterowania przy pomocy metod komputerowych. Platformy budowy mikrosterowników:

Bardziej szczegółowo

Spis treúci. Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1. Przedmowa... 9. Wstęp... 11

Spis treúci. Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1. Przedmowa... 9. Wstęp... 11 Księgarnia PWN: Krzysztof Wojtuszkiewicz - Urządzenia techniki komputerowej. Cz. 1 Spis treúci Przedmowa... 9 Wstęp... 11 1. Komputer PC od zewnątrz... 13 1.1. Elementy zestawu komputerowego... 13 1.2.

Bardziej szczegółowo

Komputer IBM PC niezależnie od modelu składa się z: Jednostki centralnej czyli właściwego komputera Monitora Klawiatury

Komputer IBM PC niezależnie od modelu składa się z: Jednostki centralnej czyli właściwego komputera Monitora Klawiatury 1976 r. Apple PC Personal Computer 1981 r. pierwszy IBM PC Komputer jest wart tyle, ile wart jest człowiek, który go wykorzystuje... Hardware sprzęt Software oprogramowanie Komputer IBM PC niezależnie

Bardziej szczegółowo

Wykład I. Podstawowe pojęcia. Studia Podyplomowe INFORMATYKA Architektura komputerów

Wykład I. Podstawowe pojęcia. Studia Podyplomowe INFORMATYKA Architektura komputerów Studia Podyplomowe INFORMATYKA Architektura komputerów Wykład I Podstawowe pojęcia 1, Cyfrowe dane 2 Wewnątrz komputera informacja ma postać fizycznych sygnałów dwuwartościowych (np. dwa poziomy napięcia,

Bardziej szczegółowo

Programowanie w językach asemblera i C

Programowanie w językach asemblera i C Programowanie w językach asemblera i C Mariusz NOWAK Programowanie w językach asemblera i C (1) 1 Dodawanie dwóch liczb - program Napisać program, który zsumuje dwie liczby. Wynik dodawania należy wysłać

Bardziej szczegółowo

UKŁADY MIKROPROGRAMOWALNE

UKŁADY MIKROPROGRAMOWALNE UKŁAD MIKROPROGRAMOWALNE Układy sterujące mogą pracować samodzielnie, jednakże w przypadku bardziej złożonych układów (zwanych zespołami funkcjonalnymi) układ sterujący jest tylko jednym z układów drugim

Bardziej szczegółowo

Budowa systemów komputerowych

Budowa systemów komputerowych Budowa systemów komputerowych Krzysztof Patan Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski k.patan@issi.uz.zgora.pl Współczesny system komputerowy System komputerowy składa

Bardziej szczegółowo

MIKROKONTROLERY I MIKROPROCESORY

MIKROKONTROLERY I MIKROPROCESORY PLAN... work in progress 1. Mikrokontrolery i mikroprocesory - architektura systemów mikroprocesorów ( 8051, AVR, ARM) - pamięci - rejestry - tryby adresowania - repertuar instrukcji - urządzenia we/wy

Bardziej szczegółowo

MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW

MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW MOŻLIWOŚCI PROGRAMOWE MIKROPROCESORÓW Projektowanie urządzeń cyfrowych przy użyciu układów TTL polegało na opracowaniu algorytmu i odpowiednim doborze i zestawieniu układów realizujących różnorodne funkcje

Bardziej szczegółowo

Działanie systemu operacyjnego

Działanie systemu operacyjnego Budowa systemu komputerowego Działanie systemu operacyjnego Jednostka centralna dysku Szyna systemowa (magistrala danych) drukarki pamięci operacyjnej I NIC sieci Pamięć operacyjna Przerwania Przerwania

Bardziej szczegółowo

Wstęp do informatyki. Interfejsy, urządzenia we/wy i komunikacja. Linie magistrali

Wstęp do informatyki. Interfejsy, urządzenia we/wy i komunikacja. Linie magistrali Wstęp doinformatyki Architektura interfejsów Interfejsy, urządzenia we/wy i komunikacja Dr inż. Ignacy Pardyka Akademia Świętokrzyska Kielce, 2001 Slajd 1 Slajd 2 Magistrala Linie magistrali Sterowanie

