SPARQL, Named Graphs, Network Graphs
|
|
- Damian Madej
- 6 lat temu
- Przeglądów:
Transkrypt
1 Web Science & Technologies University of Koblenz Landau, Germany SPARQL, Named Graphs, Network Graphs Maciej Janik
2 SPARQL SPARQL Protocol and RDF Query Language W3C Recommendation 15 January Standard query language for RDF Native RDF knowledge bases Knowledge bases viewed as RDF via middleware Language for querying for graph patterns Includes unions, conjunctions and optional patterns No support for inserts or updates Supports extensible testing for values and constraints 2
3 SPARQL 1.1 Revision and extension Working Draft documents, : SPARQL 1.1 Query - Adds support for aggregates, subqueries, projected expressions, and negation to the SPARQL query language. SPARQL 1.1 Update - Defines an update language for RDF graphs. SPARQL 1.1 Protocol - Defines an abstract interface and HTTP bindings for a protocol to issue SPARQL Query and SPARQL Update statements against a SPARQL endpoint. SPARQL 1.1 Service Description - Defines a vocabulary and discovery mechanism for describing the capabilities of a SPARQL endpoint. SPARQL 1.1 Uniform HTTP Protocol for Managing RDF Graphs - Describes the use of the HTTP protocol for managing named RDF graphs on an HTTP server. SPARQL 1.1 Entailment Regimes - Defines conditions under which SPARQL queries can be used with entailment regimes such as RDF, RDF Schema, OWL, or RIF. SPARQL 1.1 Property Paths - Defines a more succinct way to write parts of basic graph patterns and also extend matching of triple pattern to arbitrary length paths. 3
4 Language Layer Cake Existing standards 4
5 SPARQL Query Schemas used in query PREFIX SELECT FROM WHERE { } Values to be returned Identify source data to query Triple patterns and other conditions to match the graph 5
6 SPARQL Query types SELECT returns the set of variables bound in a query pattern match CONSTRUCT returns an RDF graph constructed by substituting variables in a set of triple templates DESCRIBE returns an RDF graph that describes the resources found ASK returns whether a query pattern matches any triples or not True / False query 6
7 Basic SPARQL patterns Triple Pattern Similar to an RDF Triple subject, predicate, object Any component can be a query variable Any combination of variables in the query is allowed Matching patterns in the WHERE clause Matching conjunction of Triple Patterns Matching a triple pattern to a graph Finding bindings between variables and RDF Terms Underneath use of reasoners Infering triples originally not present in the knowledge base 7
8 Simple SPQRQL Query PREFIX foaf: < SELECT?name?page WHERE {?person foaf:page?page.?person foaf:name?name } foaf:page?page?person foaf:name?name 8
9 Query example foaf: < _:a foaf:name ". _:a foaf:homepage < _:b foaf:name Maciej Janik". _:b foaf:homepage < PREFIX foaf: < SELECT?name?page WHERE {?person foaf:homepage?page.?person foaf:name?name } Query Query Result name " Maciej Janik" page < < 9
10 Querying for blank nodes foaf: < _:a foaf:name ". _:a foaf:homepage < _:b foaf:name Maciej Janik". _:b foaf:homepage < PREFIX foaf: < SELECT?person?name?page WHERE {?person foaf:homepage?page.?person foaf:name?name } Query person name homepage Query Result _:c " < _:d Maciej Janik" < 10
11 Filters FILTER Further constrain graph patterns Applies to the whole group of triple patterns FILTER clause Support for AND and OR logic operators Extensive applications for testing literals Support for numerical operations Support for math equality operators for literals Less than equal greater than Use of regular expressions Support for datatypes defined in XSL e.g. comparison of dates, time Possible comparison of resources Equal or not equal Even possible user extensions 11
12 Filter Value Constraints dc: ex: ns: < ex:book1 dc:title "SPARQL Tutorial". ex:book1 ns:price 42. ex:book2 dc:title "The ". ex:book2 ns:price 23. PREFIX dc: < PREFIX ns: < SELECT?title?price WHERE {?x ns:price?price. FILTER?price < 30.?x dc:title?title } Query Query Result title "The " price 23 12
13 Scope of filters Filters are applied to the whole group of patterns where it appears {?x foaf:name?name.?x foaf:homepage?page. FILTER regex(?name, Steffen") } {?x foaf:name?name. FILTER regex(?name, Steffen").?x foaf:homepage?page } { FILTER regex(?name, Steffen").?x foaf:name?name.?x foaf:homepage?page } These patterns are equivalent have the same solution. 13
