Neutrina. Wstęp do Fizyki I (B+C) Wykład XXII:
|
|
- Edyta Maciejewska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Neutrina Wstęp do Fizyki I (B+C) Wykład XXII: Budowa materii - przypomnienie Neutrina atmosferyczne Neutrina słoneczne Model bryłowy neutrin Oscylacje neutrin
2 i Budowa materii Świat codzienny zbudowany jest z 3 cegiełek : elektronu, oraz kwarków. A.F.Żarnecki Wykład XXII 1
3 Budowa materii Wyniki badań fizyki czastek Model Standardowy 12 fundamentalnych cegiełek materii - fermionów (czastek o spinie 1/2) pokolenie 1 pokolenie 2 pokolenie 3 ladunek [e] leptony kwarki d u elektron neutrino el. down up mion neutrino mionowe strange charm bt taon neutrino taonowe beauty top s (bottom) c (truth) + anty-fermiony (kolejnych 12) A.F.Żarnecki Wykład XXII 2
4 Neutrino elektronowe Zaproponowane przez Pauliego do wyjaśnienia rozpadu : Neutrina ograniczenie na masę "+ "!! # 1 /! # ( ) Ostatnie wyniki pomiarów widma elektronów z rozpadu trytu (Mainz, 21): na poziomie czastek: : $&%' *,.- Zakładane właściwości: bardzo słabo oddziałuje z materia ma zaniedbywalna masę Ograniczenia astrofizyczne - rejestracja neutrin z SN 1987A: Do niedawna zakładaliśmy, że neutrino ma zerowa masę... A.F.Żarnecki Wykład XXII 3
5 / # " / # " / / % "! % % + " /! Neutrina Okazuje się, że każdy lepton ma swoje neutrino. Liczbę pokoleń neutrin zmierzono w akceleratorze LEP ( niewidzialne rozpady ) Przy założeniu, że neutrina sa lekkie... Doświadczalne ograniczenia na masy ciężkich neutrin neutrino mionowe neutrino taonowe A.F.Żarnecki Wykład XXII 4
6 / Neutrina atmosferyczne Promieniowanie kosmiczne Przestrzeń kosmiczna wypełniona jest czastkami o energiach dochodzacych do ev). GeV ( / promieniowanie kosmiczne poza atmosfera ziemska pierwotne Skład pierwotnego promieniowania kosmicznego (pomijajac neutrina): protony (jadra H) 86% czastki (jadra He) 13% jadra cięższych pierwiastków 1% neutrony, elektrony, fotony 1% ev GeV ev GeV A.F.Żarnecki Wykład XXII 5
7 Neutrina atmosferyczne Produkcja Promieniowanie kosmiczne pierwotne oddziałuje w atmosferze produkujac liczne czastki wtórne, w większości piony. W wyniku rozpadów: (podobnie dla ) produkowanych jest dwukrotnie większa liczba neutrin (i antyneutrin) mionowych niż elektronowych: A.F.Żarnecki Wykład XXII 6
8 Neutrina atmosferyczne Eksperyment Super-Kamiokande Japonia, w starej kopalni, 1 km pod góra Kamioka, komora o wysokości 4 m i średnicy 4 m, wypełniona woda 11 fotopowielaczy (5 cm średnicy!) rejestruje przechodzace czastki rejestrowane jest promieniowanie Czerenkowa czastek poruszajacych się z prędkościa większa od prędkości światła (w wodzie) A.F.Żarnecki Wykład XXII 7
9
10 Super-Kamiokande Neutrino elektronowe Przypadek Krótki zasięg elektronu - cienki pierścień Neutrino mionowe Przypadek Długa droga w wodzie - gruby pierścień. A.F.Żarnecki Wykład XXII 9
11 Neutrina atmosferyczne Rozkład katowy Pierwotne promieniowanie kosmiczne jest izotropowe. Ponieważ neutrina praktycznie nie oddziałuja z Ziemia, strumienie neutrin do dołu i do góry powinny być sobie równe. A.F.Żarnecki Wykład XXII 1
