Fizyka czastek: detektory

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka czastek: detektory"

Transkrypt

1 Fizyka czastek: detektory prof. dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Wykład VII Eksperymenty nieakceleratorowe Pomiary neutrin

2 Neutrina Przekrój czynny Przekrój czynny na oddziaływanie neutrin z materi a jest niewyobrażalnie mały. Dla neutrin o energii rzędu 1 MeV σ νn cm 2 = b Odpowiada to średniej drodze swobodnej w materii rzędu lat świetlnych!!! Przekrój czynny na oddziaływanie neutrin z materia rośnie z energia, ale tylko liniowo... Badanie neutrin możliwe jest tylko w oparciu o bardzo intensywnego źródła... Słońce, promieniowanie kosmiczne, reaktory jadrowe, oddziaływania czastek... oraz ogromne detektory... A.F.Żarnecki Wykład VII 1

3 Neutrina słoneczne Produkcja neutrin Słońce jest nie tylko źródłem promieniowania elektromagnetycznego, ale też niezwykle intensywnym źródłem neutrin elektronowych. Ogromna większość neutrin pochodzi z reakcji p p: p + p D + e + + ν e (E ν 0.42 MeV ) jednak wyższe energie uzyskuja neutrina z reakcji pep : p + e + p D + ν e (E ν 1.44 MeV ) A.F.Żarnecki Wykład VII 2

4 Neutrina słoneczne Produkcja neutrin Dalsze reakcje syntezy 3 He, 4 He, 7 Be i 7 Li prowadza do emisji dodatkowych neutrin. Neutrina z przemiany 7 Be 7 4 Be + e 7 3 Li + ν e maja jednak energie poniżej 1 MeV A.F.Żarnecki Wykład VII 3

5 Neutrina słoneczne Produkcja neutrin Źródłem wysokoenergetycznych neutrin jest przemiana 8 B 8 5 B 8 4 Be + e+ + ν e w której energia emitowanych neutrin dochodzi do 15 MeV Tylko te neutrina moga być mierzone w detektorach czastek elementarnych. Np. w Super-Kamiokande mierzymy neutrina o E ν > 5 7 MeV... A.F.Żarnecki Wykład VII 4

6 Widmo energii Widmo energii neutrin elektronowych produkowanych w reakcjach jadrowych na słońcu Strumień neutrin o energiach poniżej kilku MeV może być zmierzony metodami radiochemicznymi: mierzymy produkcję powstajacych izotopów: Neutrina słoneczne ν e + Cl Ar + e (eksperyment Homestake) ν e + Ga Gr + e (SAGE, GALLEX, GNO) Tylko neutrina elektronowe! Ga Cl woda A.F.Żarnecki Wykład VII 5

7 Eksperyment Super-Kamiokande Neutrina Japonia, w starej kopalni, 1 km pod góra Kamioka, komora o wysokości 40 m i średnicy 40 m, wypełniona woda fotopowielaczy (50 cm średnicy!) rejestruje przechodzace czastki rejestrowane jest promieniowanie Czerenkowa Jak można mierzyć tak małe sygnały ( 5MeV ) w tak ogromnym detektorze? A.F.Żarnecki Wykład VII 6

8 Super-Kamiokande A.F.Żarnecki Wykład VII 7

9 Napełnianie A.F.Żarnecki Wykład VII 8

10 Super-Kamiokande Tło Mimo ogromnej masy detektora oczekiwano jedyni około 30 przypadków oddziaływań neutrin słonecznych na dobę. Przypadki skrajnie niskich energii (rzędu 10 MeV) - konieczność redukcji tła. Główne tło: naturalna promieniotwórczość. Stężenie radonu w powietrzu w kopalnie 3000Bq/m 3 hermetyczne drzwi, intensywna wentylacja powietrzem zewnętrznym cała komora wyłożona spejcalna platikowa osłona zabezpieczajac a przed przenikanie radonu ze skał hermetyczny zbiornik, dopełniony specjalnie oczyszczonym powietrzem (3mBq/m 3 ) pod ciśnieniem wyższym od atmosferycznego intensywne filtrowanie wody (ok. 35 t/h, czyli cały detektor w ok. 2 miesiace) A.F.Żarnecki Wykład VII 9

11 Super-Kamiokande Wyzwalanie Średni poziom sygnału z pojedynczego fotopowielacza: 3.5 khz. Układ wyzwalania wymagał przyjścia sygnału z wielu PMT w oknie czasowym 200 ns. Średnia oczekiwana liczba zliczeń: ok. 8. Różne progi wyzwalania: High Energy (HE) - 33 PMT Low Energy (LE) - 29 PMT Super Low Energy (SLE) - 24 PMT Trigger efficiency LE trigger SLE trigger (May,97) (Sep,99) (Sep,00) Reconstructed energy (MeV) Próg wyzwalania mógł być obniżany w miarę oczyszczania detektora True electron total energy (MeV) A.F.Żarnecki Wykład VII 10

12 Super-Kamiokande Typowy rozkład rekonstruowanych wierzchołków po wstepnej selekcji przypadków niskiej energii (próg 5 MeV). Z (cm) Wyzwalanie 1000 Wyraz ny wkład naturalnej promieniotwórczos ci s cian komory. Przerywana linia: fiducial volume obszar z którego wybieramy przypadki do dalszej analizy A.F.Z arnecki Wykład VII x R (cm ) 11

13 Super-Kamiokande Kalibracja Fotony przebiegaja w wodzie do 60 m - atenuacja światła musi być dokładnie znana i monitorowana. Można ja wyznaczyć z obserwacji sygnału z rozpadu zatrzymujacych się mionów. Około 1500 kalibracyjnych rozpadów dziennie. Wystarcza do bardzo dokładnego monitorowania zmian w skali tygodni. Water transparency (m) Mean effective hits (a) (b) Average hits = /- 0.5 percent +/- 1.0 percent Year A.F.Żarnecki Wykład VII 12

14 Super-Kamiokande Kalibracja Kalibracja energetyczna: kluczowa przy niskich energiach. Główna metoda: własny akcelerator (!) 5-16 MeV (zakres energii mierzonych neutrin) LINAC D2 MAGNET D1 MAGNET 1300 cm E +12m C A TOWER FOR INSERTING BEAM PIPE D3 MAGNET Wiazka wprowadzana pionowo w kilku wybranych punktach. BEAM PIPE 0m F D B 4200 cm -12m H I G Z -12m -8m -4m 4000 cm Y X A.F.Żarnecki Wykład VII 13

15 Kalibracja Wyniki kalibracji przy pomocy akceleratora Super-Kamiokande Rozdzielczość energetyczna 18.4% przy 5 MeV 14.2% przy 10 MeV 11.3% przy 20 MeV Tłumaczac to na parametry kalorymetru σ E 1.2% E[GeV ] 7.6% A.F.Żarnecki Wykład VII 14

16 Super-Kamiokande Kalibracja Wyniki kalibracji przy pomocy akceleratora Skala energii Rozdzielczość (MC - LINAC)/LINAC (a) (b) (MC - LINAC)/LINAC (a) (b) Energy (MeV) Energy (MeV) A.F.Żarnecki Wykład VII 15