14 Filter regular expression foaf: < _:a foaf:name ". _:a foaf:homepage < _:b foaf:name Maciej Janik". _:b foaf:homepage < PREFIX foaf: < SELECT?name?page WHERE {?person foaf:homepage?page.?person foaf:name?name. FILTER regex(?name, Steffen") } Query Query Result name " page < 14
15 Filter regular expression foaf: < _:a foaf:name ". _:a foaf:homepage < _:b foaf:name Maciej Janik". _:b foaf:homepage < PREFIX foaf: < SELECT?name?page WHERE {?person foaf:homepage?page.?person foaf:name?name. FILTER regex(?name, i, janik") } Case insensitive Query Query Result name Maciej Janik" page < 15
16 Optional patterns OPTIONAL Include optional triple patterns to the match Optional is a pattern itself can include further constraints SELECT WHERE { OPTIONAL { } } OPTIONAL is left-associative pattern OPTIONAL { pattern } OPTIONAL { pattern } is the same as { pattern OPTIONAL { pattern } } OPTIONAL { pattern } 16
17 Query example foaf: < _:a foaf:name ". _:a foaf:homepage < _:b foaf:name Maciej Janik". _:b foaf:mbox PREFIX foaf: < SELECT?name?page WHERE {?person foaf:name?name.?person foaf:homepage?page } Query Query Result name " page < 17
18 Query example - OPTIONAL foaf: < _:a foaf:name ". _:a foaf:homepage < _:b foaf:name Maciej Janik". _:b foaf:mbox <janik@uni-koblenz.de>. PREFIX foaf: < SELECT?name?page WHERE {?person foaf:name?name. OPTIONAL (?person foaf:homepage?page) } Query Query Result name " Maciej Janik" page < 18
19 Union of graph patterns UNION Combining alternative graph patterns If more than one of the alternatives matches, all the possible pattern solutions are included in result SELECT WHERE { { pattern } UNION { pattern } } 19
20 Union of graph patterns dc10: dc11: < :book1 dc10:title "SPARQL Tutorial". :book1 dc10:creator Alice. :book2 dc11:title "The ". :book2 dc11:creator Robert. PREFIX dc10: < PREFIX dc11: < SELECT?title WHERE { {?x dc10:title?title } UNION {?x dc11:title?title } } Query title Query Result 20 SPARQL Tutorial "The "
21 Modification to the result set Result of SPARQL query can be further modified ORDER BY Sort results alphabetically / numerically by specific variable LIMIT Limit number of returned results (only top n results) OFFSET Skip n top results, and return the rest These expressions can be combined in one query 21
22 Sequencing and limiting results Results 11 to 30 sorted by name PREFIX foaf: < SELECT?name?page WHERE {?person foaf:homepage?page.?person foaf:name?name } ORDERBY?name LIMIT 20 OFFSET 10 22
23 Bound variables One of the FILTER expressions Supports testing if a variable in a query can be bound to an instance in the knowledge base Mostly used for negation as failure PREFIX foaf: < SELECT?name WHERE {?person foaf:name?name.?person foaf:knows?x. FILTER (! bound(?x)) } 23
24 Tricky negation Find people who do not know Steffen PREFIX foaf: < SELECT?name WHERE {?person foaf:name?name.?person foaf:knows?x. FILTER (?x!= Steffen ) } we know that Maciej foaf:knows Steffen Maciej foaf:knows Sergej so Maciej is still a valid answer, and we do not want it. 24
25 Negation with bound Find people who do not know Steffen now the correct way using bound expression and optional graph pattern PREFIX foaf: < SELECT?name WHERE {?person foaf:name?name. OPTIONAL {?person foaf:knows?x. FILTER (?x = Steffen ) } FILTER (! bound(?x) ) } } 25
26 Other SPARQL filter expressions isblank Testing if bounded variable is a blank node SELECT?given?family annotation WHERE {?annot dc:creator?c. OPTIONAL { dc:creator?c foaf:given?given. :_?c foaf:family?family }. foaf:given foaf:family FILTER isblank(?c) } lang Accessing the language of a literal SELECT?name?mbox WHERE {?x foaf:name?name.?x foaf:mbox?mbox. FILTER ( lang(?name) = DE ) } Alan Smith 26
27 Other SPARQL filter expressions isliteral Testing if bounded variable is a literal (not a resource) SELECT?name?mbox WHERE {?x foaf:name?name.?x foaf:mbox?mbox. :_ FILTER isliteral(?mbox) } foaf:name foaf:mbox Maciej janik@ str Converting resource URI to string for regular expression matching SELECT?name?mbox WHERE {?x foaf:name?name.?x foaf:mbox?mbox. FILTER regex(str(?mbox), "@uni-koblenz.de") } 27
28 Equal terms and same terms Check if two terms are equal or if they describe the same entity Same entity can have even different URIs, but conneced with owl:sameas term1 = term2 or sameterm(term1, term2) Returns true, if terms are of the same type (URI, literal, blank node) two terms represent URIs are equivalent two terms represent literals are equivalent two terms are bound by the same blank node 28