Bardziej szczegółowo

ARCHITEKTURA PROCESORA,

ARCHITEKTURA PROCESORA, ARCHITEKTURA PROCESORA, poza blokami funkcjonalnymi, to przede wszystkim: a. formaty rozkazów, b. lista rozkazów, c. rejestry dostępne programowo, d. sposoby adresowania pamięci, e. sposoby współpracy

Bardziej szczegółowo

Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2

Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2 Technika mikroprocesorowa I Studia niestacjonarne rok II Wykład 2 Literatura: www.zilog.com Z80 Family, CPU User Manual Cykle magistrali w mikroprocesorze Z80 -odczyt kodu rozkazu, -odczyt-zapis pamięci,

Bardziej szczegółowo

Podstawy techniki cyfrowej Układy wejścia-wyjścia. mgr inż. Bogdan Pietrzak ZSR CKP Świdwin

Podstawy techniki cyfrowej Układy wejścia-wyjścia. mgr inż. Bogdan Pietrzak ZSR CKP Świdwin Podstawy techniki cyfrowej Układy wejścia-wyjścia mgr inż. Bogdan Pietrzak ZSR CKP Świdwin 1 Układem wejścia-wyjścia nazywamy układ elektroniczny pośredniczący w wymianie informacji pomiędzy procesorem

Bardziej szczegółowo

Wstęp do informatyki. Architektura co to jest? Architektura Model komputera. Od układów logicznych do CPU. Automat skończony. Maszyny Turinga (1936)

Wstęp do informatyki. Architektura co to jest? Architektura Model komputera. Od układów logicznych do CPU. Automat skończony. Maszyny Turinga (1936) Wstęp doinformatyki Architektura co to jest? Architektura Model komputera Dr inż Ignacy Pardyka Slajd 1 Slajd 2 Od układów logicznych do CPU Automat skończony Slajd 3 Slajd 4 Ile jest automatów skończonych?

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW MIKROPROCESOROWYCH. dr inż. Małgorzata Langer

ARCHITEKTURA SYSTEMÓW MIKROPROCESOROWYCH. dr inż. Małgorzata Langer ARCHITEKTURA SYSTEMÓW MIKROPROCESOROWYCH część 4 dr inż. Małgorzata Langer URZĄDZENIA PERYFERYJNE sposób obsługi Tryb programowalnych I/O jest nie tylko wolny (procesor wciąż CZEKA), ale nie zawsze możliwy

Bardziej szczegółowo

LEKCJA TEMAT: Współczesne procesory.

LEKCJA TEMAT: Współczesne procesory. LEKCJA TEMAT: Współczesne procesory. 1. Wymagania dla ucznia: zna pojęcia: procesor, CPU, ALU, potrafi podać typowe rozkazy; potrafi omówić uproszczony i rozszerzony schemat mikroprocesora; potraf omówić

Bardziej szczegółowo

Architektura Systemów Komputerowych. Bezpośredni dostęp do pamięci Realizacja zależności czasowych

Architektura Systemów Komputerowych. Bezpośredni dostęp do pamięci Realizacja zależności czasowych Architektura Systemów Komputerowych Bezpośredni dostęp do pamięci Realizacja zależności czasowych 1 Bezpośredni dostęp do pamięci Bezpośredni dostęp do pamięci (ang: direct memory access - DMA) to transfer

Bardziej szczegółowo

Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1

Systemy operacyjne i sieci komputerowe Szymon Wilk Superkomputery 1 i sieci komputerowe Szymon Wilk Superkomputery 1 1. Superkomputery to komputery o bardzo dużej mocy obliczeniowej. Przeznaczone są do symulacji zjawisk fizycznych prowadzonych głównie w instytucjach badawczych:

Bardziej szczegółowo

Urządzenia wejścia-wyjścia

Urządzenia wejścia-wyjścia Urządzenia wejścia-wyjścia Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak Plan wykładu Klasyfikacja urządzeń wejścia-wyjścia Struktura mechanizmu wejścia-wyjścia (sprzętu i oprogramowania) Interakcja