17 Super-Kamiokande Kalibracja Wada akceleratora: tylko wybrane pozycje i jeden kierunek wiazki (pionowy). Epoxy Feedthru PVC Endcap O-Ring Gas Reservoir Element Drugie narzędzie: generator DT - źródło neutronów. 3 H + 2 H 4 He + n Spacer Transformer Oil Fill Stainless Housing Pulse Forming Electronics V source Vacuum Envelope Ion Source Anode Ion Source Magnet Izotropowy strumień neutronów 14.2 MeV. 150 cm LeakSensor Accelerator Head V accel Accelerator Anode Target W oddziaływaniu z tlenem (w wodzie): n + 16 O p + 16 N Stainless Endcap Al Endcone 16.5 cm O-Ring V target A.F.Żarnecki Wykład VII 16

18 Super-Kamiokande Kalibracja Rozpady 16 N dokładnie znane: 66%: 6.129MeV γ MeV β (a) (b) (c) %: MeV β E =14.2 MeV n O(n,p) N m n n n n n n 16 N Time since Fire (sec) Rozpady 16 N mierzone po wyciagnięciu generatora A.F.Żarnecki Wykład VII 17

19 Super-Kamiokande Kalibracja Mierzone rozkłady dla przypadków kalibracyjnych 16 N: Energii Położenia wierzchołka Energy (MeV) x-vertex (cm) y-vertex (cm) z-vertex (cm) z-vertex (cm) z-vertex (cm) x-vertex (cm) y-vertex (cm) A.F.Żarnecki Wykład VII 18

20 Super-Kamiokande Kalibracja Skala energii nie zależna od pozycji i kata emisji elektronu (MC-DATA)/DATA (MC-DATA)/DATA z-position (cm) Azimuthal Angle (degrees) (MC-DATA)/DATA (MC-DATA)/DATA r-position (cm) cos(zenith Angle) A.F.Żarnecki Wykład VII 19

21 Super-Kamiokande Neutrino elektronowe Przypadek ν e n e p Krótki zasięg elektronu - cienki pierścień Neutrino mionowe Przypadek ν µ n µ p Długa droga w wodzie - gruby pierścień. Czasami widzimy też opóźniony sygnał e z rozpadu µ. A.F.Żarnecki Wykład VII 21

22 Particle identification Single Cherenkov ring electron-like event Super-Kamiokande Run 3013 Event :19:39:51 Inner: 1763 hits, 4003 pe Outer: 3 hits, 5 pe (in-time) Trigger ID: 0x03 D wall: cm FC e-like, p = MeV/c Time(ns) < >1028 Single Cherenkov ring muonlike event amiokande vent :30 hits, 7763 pe, 4 pe (in-time) x03 cm p = MeV/c Outer detector (no signal) Color: timing Size: pulse height Times (ns) Times (ns) Particle ID log( L) = p. e.( obs' d) θ < 70 deg σ p. e. p. e. e ( expected) or µ 2

23 Particle ID results Cosmic ray e from decay number of events / 25.5 kton yr 100 DATA µ-like e-like MC µ-like e-like CC ν µ 25 NC CC ν e PID Parameter =99%

24 Obserwacja neutrin słonecznych Super-Kamiokande Oddziaływania neutrin słonecznych możemy odróżnić od oddziaływań neutrin atmosferycznych mierzac kat rozproszenia elektronu względem kierunku od słońca: A.F.Żarnecki Wykład VII 22

25 Super-Kamiokande Zdjęcie Słońca w świetle neutrin rzeczywisty rozmiar Słońca 1 2 pixla A.F.Żarnecki Wykład VII 23

26 Super-Kamiokande Obserwacja neutrin słonecznych Oddziaływania neutrin słonecznych możemy odróżnić od oddziaływań innych neutrin mierzac kat emisji elektronu względem kierunku od słońca Zmierzono: Φ (B) S = 2.4 ± s cm 2 Przewidywania: Φ (B) S = 5.3 ± s cm 2 Defeicyt neutrin słonecznych był już mierzony w latach 60 XX w.! Ale zrozumieliśmy to dopiero w wieku XXI. A.F.Żarnecki Wykład 12 17

27 Super-Kamiokande Neutrina słoneczne obserwowane w SK pochodza głównie z reakcji typu CC ν e + e e + ν e Możliwa jest też detekcja ν e poprzez proces typu NC: ν e + e ν e + e Ale proces typu NC możliwy jest też dla innych neutrin, np: ν µ + e ν µ + e ν e e W + e ν e ν e e Z o e ν e przekrój czynny 5 razy mniejszy... νµ ν µ e Z o e (także dla ν τ ) Pomiar Super-Kamiokande: Φ SK Φ νe ( Φ νµ + Φ ντ ) A.F.Żarnecki Wykład VII 24

28 SNO Eksperyment SNO (Sudbury Neutrino Observatory) ogromny zbiornik wypełniony 7000 t wody (H 2 0) w środku kula wypełniona 1000 t ciężkiej wody (D 2 0) promieniowanie Czerenkowa mierzone przez ok fotopowielaczy. całość umieszczona na głębokości ponad 2000 m A.F.Żarnecki Wykład VII 25

29 SNO A.F.Żarnecki Wykład VII 26

30 Fotopowielacze A.F.Żarnecki Wykład VII 27

31 Przypadek A.F.Żarnecki Wykład VII 28

32 Detekcja neutrin SNO Jak w SK możemy zmierzyć sygnał pochodzacy z rozpraszania neutrin na elektronach: ν X + e ν X + e (ES) Φ νe ( ) Φ νµ + Φ ντ informacja o wszystkich typach neutrin Zastosowanie ciężkiej wody umożliwia dodatkowo pomiar rozpraszania na deuterze: ν e e ν µ ν µ D (pn) ν e + D p + p + e (CC) Φ νe informacja o neutrinach elektronowych W + p p D (pn) ν X + D p + n + ν X (NC) Φ νe + Φ νµ + Φ ντ informacja o wszystkich neutrinach Z o n p A.F.Żarnecki Wykład VII 29

33 SNO Wyniki Wkłady od poszczególnych procesów można rozdzielić na podstawie mierzonych rozkładów energii i kata rozproszenia: Events per 500 kev (c) CC 100 Bkgd NC + bkgd neutrons 0 ES Teff (MeV) 20 Events per 0.05 wide bin 160 (a) CC ES 20 NC + bkgd neutrons 0 Bkgd cos θ A.F.Żarnecki Wykład VII 30

34 Wyniki ( Phase I - D 2 0) Z dopasowania uzyskujemy (w jednostkach 10 6 cm 2 s 1 ): Φ CC = 1.76 ± 0.05 ± 0.09 = Φ νe Φ ES = 2.39 ± 0.24 ± 0.12 = Φ νe + ε(φ νµ + Φ ντ ) (SK : 2.32 ± 0.09) Φ NC = 5.09 ± 0.44 ± 0.46 = Φ νe + Φ νµ + Φ ντ Przewidywania SSM Φ SSM (ν e ) = 5.15 ± 0.95 SNO s -1 ) cm -2 6 (10 φ µτ Dobra zgodność dla całkowitego strumienia neutrin. W miejsce brakujacych ν e obserwujemy ν µ i ν τ SNO φ ES Φ(ν µ + ν τ ) = 3.41 ± 0.45 ± Φν e SNO φ CC SNO φ NC φ SSM φ e ÔÓ ÖÛÒÓµ A.F.Żarnecki Wykład VII 31 6 (10-2 cm -1 s )

35 SNO Pomiar procesów NC Największy bład statystyczny ma pomiar strumienia w procesie NC. Identyfikacja tych przypadków wymaga pomiaru niskoenergetycznych neutronów: ν X + D p + n + ν X Eksperyment SNO próbował to zrobić na 3 sposoby: Phase I ( ): pomiar oddziaływań neutronów z D 2 O n + d t + γ E γ = 6.3MeV Phase II ( ): pomiar oddziaływań neutronów z jadrami chloru n + 35 Cl 36 Cl + n γ Eγ = 8.6MeV Phase III ( ): pomiar przy użyciu dedykowanych liczników A.F.Żarnecki Wykład VII 32