29 Equal terms Find people who have the same address, but use different foaf: < _:a foaf:name "Alice". _:a foaf:mbox _:b foaf:name "Ms A.. _:b foaf:mbox PREFIX foaf: < SELECT?name1?name2 WHERE {?x foaf:name?name1.?x foaf:mbox?mbox1.?y foaf:name?name2.?y foaf:mbox?mbox2. FILTER ( sameterm(mbox1,?mbox2) &&?name1!=?name2) } 29
30 User-defined functions FILTER enables using user-defined expressions PREFIX ageo: < SELECT?neighbor WHERE {?a ageo:placename Koblenz".?a ageo:location?axloc.?a ageo:location?ayloc.?b ageo:placename?neighbor.?b ageo:location?bxloc.?b ageo:location?byloc. FILTER ( ageo:distance(?axloc,?ayloc,?bxloc,?byloc) < 5 ) } Definition of user function Geometric distance between two points described by (x, y) coordinates xsd:double ageo:distance (numeric x1, numeric y1, numeric x2, numeric y2) 30
31 Querying for inferred knowledge SPARQL do not have specific constructs for accessing inferred knowledge Underlying knowledge base is responsible for supporting inference, e.g. Class hierarchy Property hierarchy Transitive or symmetric properties OWL restrictions Defining classes by unions and/or intersections Different knowledge bases can offer different level of support Same knowledge in different knowledge bases may return different results for the same query, depending on supported entailment 31
32 Query example ancestorof ancestorof daugherof sonof Alice Bob Clare ancestorof ancestorof = owl:transitiveproperty + union ( inverse(daugherof), inverse(sonof) ) Find ancestors of Alice Query SELECT?x WHERE?x ancestorof Alice Result Clare Bob 32
33 CONSTRUCT queries Special type of query to construct a new RDF graph from the existing knowledge base PREFIX CONSTRUCT { graph pattern definition of triples } WHERE { constraint triple patterns, filters, etc } 33
34 Constructing graphs foaf: < _:a foaf:givenname "Alice". _:a foaf:family_name "Hacker". _:b foaf:firstname "Bob". _:b foaf:surname "Hacker". vcard: < _:v1 vcard:n _:x. _:x vcard:givenname "Alice". _:x vcard:familyname "Hacker". _:v2 vcard:n _:z. _:z vcard:givenname "Bob". _:z vcard:familyname "Hacker". Query: PREFIX foaf: < PREFIX vcard: < CONSTRUCT {?x vcard:n _:v. _:v vcard:givenname?gname. _:v vcard:familyname?fname } WHERE { {?x foaf:firstname?gname } UNION {?x foaf:givenname?gname }. {?x foaf:surname?fname } UNION {?x foaf:family_name?fname } } 34
35 ASK queries True / false queries checks if given set of triple patterns have at least one match in knowledge base Does not include ORDER BY, LIMIT or foaf: < _:a foaf:name "Alice". _:a foaf:homepage < _:b foaf:name "Bob". _:b foaf:mbox <mailto:bob@work.example> PREFIX foaf: < ASK {?x foaf:name "Alice" }.?x foaf:mbox?y } Answer: NO YES 35
36 DESCRIBE queries Returns a graph that includes description of specific resources Results of DESCRIBE query reveal metainformation not returned by standard SELECT query Type of bounded resources Types of relationships used in query pattern Exact description of resources is determined by the query service No common standard of description Can even include information about related resources 36
37 DESCRIBE query example PREFIX ent: < DESCRIBE?x WHERE {?x ent:employeeid "1234" foaf: vcard: exorg: rdf: owl: < _:a exorg:employeeid "1234" ; foaf:mbox_sha1sum "ABCD1234" ; vcard:n [ vcard:family "Smith" ; vcard:given "John" ]. foaf:mbox_sha1sum rdf:type owl:inversefunctionalproperty 37
38 Named Graphs RDF data stores may hold multiple RDF graphs: record information about each graph queries that involve information from more than one graph default graph (does not have a name) multiple named graphs (identified by URI reference) direct implementation for reification Accessing named graphs FROM access knowledge in default graph FROM NAMED access information from specific named graph 38
39 Ad hoc-reification (direct) Kant examined Jonas in Introduction to CS and gave him grade 1.0 s:jonas/#me s:examinee s:kant/#me s:examiner s:exam1 s:in s:introcs s:grade
40 Named Graph as reification Kant examined Jonas in Introduction to CS and gave him grade 1.0 s:jonasgraph s:jonas/#me s:examinedin s:kant/#me s:examinedby s:introcs 1.0 s:grade s:stud2graph 40