Bardziej szczegółowo

organizacja procesora 8086

organizacja procesora 8086 Systemy komputerowe Procesor 8086 - tendencji w organizacji procesora organizacja procesora 8086 " # $ " % strali " & ' ' ' ( )" % *"towego + ", -" danych. Magistrala adresowa jest 20.bitowa, co pozwala

Bardziej szczegółowo

Budowa Mikrokomputera

Budowa Mikrokomputera Budowa Mikrokomputera Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Podstawowe elementy komputera Procesor Pamięć Magistrala (2/16) Płyta główna (ang. mainboard, motherboard) płyta drukowana komputera,

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 5 Jednostka Centralna Zadania realizowane przez procesor Pobieranie rozkazów Interpretowanie rozkazów Pobieranie danych Przetwarzanie danych Zapisanie danych Główne zespoły

Bardziej szczegółowo

Działanie systemu operacyjnego

Działanie systemu operacyjnego Działanie systemu operacyjnego Budowa systemu komputerowego Jednostka centralna Sterownik dysku Sterownik drukarki Sterownik sieci Szyna systemowa (magistrala danych) Sterownik pamięci operacyjnej Pamięć

Bardziej szczegółowo

Budowa komputera Komputer computer computare

Budowa komputera Komputer computer computare 11. Budowa komputera Komputer (z ang. computer od łac. computare obliczać) urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału

Bardziej szczegółowo

Podstawy Informatyki Układ sterujący

Podstawy Informatyki Układ sterujący - wersja szyta - wersja mikroprogramowana Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi - wersja szyta - wersja mikroprogramowana Plan wykładu 1 Maszyna W Lista rozkazów maszyny

Bardziej szczegółowo

Projektowanie. Projektowanie mikroprocesorów

Projektowanie. Projektowanie mikroprocesorów WYKŁAD Projektowanie mikroprocesorów Projektowanie układ adów w cyfrowych - podsumowanie Algebra Boole a Bramki logiczne i przerzutniki Automat skończony System binarny i reprezentacja danych Synteza logiczna

Bardziej szczegółowo

Sławomir Kulesza. Projektowanie automatów asynchronicznych

Sławomir Kulesza. Projektowanie automatów asynchronicznych Sławomir Kulesza Technika cyfrowa Projektowanie automatów asynchronicznych Wykład dla studentów III roku Informatyki Wersja 3.0, 03/01/2013 Automaty skończone Automat skończony (Finite State Machine FSM)

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

2. Architektura mikrokontrolerów PIC16F8x... 13

2. Architektura mikrokontrolerów PIC16F8x... 13 Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator

Bardziej szczegółowo

Przykładowe pytania DSP 1

Przykładowe pytania DSP 1 Przykładowe pytania SP Przykładowe pytania Systemy liczbowe. Przedstawić liczby; -, - w kodzie binarnym i hexadecymalnym uzupełnionym do dwóch (liczba 6 bitowa).. odać dwie liczby binarne w kodzie U +..

Bardziej szczegółowo

Programowanie Mikrokontrolerów

Programowanie Mikrokontrolerów Programowanie Mikrokontrolerów Wyświetlacz alfanumeryczny oparty na sterowniku Hitachi HD44780. mgr inż. Paweł Poryzała Zakład Elektroniki Medycznej Alfanumeryczny wyświetlacz LCD Wyświetlacz LCD zagadnienia:

Bardziej szczegółowo

Programowanie Niskopoziomowe

Programowanie Niskopoziomowe Programowanie Niskopoziomowe Wykład 3: Architektura procesorów x86 Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Pojęcia ogólne Budowa mikrokomputera Cykl

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 5 Jan Kazimirski 1 Podstawowe elementy komputera. Procesor (CPU) c.d. 2 Architektura CPU Jednostka arytmetyczno-logiczna (ALU) Rejestry Układ sterujący przebiegiem programu

Bardziej szczegółowo

Działanie i charakterystyka sterownika GE FANUC VersaMaxNano

Działanie i charakterystyka sterownika GE FANUC VersaMaxNano Działanie i charakterystyka sterownika GE FANUC VersaMaxNano Sterownik wykonuje cyklicznie program sterujący. Oprócz wykonywania programu sterującego, sterownik regularnie gromadzi dane z urządzeń wejściowych,