36 SNO Phase II Oddziaływanie z jadrami chloru stało się możliwe gdy w roku 2001 w dektorze SNO do wody... dosypano soli. Jadra chloru maja dużo większy przekrój czynny na wychwyt neutronu - ponad dwukrotnie podniosła się efektywność rejestracji przypadków typu NC. mniejszy bład statystyczny w pomiarze całkowitego strumienia neutrin A.F.Żarnecki Wykład VII 33

37 SNO Wyniki (Phase I + Phase II) Z łacznego dopasowania (w jednostkach 10 6 cm 2 s 1 ): Φ CC = 1.68 ± 0.06 ± 0.09 = Φ νe Φ ES = 2.35 ± 0.22 ± 0.15 = Φ νe + ε(φ νµ + Φ ντ ) (SK : 2.32 ± 0.09) Φ NC = 4.94 ± 0.21 ± 0.36 = Φ νe + Φ νµ + Φ ντ Przewidywania SSM (nowe) Φ SSM (ν e ) = 5.82 ± 1.34 A.F.Żarnecki Wykład VII 34

38 Phase III Pomiar neutronów przy pomocy dedykowanych liczników. SNO Liczniki gazowe: mieszanka 3 He : CF 4. n + 3 He p + t Pojedynczy licznik: 2-3 m. 36 strun z licznikami rozmieszczonych na siatce 1 1m 2 A.F.Żarnecki Wykład VII 35

39 Phase III Wyniki kalibracji SNO A.F.Żarnecki Wykład VII 36

40 SNO Wyniki (Phase III) Wyniki dopasowania (w jednostkach 10 6 cm 2 s 1 ): Φ CC = 1.67 ± 0.09 = Φ νe Φ ES = 1.77 ± 0.26 = Φ νe + ε(φ νµ + Φ ντ ) (SK : 2.32 ± 0.09) Φ NC = 5.54 ± 0.48 = Φ νe + Φ νµ + Φ ντ Przewidywania SSM (nowe) Φ SSM (ν e ) = 5.69 ± 0.91 A.F.Żarnecki Wykład VII 37

41 Neutrino Physics at Reactors Next - Discovery and precision measurement of θ 13 Daya Bay Double Chooz Reno Precision measurement of Δm12 2. Evidence for oscillation First observation of reactor antineutrino disappearance Nobel Prize to Fred Reines at UC Irvine 1980s & 1990s - Reactor neutrino flux measurements in U.S. and Europe First observation of (anti)neutrinos Chooz Chooz KamLAND Past Reactor Experiments Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France Karsten Heeger, Univ. of Wisconsin EWNP Symposium, March 8, 2012 Savannah River 55 years of liquid scintillator detectors a story of varying baselines... 2

42 Daya Bay, Chiny A.F.Żarnecki Wykład 12 32

43 Measuring θ13 with Reactor Experiments Near-Far Concept νe νe,x νe,x 1.1 near distance L ~ 1.5 km far Absolute Reactor Flux Largest uncertainty in previous measurements N osc /N no_osc θ 13 Δm 2 13 Δm 2 23 Relative Measurement Removes absolute uncertainties! First proposed by L. A. Mikaelyan and V.V. Sinev, Phys. Atomic Nucl (2000) detector 1 detector Baseline (km) far/near ν e ratio target mass distances efficiency oscillation deficit Karsten Heeger, Univ. of Wisconsin EWNP Symposium, March 8,

44 Daya Bay Antineutrino Detection ν e + p e + + n 0.3 b + p D + γ (2.2 MeV) (delayed) 49,000 b + Gd Gd* Gd + γ s (8 MeV) (delayed) prompt+delayed coincidence provides distinctive signature Prompt positron: carries antineutrino energy E e+ E ν 0.8 MeV Delayed neutron capture: tags antineutrino signal Events/0.25 MeV Prompt Energy Signal Data, DYB-AD1 MC Events/0.05 MeV Delayed Energy Signal Data, DYB-AD MC ~30μs ~8 MeV Prompt energy (MeV) Karsten Heeger, Univ. of Wisconsin Delayed energy (MeV) EWNP Symposium, March 8,

45 Anti-neutrino Detector (AD) Three zones modular structure: I. target: Gd-loaded scintillator -catcher: normal scintillator III. buffer shielding: oil PMTs/module Two optical reflectors at the top and the bottom, Photocathode coverage increased from 5.6% to 12% Target: 20 t, 1.6m -catcher: 20t, 45cm Buffer: 40t, 45cm Total weight: ~110 t

46 Two active cosmic-muon veto s Water Cerenkov: Eff.>97% RPC Muon tracker: Eff. > 88% Muon Veto Detector Water Cerenkov detector RPCs High purity de-ionized water in pools also for shielding First stage water production in hall 4 Local water re-circulation & purification 4 layers/module 54 modules/near hall, 81 modules/far hall 2 telescope modules/hall Water Cerenkov detector Two layers, separated by Tyvek/PE/Tyvek film PMTs for near halls; PMTs for the far hall

47 Two ADs Installed in Hall

48 Hall 1(two ADs) Started the Operation on Aug. 15,

49 Automatic Calibration System Three Z axis: One at the center For time evolution, energy scale, nonlinearity One at the edge For efficiency, space response One in the -catcher For efficiency, space response 3 sources for each z axis: LED for T 0, gain and relative QE 68 Ge ( MeV s) for positron threshold & non-linearity 241 Am- 13 C + 60 Co ( MeV s) For neutron capture time, For energy scale, response function, Once every week: 3 axis, 5 points in Z, 3 sources

50 Trigger Performance Threshold for a hit: AD & pool: ¼ PE Trigger thresholds: AD: ~ N HIT =45, E tot = ~ 0.4 MeV Inner pool: N HIT =6 Outer pool: N HIT =7 (8 for far hall) RPC: 3/4 layers in each module Trigger rate(eh1) AD singles rate: >0.4MeV, ~ 280Hz >0.7MeV, ~ 60Hz Inner pool rate: ~170 Hz Outer pool rate: ~ 230 Hz

51 Event Reconstruction: Energy Calibration PMT gain calibration No. of PEs in an AD 60 Co at the center raw energies, time dependence corrected different for different ADs 60 Co at different R & Z to obtain the correction function, space dependence corrected same for all the ADs 60 Co at center ~% level residual non-uniformities

52 Flashers: Imperfect PMTs Neutrinos Flashers Spontaneous light emission by PMT Topology: a hot PMT + near-by PMTs and opposite PMTs ~ 5% of PMT, 5% of event Rejection: pattern of fired PMTs Quadrant = Q3/(Q2+Q4) MaxQ = maxq/sumq Inefficiency to neutrinos: 0.024% 0.006%(stat) Contamination: < 0.01% 20

53 Pre-selection Neutrino Event Selection Reject Flashers Reject Triggers within (-2 μs, 200 μs) to a tagged water pool muon Neutrino event selection Multiplicity cut Prompt-delayed pairs within a time interval of 200 μs No triggers(e > 0.7MeV) before the prompt signal and after the delayed signal by 200 μs Muon veto 1s after an AD shower muon 1ms after an AD muon 0.6ms after an WP muon 0.7MeV < E prompt < 12.0MeV 6.0MeV < E delayed < 12.0MeV 1μs < Δt e +-n < 200μs