41 Named graph examples # Default graph dc: < < dc:publisher "Bob". < dc:publisher "Alice". # Graph: foaf: < _:a foaf:name "Bob". _:a foaf:mbox <mailto:bob@oldcorp.example.org>. # Graph: foaf: < _:a foaf:name "Alice". _:a foaf:mbox <mailto:alice@work.example.org>. SELECT... FROM NAMED < FROM NAMED < 41
42 Relationships between named graphs # Default foaf: < _:y foaf:name "Alice". _:y foaf:mbox <mailto:alice@work.example.org>. _:y foaf:mbox <mailto:alice@oldcorp.org>. # Graph: foaf: < _:a foaf:name Alice". _:a foaf:mbox <mailto:alice@work.example.org>. # Graph: foaf: < _:a foaf:name "Alice". _:a foaf:mbox <mailto:alice@oldcorp.org>. 42
43 Accessing named graphs # Graph: _:a foaf:name Alice". _:a foaf:mbox <mailto:alice@work.example.org>. # Graph: _:a foaf:name "Alice". _:a foaf:mbox <mailto:alice@oldcorp.org>. SELECT?src?mbox WHERE { GRAPH?src {?x foaf:name Alice.?x foaf:mbox?mbox } } src Result: mbox mailto:alice@work.example.org mailto:alice@oldcorp.org 43
44 Restricting access by graph name # Graph: _:a foaf:name Alice". _:a foaf:mbox <mailto:alice@work.example.org>. # Graph: _:a foaf:name "Alice". _:a foaf:mbox <mailto:alice@oldcorp.org>. PREFIX ex: < SELECT?mbox WHERE { GRAPH ex:alice {?x foaf:mbox?mbox } } Result: mbox mailto:alice@work.example.org 44
45 Web Science & Technologies University of Koblenz Landau, Germany Networked Graphs Simon Schenk and. Networked Graphs: A Declarative Mechanism for SPARQL Rules, SPARQL Views and RDF Data Integration on the Web, Proceedings of the 17th International World Wide Web Conference, WWW2008, Bejing, China
46 Networked Graphs Basic Idea: Define RDF graphs extensionally by listing statements or intensionally using views possible to have view within a view (recursion) Integrate with existing SemWeb infrastructure Easy exchange Use existing data sources 46
47 Mashups Mashing up is the generation of new content or services by reusing and recombining existing content. Examples: Combination of multiple newsfeeds into one Find appartment in Mountain View and display results in Google Maps 47
48 Mashups and Dominating Mashup- Modell: Hack-and-Hope Disadvantages: Screen-Scraping No agreed-upon data model Sometimes one cannot help: Google Web Service Amazon Web Service Dominating - Model: Crawl-Integrate-and-Reason Disadvantages: Data are stale, Data integration is not declarative, but given by programmes with only implicit semantics Lack of scalability of one server Access rights: Not all data may be copied Provenance of data becomes unclear 48
49 DBLP 49
50 RDF Mashups Declarative, dynamic semantic mashups facilitate the generation of mashups :DBLP :SteffenFOAF :NetGraphs dc:creator :Simon :NetGraphs dc:creator :Steffen :Steffen foaf:name CONSTRUCT {:Simon foaf:knows?x} :Steffen foaf:currentproject K-Space FROM DBLP :K-Space foaf:fundedby :EU WHERE {?p dc:creator :Simon. :SimonFOAF?p dc:creator?x.} :Simon foaf:name Simon Schenk :Simon foaf:currentproject K-Space :K-Space foaf:fundedby :EU :Simon foaf:knows :Steffen :SimonFOAF g:definedby CONSTRUCT {:Simon... 50
51 2 Networked Graphs The pessimistic IT student: If I know someone and I do not indicate anything else then the Person is male. :Steffen hascoauthor :Andrea :Andrea :type :male :Andrea :type :female :SimonFOAF knowspeople :Steffen hascoauthor :Andrea :Andrea :type :female :Andrea :type :male :SteffenFOAF The optimistic IT student: If I know someone and I do not indicate anything else then the Person is female. 51
52 Networked RDF Graphs Im : Recursion and Negation unavoidable Solution: Mapping of RDF Graphs and SPARQL Queries to logic programmes Evaluation using three valued Well-founded Semantics or four valued stable model semantics Non-monotonic logics with fixed point semantics Conflicts with OWL Tarski-Semantik 52
53 Mashups and Dominating Mashup-Modell: Hack-and-Hope Disadvantages: Screen-Scraping No agreed-upon data model Sometimes one cannot help: Google Web Service Amazon Web Service Dominating -Model: Crawl-Integrate-and-Reason Disadvantages: Data are stale, Data integration is not declarative, but given by programmes with only implicit semantics Lack of scalability of one server Access rights: Not all data may be copied Provenance of data becomes unclear Improvements: Reuse of data (telefone numbers!) instead of screen-scraping fresh views Definition of data integration may be exchanged as graph Evaluation possible on sources or on client sides Networked, dynamic 53