Bardziej szczegółowo

Wykład Mikroprocesory i kontrolery

Wykład Mikroprocesory i kontrolery Wykład Mikroprocesory i kontrolery Cele wykładu: Poznanie podstaw budowy, zasad działania mikroprocesorów i układów z nimi współpracujących. Podstawowa wiedza potrzebna do dalszego kształcenia się w technice

Bardziej szczegółowo

Architektura Systemów Komputerowych. Jednostka ALU Przestrzeń adresowa Tryby adresowania

Architektura Systemów Komputerowych. Jednostka ALU Przestrzeń adresowa Tryby adresowania Architektura Systemów Komputerowych Jednostka ALU Przestrzeń adresowa Tryby adresowania 1 Jednostka arytmetyczno- logiczna ALU ALU ang: Arythmetic Logic Unit Argument A Argument B A B Ci Bit przeniesienia

Bardziej szczegółowo

Architektura systemów komputerowych

Architektura systemów komputerowych Studia stacjonarne inżynierskie, kierunek INFORMATYKA Architektura systemów komputerowych Architektura systemów komputerowych dr Artur Bartoszewski Procesor część I 1. ALU 2. Cykl rozkazowy 3. Schemat

Bardziej szczegółowo

Sprzęt komputera - zespół układów wykonujących programy wprowadzone do pamięci komputera (ang. hardware) Oprogramowanie komputera - zespół programów

Sprzęt komputera - zespół układów wykonujących programy wprowadzone do pamięci komputera (ang. hardware) Oprogramowanie komputera - zespół programów Sprzęt komputera - zespół układów wykonujących programy wprowadzone do pamięci komputera (ang. hardware) Oprogramowanie komputera - zespół programów przeznaczonych do wykonania w komputerze (ang. software).

Bardziej szczegółowo

Układy wejścia/wyjścia

Układy wejścia/wyjścia Układy wejścia/wyjścia Schemat blokowy systemu mikroprocesorowego Mikroprocesor połączony jest z pamięcią oraz układami wejścia/wyjścia za pomocą magistrali systemowej zespołu linii przenoszącymi sygnały

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2012/2013 Wykład nr 6 (03.04.2013) Rok akademicki 2012/2013, Wykład

Bardziej szczegółowo

dr inż. Jarosław Forenc Dotyczy jednostek operacyjnych i ich połączeń stanowiących realizację specyfikacji typu architektury

dr inż. Jarosław Forenc Dotyczy jednostek operacyjnych i ich połączeń stanowiących realizację specyfikacji typu architektury Rok akademicki 2012/2013, Wykład nr 6 2/43 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Architektura potokowa RISC

Architektura potokowa RISC Architektura potokowa RISC Podział zadania na odrębne części i niezależny sprzęt szeregowe Brak nawrotów" podczas pracy potokowe Przetwarzanie szeregowe i potokowe Podział instrukcji na fazy wykonania

Bardziej szczegółowo

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).

Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania). Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów

Bardziej szczegółowo

Dodatek B. Zasady komunikacji z otoczeniem w typowych systemach komputerowych

Dodatek B. Zasady komunikacji z otoczeniem w typowych systemach komputerowych Dodatek B. Zasady komunikacji z otoczeniem w typowych systemach komputerowych B.1. Dostęp do urządzeń komunikacyjnych Sterowniki urządzeń zewnętrznych widziane są przez procesor jako zestawy rejestrów

Bardziej szczegółowo

Podstawy Projektowania Przyrządów Wirtualnych. Wykład 9. Wprowadzenie do standardu magistrali VMEbus. mgr inż. Paweł Kogut

Podstawy Projektowania Przyrządów Wirtualnych. Wykład 9. Wprowadzenie do standardu magistrali VMEbus. mgr inż. Paweł Kogut Podstawy Projektowania Przyrządów Wirtualnych Wykład 9 Wprowadzenie do standardu magistrali VMEbus mgr inż. Paweł Kogut VMEbus VMEbus (Versa Module Eurocard bus) jest to standard magistrali komputerowej

Bardziej szczegółowo

System mikroprocesorowy i peryferia. Dariusz Chaberski

System mikroprocesorowy i peryferia. Dariusz Chaberski System mikroprocesorowy i peryferia Dariusz Chaberski System mikroprocesorowy mikroprocesor pamięć kontroler przerwań układy wejścia wyjścia kontroler DMA 2 Pamięć rodzaje (podział ze względu na sposób