54 Event Signature and Backgrounds Signature: Prompt: e +, E: 1-10 MeV, Delayed: n, E: 2.2 MeV@H, 8 Gd Capture time: 28 s in 0.1% Gd-LS Backgrounds Uncorrelated: random coincidence of n & nn from U/Th/K/Rn/Co in LS, SS, PMT, Rock, n from -n, -capture, -spallation in LS, water & rock Correlated: p e e n Fast neutrons: promptn scattering, delayed n capture 8He/9Li: prompt decay, delayed n capture Am-C source: prompt rays, delayed n capture -n: 13 C(α,n) 16 O

55 Accidental Backgrounds: Cross Checks Prompt-delayed distance distribution. Check the fraction of prompt-delayed pair with distance>2m Off-window coincidence measure the accidental background Results in agreement within 1%. EH1 AD1 EH2 AD1 EH3 AD1 Uncertainty: < 1%

56 Fast Neutrons Extend the prompt energy spectrum to high energy by relax the prompt energy cut Fit the energy spectrum in the [12MeV, 100MeV] range, and estimate backgrounds in the [0.7MeV, 12MeV] region Take a zero-order or first order polynomial fit, and take their differences as systematics

57 Backgrounds 8 He/ 9 Li Cosmic produced 9 Li/ 8 He in LS -decay + neutron emitter 8 He/ 9 Li ) = 171.7ms/257.2ms 8 He/ 9 Li, Br(n) = 12%/48%, 9 Li dominant Production rate follow E 0.74 power law Measurement: Time-since-last-muon fit 9 Li yield Improve the precision by reducing the muon rate: Select only muons with an energy deposit >1.8MeV within a [10us, 200us] window Issue: possible inefficiency of 9 Li Results w/ and w/o the reduction is studied Error follows NIM A564 (2006)471

58 Uncertainty Summary For near/far oscillation, only uncorrelated uncertainties are used. Largest systematics are smaller than far site statistics (~1%) Influence of uncorrelated reactor systematics reduced (~1/20) by far vs. near measurement. Karsten Heeger, Univ. of Wisconsin EWNP Symposium, March 8,

59 Side-by-side Comparison Expected ratio of neutrino events from AD1 and AD2: Measured ratio: (stat) The ratio is not 1 because of target mass, baseline, etc. This final check shows that systematic errors are under control

60 Far vs. Near Comparison Compare measured rates and spectra Entries / 0.25MeV 800 Far hall Near halls (scaled) M n are the measured rates in each detector. Weights α i,β i are determined from baselines and reactor fluxes. Far / Near (scaled) No oscillation Best Fit Prompt energy (MeV) R = ± (stat) ± (syst) Clear observation of far site deficit (~6%). Spectral distortion consistent with oscillation.* * Caveat: Spectral systematics not fully studied; θ 13 value from shape analysis is not recommended. Karsten Heeger, Univ. of Wisconsin EWNP Symposium, March 8,

61 Rate Analysis / N expected N detected Estimate θ 13 using measured rates in each detector EH1 EH2 χ σ σ σ sin 2 2θ EH3 Uses standard χ 2 approach. Far vs. near relative measurement. [Absolute rate is not constrained.] Consistent results obtained by independent analyses, different reactor flux models Weighted Baseline [km] sin 2 2θ 13 = ± (stat) ± (syst) sin 2 2θ 13 = 0 excluded at 5.2σ Karsten Heeger, Univ. of Wisconsin EWNP Symposium, March 8,

62 Oscylacje neutrin Najnowsze wyniki marzec-kwiecień 2012 Eksperyment Daya Bay jako pierwszy potwierdził ponad wszelka watpliwość oscylacje między 1 i 3 generacja neutrin. Zmierzony kat mieszania : sin θ 13 = ± różny od zera (efekt na poziomie 5.2σ) Tym samym poznaliśmy już wszystkie katy mieszania neutrin θ 12 z neutrin słonecznych θ 23 z neutrin atmosferycznych A.F.Żarnecki Wykład 12 36

Neutrina (2) Elementy fizyki czastek elementarnych. Wykład VIII

Neutrina (2) Elementy fizyki czastek elementarnych. Wykład VIII Neutrina (2) Wykład VIII Neutrina słoneczne Wyniki Super-Kamiokande Eksperyment SNO Eksperyment Kamland Podsumowanie Elementy fizyki czastek elementarnych Przypomnienie Wyniki LSND Zmierzono przypadki

Bardziej szczegółowo

Neutrina. Elementy fizyki czastek elementarnych. Wykład VIII. Oddziaływania neutrin Neutrina atmosferyczne

Neutrina. Elementy fizyki czastek elementarnych. Wykład VIII. Oddziaływania neutrin Neutrina atmosferyczne Neutrina Wykład VIII Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrina słoneczne Eksperyment SNO Neutrino elektronowe

Bardziej szczegółowo

Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13

Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13 Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13 v Przypomnienie wyniku eksperymentu KamLAND - weryfikującego oscylacje neutrin słonecznych v Formuły na prawdopodobieństwo disappearance antyneutrin

Bardziej szczegółowo

Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS)

Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS) Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS) Kilka interesujących faktów Każdy człowiek wysyła dziennie

Bardziej szczegółowo

Neutrina (2) Elementy fizyki czastek elementarnych. Wykład IX

Neutrina (2) Elementy fizyki czastek elementarnych. Wykład IX Neutrina (2) Wykład IX Elementy fizyki czastek elementarnych Oscylacje neutrin atmosferycznych i słonecznych Eksperyment K2K Eksperyment Minos Eksperyment Kamland Perspektywy badań neutrin Neutrina atmosferyczne

Bardziej szczegółowo

Neutrina. Fizyka I (B+C) Wykład XXVII:

Neutrina. Fizyka I (B+C) Wykład XXVII: Neutrina Fizyka I (B+C) Wykład XXVII: Budowa materii - przypomnienie Deficyt neutrin słonecznych Zagadka neutrin atmosferycznych z SuperKamiokande Model bryłowy neutrin Oscylacje neutrin Wyniki SNO i KamLand

Bardziej szczegółowo

Neutrina. Fizyka I (B+C) Wykład XXIV:

Neutrina. Fizyka I (B+C) Wykład XXIV: Neutrina Fizyka I (B+C) Wykład XXIV: Budowa materii - przypomnienie Deficyt neutrin słonecznych Zagadka neutrin atmosferycznych z SuperKamiokande Model bryłowy neutrin Oscylacje neutrin Wyniki SNO i KamLand

Bardziej szczegółowo

Neutrina. Wszechświat Czastek Elementarnych. Wykład 12. prof. dr hab. Aleksander Filip Żarnecki

Neutrina. Wszechświat Czastek Elementarnych. Wykład 12. prof. dr hab. Aleksander Filip Żarnecki Neutrina Wykład 12 Neutrina i ich własności Źródła neutrin Pomiary neutrin Oscylacje neutrin prof. dr hab. Aleksander Filip Żarnecki Wszechświat Czastek Elementarnych Neutrina Promieniotwórczość Odkryta

Bardziej szczegółowo

Neutrina. Wstęp do Fizyki I (B+C) Wykład XXII:

Neutrina. Wstęp do Fizyki I (B+C) Wykład XXII: Neutrina Wstęp do Fizyki I (B+C) Wykład XXII: Budowa materii - przypomnienie Neutrina atmosferyczne Neutrina słoneczne Model bryłowy neutrin Oscylacje neutrin i Budowa materii Świat codzienny zbudowany