54 Networked Graphs Formally: G N =(n, G, [G N 1,..., GN n ], v) G: RDF Graph G N i : Networked Graphs v: view definition 54
55 Motivation scenario #me Simon Schenk <is web> dc:creator [ foaf:name Simon Schenk ] Simon Schenk A SPARQL Semantics Based on Datalog <is Simon Schenk web> Networked Graphs?x a isweb:thesisproject. NOT?p past:project?x <is web> /theses 55
56 Networked Graphs Syntax Based on named graphs and SPARQL foaf.rdf { n #me foaf:name Simon Schenk. #me foaf:depiction. foaf.rdf ng:definedby CONSTRUCT {?paper dc:creator #me; dc:title?title; rdfs:seealso?cr } FROM DBLP FROM ISWEB G v [G N 1, GN 2 ] WHERE {?paper dc:creator dblp:person/352836; dc:title?title OPTIONAL {?paper dblp:crossref?cr}. v?paper dc:date?date} ^^ng:query. foaf.rdf ng:definedby CONSTRUCT... ^^ng:query.... } 56
57 Networked Graphs Semantics (sketch) Graph G N depends on 1 GN, if 2 GN is defined by a view, 1 which has G N in it's dataset. 2 Interdependence Set of G N : contains G N and all graphs in the transitive closure of the depends on relation for G N. Semantics of an interdependece set: Iteratively evaluate all views in all graphs until a fixpoint is reached. Problems: Need to prove termination Need to deal with negation KI07: Map SPARQL to non-recursive Datalog with negation Networked Graphs can be mapped to Datalog with negation Evaluated under Well Founded Semantics (Gelder et al.) 57
58 Web Science & Technologies University of Koblenz Landau, Germany SPARQL Protocol
59 SPARQL protocol Protocol is used to send queries and results over the network Query HTTP binding SOAP binding XML result binding 59
60 SPARQL query binding HTTP binding GET /sparql/?query=<encoded query> HTTP/1.1 Host: User-agent: neon-sparql-client/0.1 SOAP binding <?xml version="1.0" encoding="utf-8"?> <soapenv:envelope xmlns:soapenv=" xmlns:xsd=" xmlns:xsi=" <soapenv:body> <query-request xmlns=" <query>select?x?y WHERE {?x isrelatedto?y}</query> </query-request> </soapenv:body> </soapenv:envelope> 60
61 SPARQL result XML binding <?xml version="1.0"?> <sparql xmlns=" <head> <variable name="name"/> <variable name="mbox"/> <link href="metadata.rdf"/> </head> <results> <result>... </result> <result>... </result>... </results> </sparql> 61
62 Binding types inside result <result> <binding name="x"> <bnode>r2</bnode> </binding> <binding name="hpage"> <uri> </binding> <binding name="name"> <literal xml:lang="en">bob</literal> </binding> <binding name="age"> <literal datatype=" </literal> </binding> <binding name="mbox"> </binding> </result> 62
63 SPARQL results XML binding <?xml version="1.0"?> <sparql xmlns=" <head> <variable name= name"/> <variable name= mbox"/> </head> <results> <result> <binding name= name">... </binding> <binding name= mbox">... </binding> </result> <result> <binding name= name">... </binding> <binding name= mbox">... </binding> </result>... </results> </sparql> 63
64 Web Science & Technologies University of Koblenz Landau, Germany SPARQL extensions (partially) discussed in the SPARQL-2 working group
65 Some examples of SPARQL extensions Aggregate functions COUNT, SUM, MIN, MAX, GROUP_BY, HAVING Paths expressions and property chains Extend SPARQL beyond set of individual connected triples, allow variable length PSPARQL SPARQLeR, SPARQ2L Imprecise matching Use similarity measures to access triples Similar idea as Soudex in relational database isparql 65
66 Summary SPARQL Standard query language for RDF SELECT, CONSTRUCT, ASK, DESCRIBE Extensive filters, optional and alternative patterns Protocol for queries and results Based on triples model (subject-predicate-object) No logic inference in language, only in underlying knowledge base Named graphs Separate or specialized knowledge Networked graphs Presenting (recursive) views of RDF data Connecting external graphs over the network 66
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards
INSPIRE Conference 2010 INSPIRE as a Framework for Cooperation Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards Elżbieta Bielecka Agnieszka Zwirowicz
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
Web NDL Authorities SPARQL API Specication
Web NDL Authorities SPARQL API Specication National Diet Library of Japan Created: March 31th, 2014 Revised: March 31th, 2018 Contents 1 The Outline of the Web NDLA SPARQL API 2 1.1 SPARQL query API....................................