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2009/2010 Wykład nr 7 (15.05.2010) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Działanie systemu operacyjnego

Działanie systemu operacyjnego Działanie systemu operacyjnego Budowa systemu komputerowego I NIC Jednostka centralna Sterownik dysku Sterownik drukarki Sterownik sieci Szyna systemowa (magistrala danych) Sterownik pamięci operacyjnej

Bardziej szczegółowo

Działanie systemu operacyjnego

Działanie systemu operacyjnego Budowa systemu komputerowego Działanie systemu operacyjnego Jednostka centralna dysku Szyna systemowa (magistrala danych) drukarki pamięci operacyjnej sieci Pamięć operacyjna Przerwania Przerwania Przerwanie

Bardziej szczegółowo

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu

f we DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu DZIELNIKI I PODZIELNIKI CZĘSTOTLIWOŚCI Dzielnik częstotliwości: układ dający impuls na wyjściu co P impulsów na wejściu f wy f P Podzielnik częstotliwości: układ, który na każde p impulsów na wejściu daje

Bardziej szczegółowo

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej

Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza

Bardziej szczegółowo

Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe

Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe Zagadnienia zaliczeniowe z przedmiotu Układy i systemy mikroprocesorowe elektronika i telekomunikacja, stacjonarne zawodowe System mikroprocesorowy 1. Przedstaw schemat blokowy systemu mikroprocesorowego.

Bardziej szczegółowo

LICZNIKI PODZIAŁ I PARAMETRY

LICZNIKI PODZIAŁ I PARAMETRY LICZNIKI PODZIAŁ I PARAMETRY Licznik jest układem służącym do zliczania impulsów zerojedynkowych oraz zapamiętywania ich liczby. Zależnie od liczby n przerzutników wchodzących w skład licznika pojemność

Bardziej szczegółowo

LEKCJA. TEMAT: Funktory logiczne.

LEKCJA. TEMAT: Funktory logiczne. TEMAT: Funktory logiczne. LEKCJA 1. Bramką logiczną (funktorem) nazywa się układ elektroniczny realizujący funkcje logiczne jednej lub wielu zmiennych. Sygnały wejściowe i wyjściowe bramki przyjmują wartość

Bardziej szczegółowo

Mikroinformatyka. Koprocesory arytmetyczne 8087, 80187, 80287, i387

Mikroinformatyka. Koprocesory arytmetyczne 8087, 80187, 80287, i387 Mikroinformatyka Koprocesory arytmetyczne 8087, 80187, 80287, i387 Koprocesor arytmetyczny 100 razy szybsze obliczenia numeryczne na liczbach zmiennoprzecinkowych. Obliczenia prowadzone równolegle z procesorem

Bardziej szczegółowo

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski

Układ wykonawczy, instrukcje i adresowanie. Dariusz Chaberski Układ wykonawczy, instrukcje i adresowanie Dariusz Chaberski System mikroprocesorowy mikroprocesor C A D A D pamięć programu C BIOS dekoder adresów A C 1 C 2 C 3 A D pamięć danych C pamięć operacyjna karta

Bardziej szczegółowo

Wprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera

Wprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera Dariusz Wawrzyniak Plan wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działania systemu operacyjnego (2) Definicja systemu operacyjnego (1) Miejsce,

Bardziej szczegółowo

Wykład IV. Układy we/wy. Studia Podyplomowe INFORMATYKA Architektura komputerów

Wykład IV. Układy we/wy. Studia Podyplomowe INFORMATYKA Architektura komputerów Studia Podyplomowe INFORMATYKA Architektura komputerów Wykład IV Układy we/wy 1 Część 1 2 Układy wejścia/wyjścia Układy we/wy (I/O) są kładami pośredniczącymi w wymianie informacji pomiędzy procesorem

Bardziej szczegółowo

Projekt prostego procesora

Projekt prostego procesora Projekt prostego procesora Opracowany przez Rafała Walkowiaka dla zajęć z PTC 2012/2013 w oparciu o Laboratory Exercise 9 Altera Corporation Rysunek 1 przedstawia schemat układu cyfrowego stanowiącego