Bardziej szczegółowo

Zagadki neutrinowe. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande

Zagadki neutrinowe. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande Zagadki neutrinowe Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande Deficyt neutrin słonecznych - w eksperymentach radiochemicznych - w wodnych detektorach Czerenkowa Super-Kamiokande,

Bardziej szczegółowo

Masywne neutrina w teorii i praktyce

Masywne neutrina w teorii i praktyce Instytut Fizyki Teoretycznej Uniwersytet Wrocławski Wrocław, 20 czerwca 2008 1 Wstęp 2 3 4 Gdzie znikają neutrina słoneczne (elektronowe)? 4p 4 2He + 2e + + 2ν e 100 miliardów neutrin przez paznokieć kciuka

Bardziej szczegółowo

Wszechświat czastek elementarnych

Wszechświat czastek elementarnych Wykład 2: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2: Detekcja Czastek 27 lutego 2008 p.1/36 Wprowadzenie Istota obserwacji w świecie czastek

Bardziej szczegółowo

Zagadki neutrinowe. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande

Zagadki neutrinowe. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande Zagadki neutrinowe Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande Deficyt neutrin słonecznych - w eksperymentach radiochemicznych - w wodnych detektorach Czerenkowa Super-Kamiokande,

Bardziej szczegółowo

Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne

Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Neutrina Wykład VII Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrino elektronowe Zaproponowane

Bardziej szczegółowo

Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne

Neutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Neutrina Wykład VII Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrino elektronowe Zaproponowane

Bardziej szczegółowo

Fizyka neutrin. Źródła neutrin Neutrina reliktowe Geoneutrina Neutrina z wybuchu Supernowych Neutrina słoneczne. Deficyt neutrin słonecznych

Fizyka neutrin. Źródła neutrin Neutrina reliktowe Geoneutrina Neutrina z wybuchu Supernowych Neutrina słoneczne. Deficyt neutrin słonecznych Fizyka neutrin Źródła neutrin Neutrina reliktowe Geoneutrina Neutrina z wybuchu Supernowych Neutrina słoneczne - reakcje termojądrowe źródłem neutrin słonecznych - widmo energetyczne - metody detekcji

Bardziej szczegółowo

Naturalne źródła neutrin, czyli neutrina sa

Naturalne źródła neutrin, czyli neutrina sa Naturalne źródła neutrin, czyli neutrina sa wszędzie Tomasz Früboes Zakład Czastek i Oddziaływań Fundamentalnych 16 stycznia 2006 Proseminarium fizyki jadra atomowego i czastek elementarnych Tomasz Früboes

Bardziej szczegółowo

Podstawy fizyki cząstek III. Eksperymenty nieakceleratorowe Krzysztof Fiałkowski

Podstawy fizyki cząstek III. Eksperymenty nieakceleratorowe Krzysztof Fiałkowski Podstawy fizyki cząstek III Eksperymenty nieakceleratorowe Krzysztof Fiałkowski Zakres fizyki cząstek a eksperymenty nieakceleratorowe Z relacji nieoznaczoności przestrzenna zdolność rozdzielcza r 0.5fm

Bardziej szczegółowo

Oscylacje neutrin. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande

Oscylacje neutrin. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande Oscylacje neutrin Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande Deficyt neutrin słonecznych - w eksperymentach radiochemicznych - w wodnych detektorach Czerenkowa Super-Kamiokande, SNO

Bardziej szczegółowo

Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23

Metamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23 Metamorfozy neutrin Katarzyna Grzelak Zakład Czastek i Oddziaływań Fundamentalnych IFD UW Sympozjum IFD 2008 6.12.2008 K.Grzelak (UW ZCiOF) 1 / 23 PLAN Wprowadzenie Oscylacje neutrin Eksperyment MINOS

Bardziej szczegółowo

Maria Krawczyk, Wydział Fizyki UW. Neutrina i ich mieszanie

Maria Krawczyk, Wydział Fizyki UW. Neutrina i ich mieszanie Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 12 21.12.2010 Maria Krawczyk, Wydział Fizyki UW Neutrina i ich mieszanie Neutrinos: Ghost Particles of the Universe F. Close polecam wideo i audio

Bardziej szczegółowo

Łukasz Świderski. Scyntylatory do detekcji neutronów 1/xx

Łukasz Świderski. Scyntylatory do detekcji neutronów 1/xx Seminarium ZSJ UW Scyntylatory do detekcji neutronów 1/xx Scyntylatory do detekcji neutronów Łukasz Świderski Departament Technik Jądrowych i Aparatury ul. Sołtana 7 Scyntylatory do detekcji neutronów

Bardziej szczegółowo

Zderzenia relatywistyczne

Zderzenia relatywistyczne Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak

Bardziej szczegółowo

Odkrycie oscylacji neutrin

Odkrycie oscylacji neutrin Odkrycie oscylacji neutrin v Neutrina słoneczne v Neutrina atmosferyczne Solar neutrinos Solar neutrinos (another other place mystery where of missing are neutrinos) missing From neutrinos to cosmic sources,

Bardziej szczegółowo

Neutrina mają masę - Nagroda Nobla 2015 z fizyki. Tomasz Wąchała Zakład Neutrin i Ciemnej Materii (NZ16)

Neutrina mają masę - Nagroda Nobla 2015 z fizyki. Tomasz Wąchała Zakład Neutrin i Ciemnej Materii (NZ16) Neutrina mają masę - Nagroda Nobla 2015 z fizyki Tomasz Wąchała Zakład Neutrin i Ciemnej Materii (NZ16) Plan Laureaci: T. Kajita i A. B. McDonald oraz nagrodzone publikacje Krótka historia neutrina i hipoteza

Bardziej szczegółowo

Neutrina. Źródła neutrin: NATURALNE Wielki Wybuch gwiazdy atmosfera Ziemska skorupa Ziemska

Neutrina. Źródła neutrin: NATURALNE Wielki Wybuch gwiazdy atmosfera Ziemska skorupa Ziemska Neutrina X Źródła neutrin.. Zagadki neutrinowe. Neutrina słoneczne. Neutrina atmosferyczne. Eksperymenty neutrinowe. Interpretacja pomiarów. Oscylacje neutrin. 1 Neutrina Źródła neutrin: NATURALNE Wielki

Bardziej szczegółowo

Reactor ν e Disappearance at KamLAND

Reactor ν e Disappearance at KamLAND Reactor ν e Disappearance at KamLAND Jason Detwiler 1 The KamLAND Collaboration K.Eguchi, S.Enomoto, K.Furuno, J. Goldman, H.Hanada, H.Ikeda, K.Ikeda, K.Inoue, K.Ishihara, W.Itoh, T.Iwamoto, T.Kawaguchi,

Bardziej szczegółowo

Neutrina i ich oscylacje. Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin

Neutrina i ich oscylacje. Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin Neutrina i ich oscylacje Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin Neutrina wokół nas n n n γ ν ν 410 cm 340 cm 10 10 nbaryon 3 3 Pozostałe z wielkiego wybuchu: Słoneczne Już obserwowano

Bardziej szczegółowo

Słońce obserwowane z kopalni Kamioka, Toyama w Japonii

Słońce obserwowane z kopalni Kamioka, Toyama w Japonii Jak zobaczyć Słońce zkopalni? Ewa Rondio, CERN/IPJ Warsaw CERN, 16 kwietnia 2010. plan wykladu co chcemy zobaczyć, jakie cząstki mają szanse jaką metodą należy patrzeć patrzeć dlaczego takie eksperymenty