Zmiany techniczne wprowadzone w wersji Comarch ERP Altum
Zmiany techniczne wprowadzone w wersji 2018.2 Copyright 2016 COMARCH SA Wszelkie prawa zastrzeżone Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Wprowadzenie do psql i SQL. Język komend psql. Podstawy instrukcji SELECT
Wprowadzenie do psql i SQL 1 Bazy Danych Wykład p.t. Wprowadzenie do psql i SQL. Język komend psql. Podstawy instrukcji SELECT Antoni Ligęza ligeza@agh.edu.pl http://galaxy.uci.agh.edu.pl/~ligeza Wykorzystano
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Instrukcja obsługi User s manual
Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Reprezentacja wiedzy: SPARQL, DBpedia, inżynieria wiedzy i integracja modeli danych
Reprezentacja wiedzy: SPARQL, DBpedia, inżynieria wiedzy i integracja modeli danych Wojciech Jaworski Instytut Informatyki Uniwersytet Warszawski Wojciech Jaworski (MIM UW) SPARQL, DBpedia, inżynieria
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
POLITYKA PRYWATNOŚCI / PRIVACY POLICY
POLITYKA PRYWATNOŚCI / PRIVACY POLICY TeleTrade DJ International Consulting Ltd Sierpień 2013 2011-2014 TeleTrade-DJ International Consulting Ltd. 1 Polityka Prywatności Privacy Policy Niniejsza Polityka
Cel szkolenia. Konspekt
Cel szkolenia About this CourseThis 5-day course provides administrators with the knowledge and skills needed to deploy and ma Windows 10 desktops, devices, and applications in an enterprise environment.
!850016! www.irs.gov/form8879eo. e-file www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C,
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)
Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition) Robert Respondowski Click here if your download doesn"t start automatically Wojewodztwo Koszalinskie:
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc
Raport bieżący: 44/2018 Data: 2018-05-23 g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc Temat: Zawiadomienie o zmianie udziału w ogólnej liczbie głosów w Serinus Energy plc Podstawa prawna: Inne
XML. 6.6 XPath. XPath is a syntax used for selecting parts of an XML document
6 XML 6.6 XPath What is XPath? XPath is a syntax used for selecting parts of an XML document The way XPath describes paths to elements is similar to the way an operating system describes paths to files
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
Strona główna > Produkty > Systemy regulacji > System regulacji EASYLAB - LABCONTROL > Program konfiguracyjny > Typ EasyConnect.
Typ EasyConnect FOR THE COMMISSIONING AND DIAGNOSIS OF EASYLAB COMPONENTS, FSE, AND FMS Software for the configuration and diagnosis of controllers Type TCU3, adapter modules TAM, automatic sash device
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Język zapytań SPARQL
Język zapytań SPARQL Mikołaj Morzy Agnieszka Ławrynowicz Instytut Informatyki Poznań, rok akademicki 2013/2014 TSiSS 1 Stos języków Sieci Semantycznej Język zapytań SPARQL TSiSS 2 Turtle Turtle (Terse
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates
Application Layer Functionality and Protocols
Application Layer Functionality and Protocols Network Fundamentals Chapter 3 Version 4.0 1 Application Layer Functionality and Protocols Network Fundamentals Rozdział 3 Version 4.0 2 Objectives Define
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Sprawozdanie z laboratorium 2: Modeling knowledge with Resource Description Framework (RDF)
Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki KATEDRA AUTOMATYKI Sprawozdanie z laboratorium 2: Modeling knowledge with Resource
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Mirosław Kupczyk miron@man.poznan.pl. Pozna, PCSS, 17-18.01.2005. Szkolenie: "Architektura i uytkowanie klastra Linux IA-64"
Mirosław Kupczyk miron@man.poznan.pl $ %! " # & ' Wzgldy historyczne Naturalna ewolucja systemów luno ze sob powizanych znajdujcych si w jednej oraganizacji, ch współdzielenia zasobów obliczeniowych, danych,
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)
Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Click here if your download doesn"t start automatically Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2) Emilka szuka swojej gwiazdy / Emily
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
OSI Data Link Layer. Network Fundamentals Chapter 7. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1
OSI Data Link Layer Network Fundamentals Chapter 7 Version 4.0 1 Warstwa Łącza danych modelu OSI Network Fundamentals Rozdział 7 Version 4.0 2 Objectives Explain the role of Data Link layer protocols in
Oferta przetargu. Poland Tender. Nazwa. Miejscowość. Warszawa Numer ogłoszenia. Data zamieszczenia 2011-09-28. Typ ogłoszenia
Poland Tender Oferta przetargu Nazwa Dostawa oprogramowania komputerowego umożliwiającego tworzenie opracowań statystycznych obrazujących gospodarowanie Zasobem Własności Rolnej Skarbu Państwa Miejscowość
Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)
Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition) Click here if your download doesn"t start automatically
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
archivist: Managing Data Analysis Results
archivist: Managing Data Analysis Results https://github.com/pbiecek/archivist Marcin Kosiński 1,2, Przemysław Biecek 2 1 IT Research and Development Grupa Wirtualna Polska 2 Faculty of Mathematics, Informatics
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz
Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 http://www.junit.org/ Zofia Kruczkiewicz 1. Aby utworzyć test dla jednej klasy, należy kliknąć prawym przyciskiem myszy w oknie Projects na wybraną
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Healthix Consent Web-Service Specification
Healthix Consent Web-Service Specification Version 0.1 Healthix, Inc. 40 Worth St., 5 th Floor New York, NY 10013 1-877-695-4749 Ext. 1 healthix.org Heatlhix Consent Web-Services Specification Page 1 of
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
Web Services. Bartłomiej Świercz. Łódź, 2 grudnia 2005 roku. Katedra Mikroelektroniki i Technik Informatycznych. Bartłomiej Świercz Web Services
Web Services Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź, 2 grudnia 2005 roku Wstęp Oprogramowanie napisane w różnych językach i uruchomione na różnych platformach może wykorzystać
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.