Bardziej szczegółowo

Wprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera

Wprowadzenie. Dariusz Wawrzyniak. Miejsce, rola i zadania systemu operacyjnego w oprogramowaniu komputera Dariusz Wawrzyniak Plan wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działania systemu operacyjnego (2) Miejsce, rola i zadania systemu operacyjnego

Bardziej szczegółowo

dwójkę liczącą Licznikiem Podział liczników:

dwójkę liczącą Licznikiem Podział liczników: 1. Dwójka licząca Przerzutnik typu D łatwo jest przekształcić w przerzutnik typu T i zrealizować dzielnik modulo 2 - tzw. dwójkę liczącą. W tym celu wystarczy połączyć wyjście zanegowane Q z wejściem D.

Bardziej szczegółowo

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami

Struktura i funkcjonowanie komputera pamięć komputerowa, hierarchia pamięci pamięć podręczna. System operacyjny. Zarządzanie procesami Rok akademicki 2015/2016, Wykład nr 6 2/21 Plan wykładu nr 6 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2015/2016

Bardziej szczegółowo

Systemy operacyjne. Wprowadzenie. Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak

Systemy operacyjne. Wprowadzenie. Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak Wprowadzenie Wykład prowadzą: Jerzy Brzeziński Dariusz Wawrzyniak Plan wykładu Definicja, miejsce, rola i zadania systemu operacyjnego Klasyfikacja systemów operacyjnych Zasada działania systemu operacyjnego

Bardziej szczegółowo

Sterowniki Programowalne (SP)

Sterowniki Programowalne (SP) Sterowniki Programowalne (SP) Wybrane aspekty procesu tworzenia oprogramowania dla sterownika PLC Podstawy języka funkcjonalnych schematów blokowych (FBD) Politechnika Gdańska Wydział Elektrotechniki i

Bardziej szczegółowo

Procesor ma architekturę rejestrową L/S. Wskaż rozkazy spoza listy tego procesora. bgt Rx, Ry, offset nand Rx, Ry, A add Rx, #1, Rz store Rx, [Rz]

Procesor ma architekturę rejestrową L/S. Wskaż rozkazy spoza listy tego procesora. bgt Rx, Ry, offset nand Rx, Ry, A add Rx, #1, Rz store Rx, [Rz] Procesor ma architekturę akumulatorową. Wskaż rozkazy spoza listy tego procesora. bgt Rx, Ry, offset or Rx, Ry, A add Rx load A, [Rz] push Rx sub Rx, #3, A load Rx, [A] Procesor ma architekturę rejestrową

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

Kurs Zaawansowany S7. Spis treści. Dzień 1

Kurs Zaawansowany S7. Spis treści. Dzień 1 Spis treści Dzień 1 I Konfiguracja sprzętowa i parametryzacja stacji SIMATIC S7 (wersja 1211) I-3 Dlaczego powinna zostać stworzona konfiguracja sprzętowa? I-4 Zadanie Konfiguracja sprzętowa I-5 Konfiguracja

Bardziej szczegółowo

Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola

Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola Wybrane bloki i magistrale komputerów osobistych (PC) Opracował: Grzegorz Cygan 2010 r. CEZ Stalowa Wola Ogólny schemat komputera Jak widać wszystkie bloki (CPU, RAM oraz I/O) dołączone są do wspólnych

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Tydzień 4 Tryby adresowania i formaty Tryby adresowania Natychmiastowy Bezpośredni Pośredni Rejestrowy Rejestrowy pośredni Z przesunięciem stosowy Argument natychmiastowy Op Rozkaz

Bardziej szczegółowo

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy 1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć

Bardziej szczegółowo

Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowe układy sekwencyjne. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowe układy sekwencyjne 5 grudnia 2013 Wojciech Kucewicz 2 Układy sekwencyjne Układy sekwencyjne to takie układy logiczne, których stan wyjść zależy nie tylko od aktualnego stanu wejść, lecz również

Bardziej szczegółowo

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O

Budowa komputera. Magistrala. Procesor Pamięć Układy I/O Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz

Bardziej szczegółowo