Bardziej szczegółowo

Projekt poszukiwania neutrin sterylnych w eksperymencie z krótką bazą przy użyciu detektora BOREXINO

Projekt poszukiwania neutrin sterylnych w eksperymencie z krótką bazą przy użyciu detektora BOREXINO Projekt poszukiwania neutrin sterylnych w eksperymencie z krótką bazą przy użyciu detektora BOREXINO Marcin Misiaszek Instytut Fizyki, Uniwersytet Jagielloński Astrofizyka Cząstek w Polsce, 3-6 Marca,

Bardziej szczegółowo

Identyfikacja cząstek

Identyfikacja cząstek Określenie masy i ładunku cząstek Pomiar prędkości przy znanym pędzie e/ µ/ π/ K/ p czas przelotu (TOF) straty na jonizację de/dx Promieniowanie Czerenkowa (C) Promieniowanie przejścia (TR) Różnice w charakterze

Bardziej szczegółowo

Zderzenia relatywistyczne

Zderzenia relatywistyczne Zderzenia relatywistyczne Fizyka I (B+C) Wykład XVIII: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia nieelastyczne Zderzenia elastyczne - czastki

Bardziej szczegółowo

Analiza oscylacji oraz weryfikacje eksperymentalne

Analiza oscylacji oraz weryfikacje eksperymentalne Analiza oscylacji oraz weryfikacje eksperymentalne Formalizm oscylacji 3 zapachy Analiza oscylacji neutrin atmosferycznych Analiza oscylacji neutrin słonecznych Weryfikacja oscylacji neutrin słonecznych

Bardziej szczegółowo

Przyszłość polskiej fizyki neutrin

Przyszłość polskiej fizyki neutrin Przyszłość polskiej fizyki neutrin Agnieszka Zalewska Instytut Fizyki Jądrowej PAN im. H.Niewodniczańskiego W imieniu Polskiej Grupy Neutrinowej (Katowice, Kraków, Warszawa, Wrocław) (D.Kiełczewska, J.Kisiel,

Bardziej szczegółowo

Oddziaływania podstawowe

Oddziaływania podstawowe Oddziaływania podstawowe grawitacyjne silne elektromagnetyczne słabe 1 Uwięzienie kwarków (quark confinement). Przykład działania mechanizmu uwięzienia: Próba oderwania kwarka d od neutronu (trzy kwarki

Bardziej szczegółowo

Jak się tego dowiedzieliśmy? Przykład: neutrino

Jak się tego dowiedzieliśmy? Przykład: neutrino Jak się tego dowiedzieliśmy? Przykład: neutrino Przypomnienie: hipoteza neutrina Pauli 30 Przesłanki: a) w rozpadzie β widmo energii elektronu ciągłe od 0 do E max (dla α, γ dyskretne) b) jądra przed-

Bardziej szczegółowo

Projekt SOX w poszukiwaniu neutrin sterylnych i nowych oddziaływań

Projekt SOX w poszukiwaniu neutrin sterylnych i nowych oddziaływań Projekt SOX w poszukiwaniu neutrin sterylnych i nowych oddziaływań Marcin Misiaszek Instytut Fizyki UJ 28/03/2014 Seminarium IFD UW Warszawa BOREXINO detektor i osiągnięcia Oscylacje neutrin czy wszystko

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

Title. Tajemnice neutrin. Justyna Łagoda. obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań

Title. Tajemnice neutrin. Justyna Łagoda. obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań Title Tajemnice neutrin Justyna Łagoda obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań Cząstki i oddziaływania 3 generacje cząstek 2/3-1/3 u d c s t b kwarki -1 0 e νe µ νµ

Bardziej szczegółowo

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów

Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Detekcja promieniowania elektromagnetycznego czastek naładowanych i neutronów Marcin Palacz Środowiskowe Laboratorium Ciężkich Jonów UW Marcin Palacz Warsztaty ŚLCJ, 21 kwietnia 2009 slide 1 / 30 Rodzaje

Bardziej szczegółowo

Oddziaływania elektrosłabe

Oddziaływania elektrosłabe Oddziaływania elektrosłabe X ODDZIAŁYWANIA ELEKTROSŁABE Fizyka elektrosłaba na LEPie Liczba pokoleń. Bardzo precyzyjne pomiary. Obserwacja przypadków. Uniwersalność leptonów. Mieszanie kwarków. Macierz

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 11 Zastosowania fizyki jądrowej w medycynie Medycyna nuklearna Medycyna nuklearna - dział medycyny zajmujący się bezpiecznym zastosowaniem izotopów

Bardziej szczegółowo

Wszechświata. Piotr Traczyk. IPJ Warszawa

Wszechświata. Piotr Traczyk. IPJ Warszawa Ciemna Strona Wszechświata Piotr Traczyk IPJ Warszawa Plan 1)Ciemna strona Wszechświata 2)Z czego składa się ciemna materia 3)Poszukiwanie ciemnej materii 2 Ciemna Strona Wszechświata 3 Z czego składa

Bardziej szczegółowo

Neutrina najbardziej tajemnicze cząstki we Wszechświecie

Neutrina najbardziej tajemnicze cząstki we Wszechświecie Neutrina najbardziej tajemnicze cząstki we Wszechświecie Katarzyna Grzelak i Magdalena Posiadała-Zezula Zakład Cząstek i Oddziaływań Fundamentalnych Wydział Fizyki UW Kampus Ochota 18.06.2016 Wstęp Część

Bardziej szczegółowo

Czy neutrina mogą nam coś powiedzieć na temat asymetrii między materią i antymaterią we Wszechświecie?

Czy neutrina mogą nam coś powiedzieć na temat asymetrii między materią i antymaterią we Wszechświecie? Czy neutrina mogą nam coś powiedzieć na temat asymetrii między materią i antymaterią we Wszechświecie? Tomasz Wąchała Zakład Neutrin i Ciemnej Materii (NZ16) Seminarium IFJ PAN, Kraków, 05.12.2013 Plan

Bardziej szczegółowo

Poszukiwany: bozon Higgsa

Poszukiwany: bozon Higgsa Poszukiwany: bozon Higgsa Higgs widoczny w świetle kolajdera liniowego Fizyka Czastek i Oddziaływań Fundamentalnych: TESLA & ZEUS Poszukiwane: czastki sypersymetryczne (SUSY) Fizyka Czastek i Oddziaływań

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy

Bardziej szczegółowo

Oddziaływanie promieniowania jonizującego z materią

Oddziaływanie promieniowania jonizującego z materią Oddziaływanie promieniowania jonizującego z materią Plan Promieniowanie ( particle radiation ) Źródła (szybkich) elektronów Ciężkie cząstki naładowane Promieniowanie elektromagnetyczne (fotony) Neutrony

Bardziej szczegółowo

PROGNOZOWANIE SUPERNOWYCH TYPU II

PROGNOZOWANIE SUPERNOWYCH TYPU II 1/20 Prognozowanie supernowych typu II A. Odrzywoªek PROGNOZOWANIE SUPERNOWYCH TYPU II Eta Carina 2.7 kpc γ 2 Velorum 285 pc Betelgeuse 185 pc A. Odrzywoªek, M.Misiaszek, M. Kutschera Detection possibitity

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze

Bardziej szczegółowo

Fizyka cząstek elementarnych II Neutrina

Fizyka cząstek elementarnych II Neutrina Fizyka cząstek elementarnych II Neutrina Prof. dr hab. Danuta Kiełczewska Zakład Cząstek i Oddziaływań Fundamentalnych IFD UW http://www.fuw.edu.pl/~danka/ Plan wykładu: Trochę historii neutrin Źródła

Bardziej szczegółowo

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Przykłady użycia różnych technik detekcyjnych.