The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Eplain your answer, write in complete sentences. 1. Find the derivative of the functions y 7 (b) (a) ( ) y t 1 + t 1 (c)
Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction
ECE 114-9 Arrays -II Dr. Z. Aliyazicioglu Electrical & Computer Engineering Electrical & Computer Engineering 1 Outline Introduction Arrays Declaring and Allocation Arrays Examples Using Arrays Passing
Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX
UNIWERSYTETU BIBLIOTEKA IEGO UNIWERSYTETU IEGO Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX 1. Make a new connection Open the System Preferences by going to the Apple menu
Configuring and Testing Your Network
Configuring and Testing Your Network Network Fundamentals Chapter 11 Version 4.0 1 Konfigurowanie i testowanie Twojej sieci Podstawy sieci Rozdział 11 Version 4.0 2 Objectives Define the role of the Internetwork
Gradient Coding using the Stochastic Block Model
Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=
Język zapytań SPARQL. Agnieszka Ławrynowicz. Instytut Informatyki Politechniki Poznańskiej Poznań, 2018
Język zapytań SPARQL Agnieszka Ławrynowicz Instytut Informatyki Politechniki Poznańskiej Poznań, 2018 Język zapytań SPARQL Stos języków Sieci Semantycznej Turtle Turtle (Terse RDF Triple Language ): serializacja
MaPlan Sp. z O.O. Click here if your download doesn"t start automatically
Mierzeja Wislana, mapa turystyczna 1:50 000: Mikoszewo, Jantar, Stegna, Sztutowo, Katy Rybackie, Przebrno, Krynica Morska, Piaski, Frombork =... = Carte touristique (Polish Edition) MaPlan Sp. z O.O Click
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
Camspot 4.4 Camspot 4.5
User manual (addition) Dodatek do instrukcji obsługi Camspot 4.4 Camspot 4.5 1. WiFi configuration 2. Configuration of sending pictures to e-mail/ftp after motion detection 1. Konfiguracja WiFi 2. Konfiguracja
Planning and Cabling Networks
Planning and Cabling Networks Network Fundamentals Chapter 10 Version 4.0 1 Projektowanie okablowania i sieci Podstawy sieci Rozdział 10 Version 4.0 2 Objectives Identify the basic network media required
OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1
OSI Transport Layer Network Fundamentals Chapter 4 Version 4.0 1 OSI Transport Layer Network Fundamentals Rozdział 4 Version 4.0 2 Objectives Explain the role of Transport Layer protocols and services
Checklist for the verification of the principles of competitiveness refers to Polish beneficiaries only
Checklist for the verification of the principles of competitiveness refers to Polish beneficiaries only Prepared for the purpose of verification of the tenders of value: Equal or exceeding 50 000 PLN net
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
Internet Semantyczny. Podstawy SPARQL
Internet Semantyczny Podstawy SPARQL Co to jest SPARQL? Skrót SPARQL to akronim od SPARQL Protocol and RDF Query Language. Jest to język zapytań dla formatu RDF nie ogranicza się jednak do RDF wiele innego
Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie - nabycie lub zbycie znacznego pakietu akcji
Raport bieżący: 41/2018 Data: 2018-05-22 g. 08:01 Skrócona nazwa emitenta: SERINUS ENERGY plc Temat: Przekroczenie progu 5% głosów w SERINUS ENERGY plc Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie -
European Crime Prevention Award (ECPA) Annex I - new version 2014
European Crime Prevention Award (ECPA) Annex I - new version 2014 Załącznik nr 1 General information (Informacje ogólne) 1. Please specify your country. (Kraj pochodzenia:) 2. Is this your country s ECPA
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
Auschwitz and Birkenau Concentration Camp Records, 1940 1945 RG 15.191M
Auschwitz and Birkenau Concentration Camp Records, 1940 1945 RG 15.191M United States Holocaust Memorial Museum Archive 100 Raoul Wallenberg Place SW Washington, DC 20024 2126 Tel. (202) 479 9717 Email:
Logika rozmyta typu 2
Logika rozmyta typu 2 Zbiory rozmyte Funkcja przynależności Interwałowe zbiory rozmyte Funkcje przynależności przedziałów Zastosowanie.9.5 Francuz Polak Niemiec Arytmetyka przedziałów Operacje zbiorowe