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Przykłady użycia różnych technik detekcyjnych. Detektory cząstek Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Przykłady użycia różnych technik detekcyjnych Eksperymenty D. Kiełczewska, wykład 3 1 Przechodzenie cząstek naładowanych

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

wyniki eksperymentu OPERA Ewa Rondio Narodowe Centrum Badań Jądrowych

wyniki eksperymentu OPERA Ewa Rondio Narodowe Centrum Badań Jądrowych wyniki eksperymentu OPERA Ewa Rondio Narodowe Centrum Badań Jądrowych RADA DO SPRAW ATOMISTYKI Warszawa, 1.12.2011 Ú istnienie ν zaproponowano aby uratować zasadę zachowania energii w rozpadzie beta Ú

Bardziej szczegółowo

Konferencja NEUTRINO 2012

Konferencja NEUTRINO 2012 Konferencja NEUTRINO 01 s e i n a d z o w a r p Justyna Łagoda NCBJ 5. International Conference on Neutrino Physics and Astrophysics najważniejsza z konferencji dotyczących neutrin program: Neutrina reaktorowe

Bardziej szczegółowo

cząstki, które trudno złapać Justyna Łagoda

cząstki, które trudno złapać Justyna Łagoda NEUTRINA cząstki, które trudno złapać Justyna Łagoda Plan Historia Jak wykrywać neutrina? Źródła neutrin Oscylacje neutrin Eksperymenty neutrinowe z długą bazą udział grup polskich Co dalej? Historia 3

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

KamLAND: Status and Prospects. Neutrino Geoscience 2010 Oct. 7, 2010 I. Shimizu (Tohoku Univ.)

KamLAND: Status and Prospects. Neutrino Geoscience 2010 Oct. 7, 2010 I. Shimizu (Tohoku Univ.) KamLAND: Status and Prospects Neutrino Geoscience 1 Oct. 7, 1 I. Shimizu (Tohoku Univ.) KamLAND Collaboration A. Gando,1 Y. Gando,1 K. Ichimura,1 H. Ikeda,1 K. Inoue,1, Y. Kibe,1, Y. Kishimoto,1 M. Koga,1,

Bardziej szczegółowo

Pomiary prędkości neutrin

Pomiary prędkości neutrin Pomiary prędkości neutrin Katarzyna Grzelak Instytut Fizyki Doświadczalnej Seminarium Zakładu Czastek i Oddziaływań Fundamentalnych 7.10.2011 K.Grzelak (Instytut Fizyki Doświadczalnej) 1 / 53 Wstęp Wynik

Bardziej szczegółowo

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Eksperymenty. D. Kiełczewska, wykład 3

Detektory cząstek. Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Eksperymenty. D. Kiełczewska, wykład 3 Detektory cząstek Procesy użyteczne do rejestracji cząstek Techniki detekcyjne Detektory Eksperymenty Przechodzenie cząstek naładowanych przez materię Cząstka naładowana: traci energię przez zderzenia

Bardziej szczegółowo

Wszechświat czastek elementarnych Detekcja czastek

Wszechświat czastek elementarnych Detekcja czastek Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki

Bardziej szczegółowo

Wszechświat Cząstek Elementarnych dla Humanistów Detekcja cząstek

Wszechświat Cząstek Elementarnych dla Humanistów Detekcja cząstek Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 24 października 2017 A.F.Żarnecki WCE Wykład 4 24 października

Bardziej szczegółowo

Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków

Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu

Bardziej szczegółowo

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA

NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA ANALITYKA W KONTROLI JAKOŚCI WYKŁAD 3 NEUTRONOWA ANALIZA AKTYWACYJNA - PODSTAWOWE INFORMACJE O REAKCJACH JĄDROWYCH - NEUTRONOWA ANALIZA AKTYWACYJNA REAKCJE JĄDROWE Rozpad promieniotwórczy: A B + y + ΔE

Bardziej szczegółowo

Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ

Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ Fizyka jądrowa z Kosmosu wyniki z kosmicznego teleskopu γ INTEGRAL - International Gamma-Ray Astrophysical Laboratory prowadzi od 2002 roku pomiary promieniowania γ w Kosmosie INTEGRAL 180 tys km Źródła

Bardziej szczegółowo

Widma neutrin emitowanych przez zaawansowane ewolucyjnie gwiazdy

Widma neutrin emitowanych przez zaawansowane ewolucyjnie gwiazdy Widma neutrin emitowanych przez zaawansowane ewolucyjnie gwiazdy Neutrina jako sygnał nadchodzącej supernowej Andrzej Odrzywołek Zakład Ogólnej Teorii Względności i Astrofizyki Uniwersytet Jagielloński,

Bardziej szczegółowo

Tajemnice neutrin. Ewa Rondio. Instytut Problemów Jądrowych im. A. Sołtana

Tajemnice neutrin. Ewa Rondio. Instytut Problemów Jądrowych im. A. Sołtana Tajemnice neutrin Ewa Rondio Instytut Problemów Jądrowych im. A. Sołtana Festiwal Nauki, Warszawa, 22.09.2007 Neutrina najbardziej nieuchwytne Neutrino? cząstki materii F. Reines:...najmniejsza porcja

Bardziej szczegółowo

Badanie wysokoenergetycznych mionów kosmicznych w detektorze ICARUS.

Badanie wysokoenergetycznych mionów kosmicznych w detektorze ICARUS. Badanie wysokoenergetycznych mionów kosmicznych w detektorze ICARUS. Tomasz Palczewski Promotor: Prof. dr hab. Joanna Stepaniak. Warszawska Grupa Neutrinowa. Seminarium Doktoranckie IPJ 21.11.2006. Warszawa.

Bardziej szczegółowo

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH

C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH C5: BADANIE POCHŁANIANIA PROMIENIOWANIA α i β W POWIETRZU oraz w ABSORBERACH CEL ĆWICZENIA Celem ćwiczenia jest obserwacja pochłaniania cząstek alfa w powietrzu wyznaczenie zasięgu w aluminium promieniowania

Bardziej szczegółowo

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2

Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne? 2010/11(z) Ewolucja Wszech'swiata czas,energia,temperatura Detekcja cząstek

Bardziej szczegółowo

Dlaczego pomiar kąta θ13 jest ważny dla planów fizyki neutrin. Wyniki i plany T2K.

Dlaczego pomiar kąta θ13 jest ważny dla planów fizyki neutrin. Wyniki i plany T2K. Dlaczego pomiar kąta θ13 jest ważny dla planów fizyki neutrin. Wyniki i plany T2K. Justyna Łagoda NCBJ Oddziaływania i oscylacje neutrin oddziaływania słabe prądy naładowane (charged current, CC) νe (νμ,

Bardziej szczegółowo

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

Oscylacyjne eksperymenty neutrinowe najnowsze wyniki oraz perspektywy

Oscylacyjne eksperymenty neutrinowe najnowsze wyniki oraz perspektywy Oscylacyjne eksperymenty neutrinowe najnowsze wyniki oraz perspektywy 2012-01-19 Anna Dąbrowska Co wiemy o neutrinach? Postulowane przez W. Pauliego w 1930 roku Znamy trzy stany zapachowe: e odkryte w

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r. 1 Budowa jądra atomowego Liczba atomowa =Z+N Liczba masowa Liczba neutronów Izotopy Jądra o jednakowej liczbie protonów, różniące się liczbą

Bardziej szczegółowo

Niezachowanie CP najnowsze wyniki

Niezachowanie CP najnowsze wyniki Niezachowanie CP najnowsze wyniki Dlaczego łamanie CP jest ważne asymetria barionowa we Wszechświecie Łamanie CP w sektorze mezonów dziwnych Łamanie CP w sektorze mezonów pięknych Asymetria barionowa we

Bardziej szczegółowo

Energetyka konwencjonalna odnawialna i jądrowa

Energetyka konwencjonalna odnawialna i jądrowa Energetyka konwencjonalna odnawialna i jądrowa Wykład 8-27.XI.2018 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 8 Energia atomowa i jądrowa

Bardziej szczegółowo

przyziemnych warstwach atmosfery.

przyziemnych warstwach atmosfery. Źródła a promieniowania jądrowego j w przyziemnych warstwach atmosfery. Pomiar radioaktywności w powietrzu w Lublinie. Jan Wawryszczuk Radosław Zaleski Lokalizacja monitora skażeń promieniotwórczych rczych

Bardziej szczegółowo

Neutrina z supernowych

Neutrina z supernowych Zachowanie całkowitej liczby leptonowej? Czy neutrina są cząstkami Diraca czy Majorany? Poszukiwanie rozpadów 2βν 0 Mechanizmy nadawania cząstkom masy Pomiary mas neutrin Neutrina z supernowych Obserwacja

Bardziej szczegółowo

Polacy i Polska w technologiach detektorów w CERN-ie. L. Zwalinski CERN EP/DT December 16 th 2016

Polacy i Polska w technologiach detektorów w CERN-ie. L. Zwalinski CERN EP/DT December 16 th 2016 Polacy i Polska w technologiach detektorów w CERN-ie L. Zwalinski CERN EP/DT December 16 th 2016 1 Eksperymenty LHC technologie detektorów LHCb ATLAS CMS ALICE * Neutrino platform * CLIC Polskie zespoły

Bardziej szczegółowo

Promieniowanie jonizujące

Promieniowanie jonizujące Promieniowanie jonizujące Wykład III Krzysztof Golec-Biernat Reakcje jądrowe Uniwersytet Rzeszowski, 8 listopada 2017 Wykład III Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 12 Energia wiązania

Bardziej szczegółowo

Czy neutrina sa rzeczywiście bezmasowe? (Pontecorvo) Bo gdyby nie były, to mogłyby oscylować.. Rozważmy dwa pokolenia neutrin: ν

Czy neutrina sa rzeczywiście bezmasowe? (Pontecorvo) Bo gdyby nie były, to mogłyby oscylować.. Rozważmy dwa pokolenia neutrin: ν Oscylacje neutrin Czy neutrina sa rzeczywiście bezmasowe? (Pontecorvo) Bo gdyby nie były, to mogłyby oscylować.. Rozważmy dwa pokolenia neutrin: ν e,ν µ ν e ν µ Stany własne zapachu, produkowane w oddziaływaniach

Bardziej szczegółowo

Perspektywy fizyki czastek elementarnych

Perspektywy fizyki czastek elementarnych Perspektywy fizyki czastek elementarnych Wykład XIII Nowe projekty akceleratorowe: CLIC ( VLHC ( Photon Collider zderzenia ) Elementy fizyki czastek elementarnych ) fabryki neutrin Astro-cz astki?!...

Bardziej szczegółowo

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia

Fizyka klasyczna. - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Fizyka klasyczna - Mechanika klasyczna prawa Newtona - Elektrodynamika prawa Maxwella - Fizyka statystyczna -Hydrtodynamika -Astronomia Zaczniemy historię od optyki W połowie XiX wieku Maxwell wprowadził

Bardziej szczegółowo

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża

Bardziej szczegółowo

1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7.

1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7. Weronika Biela 1. Wcześniejsze eksperymenty 2. Podstawowe pojęcia 3. Przypomnienie budowy detektora ATLAS 4. Rozpady bozonów W i Z 5. Tło 6. Detekcja sygnału 7. Obliczenie przekroju czynnego 8. Porównanie

Bardziej szczegółowo

Jądra o wysokich energiach wzbudzenia

Jądra o wysokich energiach wzbudzenia Jądra o wysokich energiach wzbudzenia 1. Utworzenie i rozpad jądra złożonego a) model statystyczny 2. Gigantyczny rezonans dipolowy (GDR) a) w jądrach w stanie podstawowym b) w jądrach w stanie wzbudzonym

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Tajemnicze neutrina Agnieszka Zalewska

Tajemnicze neutrina Agnieszka Zalewska Tajemnicze neutrina Agnieszka Zalewska Dzień otwarty IFJ, Polecam: Krzysztof Fiałkowski: Opowieści o neutrinach, wydawnictwo Zamiast korepetycji http://wwwlapp.in2p3.fr/neutrinos/aneut.html i strony tam

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 3 14 marca 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Henri Becquerel 1896 Promieniotwórczość 14.III.2017 EJ

Bardziej szczegółowo

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1 Budowa jądra atomowego każde jądro atomowe składa się z dwóch rodzajów nukleonów: protonów

Bardziej szczegółowo

promieniowania Oddziaływanie Detekcja neutronów - stosowane reakcje (Powtórka)

promieniowania Oddziaływanie Detekcja neutronów - stosowane reakcje (Powtórka) Wykład na Studiach Podyplomowych "Energetyka jądrowa we współczesnej elektroenergetyce", Kraków, 4 maj DETEKCJA NEUTRONÓW JERZY JANCZYSZYN Oddziaływanie promieniowania (Powtórka) Cząstki naładowane oddziałują

Bardziej szczegółowo

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych

FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 9 Reakcje jądrowe Reakcje jądrowe Historyczne reakcje jądrowe 1919 E.Rutherford 4 He + 14 7N 17 8O + p (Q = -1.19 MeV) powietrze błyski na ekranie

Bardziej szczegółowo

Nowe scyntylatory w ochronie granic

Nowe scyntylatory w ochronie granic Agnieszka Syntfeld-KaŜuch Instytut Problemów Jądrowych, Świerk 13 maja 2009 Główne zagadnienia Scyntylatory najnowsze obserwacje, odkrycia Wykrywanie materiałów niebezpiecznych kryteria doboru optymalnego

Bardziej szczegółowo

Elementy fizyki czastek elementarnych

Elementy fizyki czastek elementarnych Źródła czastek Elementy fizyki czastek elementarnych Wykład II Naturalne źródła czastek Źródła promieniotwórcze Promieniowanie kosmiczne Akceleratory czastek Akceleratory elektrostatyczne, liniowe i kołowe

Bardziej szczegółowo

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na

Bardziej szczegółowo

Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe

Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Wyznaczanie efektywności mionowego układu wyzwalania w CMS metodą Tag & Probe Uniwersytet Warszawski - Wydział Fizyki opiekun: dr Artur Kalinowski 1 Plan prezentacji Eksperyment CMS Układ wyzwalania Metoda

Bardziej szczegółowo

Pomiar rozpadów Dalitz Hiperonów za pomocą spektrometrów HADES oraz PANDA. Jacek Biernat

Pomiar rozpadów Dalitz Hiperonów za pomocą spektrometrów HADES oraz PANDA. Jacek Biernat Pomiar rozpadów Dalitz Hiperonów za pomocą spektrometrów HADES oraz PANDA Jacek Biernat Plan wystąpienia Motywacje pomiaru Aparatura Analiza danych z symulacji dla spektrometru PANDA Porównanie z symulacjami

Bardziej szczegółowo