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
Systemy wbudowane. Poziomy abstrakcji projektowania systemów HW/SW. Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji
Systemy wbudowane Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji Poziomy abstrakcji projektowania systemów HW/SW 12/17/2011 S.Deniziak:Systemy wbudowane 2 1 Model czasu 12/17/2011 S.Deniziak:Systemy
DOI: / /32/37
. 2015. 4 (32) 1:18 DOI: 10.17223/1998863 /32/37 -,,. - -. :,,,,., -, -.,.-.,.,.,. -., -,.,,., -, 70 80. (.,.,. ),, -,.,, -,, (1886 1980).,.,, (.,.,..), -, -,,,, ; -, - 346, -,.. :, -, -,,,,,.,,, -,,,
SNP SNP Business Partner Data Checker. Prezentacja produktu
SNP SNP Business Partner Data Checker Prezentacja produktu Istota rozwiązania SNP SNP Business Partner Data Checker Celem produktu SNP SNP Business Partner Data Checker jest umożliwienie sprawdzania nazwy
Polska Szkoła Weekendowa, Arklow, Co. Wicklow KWESTIONRIUSZ OSOBOWY DZIECKA CHILD RECORD FORM
KWESTIONRIUSZ OSOBOWY DZIECKA CHILD RECORD FORM 1. Imię i nazwisko dziecka / Child's name... 2. Adres / Address... 3. Data urodzenia / Date of birth... 4. Imię i nazwisko matki /Mother's name... 5. Adres
www.irs.gov/form8879eo. e-file www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes,"
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
OSI Physical Layer. Network Fundamentals Chapter 8. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1
OSI Physical Layer Network Fundamentals Chapter 8 Version 4.0 1 Warstwa fizyczna modelu OSI Network Fundamentals Rozdział 8 Version 4.0 2 Objectives Explain the role of Physical layer protocols and services
OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.
OBWIESZCZENIE MINISTRA INFRASTRUKTURY z dnia 18 kwietnia 2005 r. w sprawie wejścia w życie umowy wielostronnej M 163 zawartej na podstawie Umowy europejskiej dotyczącej międzynarodowego przewozu drogowego
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
LEARNING AGREEMENT FOR STUDIES
LEARNING AGREEMENT FOR STUDIES The Student First and last name(s) Nationality E-mail Academic year 2014/2015 Study period 1 st semester 2 nd semester Study cycle Bachelor Master Doctoral Subject area,
Baptist Church Records
Baptist Church Records The Baptist religion was a religious minority in Poland, making it more difficult to know when and where records of this religion might be available. In an article from Rodziny,
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to students Tworzenie ankiety Udostępnianie Analiza (55) Wyniki
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Embeded systems Architektura układów PSoC (Cypress) Możliwości bloków cyfrowych i analogowych Narzędzia
EXCEL PL PROGRAMOWANIE PDF
EXCEL PL PROGRAMOWANIE PDF ==> Download: EXCEL PL PROGRAMOWANIE PDF EXCEL PL PROGRAMOWANIE PDF - Are you searching for Excel Pl Programowanie Books? Now, you will be happy that at this time Excel Pl Programowanie
Stargard Szczecinski i okolice (Polish Edition)
Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz Click here if your download doesn"t start automatically Stargard Szczecinski i okolice (Polish Edition) Janusz Leszek Jurkiewicz
RDF (Resource Description Framework)
RDF (Resource Description Framework) Agnieszka Ławrynowicz 2009.09.29 Podstawowe elementy Zasoby (ang. resources) identyfikowane za pomocą URI, ale URI niekoniecznie wskazuje zasób odpowiadają węzłom w
SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION
SUPPLEMENTARY INFORMATION FOR THE LEASE LIMIT APPLICATION 1. Applicant s data Company s name (address, phone) NIP (VAT) and REGON numbers Contact person 2. PPROPERTIES HELD Address Type of property Property
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to teachers
1 z 7 2015-05-14 18:32 Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to teachers Tworzenie ankiety Udostępnianie
Extraclass. Football Men. Season 2009/10 - Autumn round
Extraclass Football Men Season 2009/10 - Autumn round Invitation Dear All, On the date of 29th July starts the new season of Polish Extraclass. There will be live coverage form all the matches on Canal+