12 " ' " ' - Wyniki Neutrina atmosferyczne Zależność liczby obserwowanych przypadków elektronowych i mionowych od kierunku number of events number of events Sub-GeV e-like cosθ Multi-GeV e-like cosθ number of events number of events Sub-GeV µ-like cosθ Multi-GeV µ-like + PC cosθ Tyle samo neutrin elektronowych do dołu ( ) i do góry ( ). Neutrin mionowych mniej niż oczekujemy! Wyraźnie za mało lecacych od dołu! Czy neutrina mionowe moga znikać przechodza przez Ziemię? A.F.Żarnecki Wykład XXII 11
13 Neutrina słoneczne Silnym źródłem neutrin jest też Słońce. Super-Kamiokande Neutrina słoneczne produkowane sa w bardzo wielu procesach; te o najwyższej energii pochodza z przemiany Energia emitowanych neutrin dochodzi do 15 MeV - możemy je rejestrować w detektorach czastek... Oddziaływania neutrin słonecznych możemy odróżnić od oddziaływań neutrin atmosferycznych mierzac kat rozproszonych czastek względem kierunku od słońca. A.F.Żarnecki Wykład XXII 12
14 Neutrina słoneczne Deficyt Obserwowany rozkład energii neutrin słonecznych w Super-Kamiokande: Events/day/22.5kt/.5MeV Data/SSM (efficiency corrected) Solar neutrino MC Observed solar neutrino events SSM = BP2 + new 8 B spectrum (Ortiz et al.) stat. error stat. 2 +sys. 2 Kształt rozkładu zgadza się bardzo dobrze z przewidywaniami modelu Słońca (SSM: Standard Solar Model) jednak jedynie +Obserwujemy oczekiwanych przypadków (neutrin elektronowych tym razem!)!%.4.2 SK 1258day 22.5kt ALL (Preliminary) Energy(MeV) Gdzie znikaja neutrina!!! Neutrin słonecznych brakuje także w dzień, gdy nie przechodza przez Ziemię... A.F.Żarnecki Wykład XXII 13
15 Oscylacje Jeśli założymy, że neutrina sa bezmasowe, to neutrina elektronowe, mionowe i taonowe różnia się tylko liczba leptonowa. Produkcja i oddziaływanie neutrina zwiazane jest z oddziaływaniem (w szczególności z rozpadem) lub z produkcja danego typu leptonu. Do niedawna uważaliśmy, że liczba leptonowa jest ściśle zachowana. Aby wytłumaczyć znikanie neutrin musimy jednak dopuścić, że neutrina moga przemieniać się jedno w drugie. (łamanie liczby leptonowej) Zmiana leptonowości neutrina jest bardzo powolna i dla tego zachodzi tylko na dużych odległościach (średnica Ziemi, odległość od Słońca) Po pewnym czasie neutrino wraca do pierwotnego stanu: oscylacje neutrin A.F.Żarnecki Wykład XXII 14
16 Model Pełne wyjaśnienie zjawiska oscylacji wymaga stosowania mechaniki kwantowej... Można jednak zrozumieć to zjawisko posługujac się prostym modelem... bryły sztywnej Wyobraźmy sobie, że neutrino to... wirujacy kolorowy sześcian A typ neutrina wynika z koloru ściany przez która przechodzi oś obrotu (wektor neutrino elektronowe neutrino mionowe neutrino taonowe ): e τ ω µ e τ µ ω ω e τ µ A.F.Żarnecki Wykład XXII 15
17 ) Model Jeśli wyprodukowane jest neutrino elektronowe w naszym modelu sześcian wiruje wokół osi symetrii prostopadłej do czerwonej ściany to oczekujemy, że po dowolnym czasie dalej będzie neutrinem elektronowym!!! τ e ω µ Wynika to z faktu, że tensor momentu bezwładności sześcianu jest taki sam jak dla kuli (diagonalny, wszystkie wartości własne równe) wektor nie zmienia swojej orientacji A.F.Żarnecki Wykład XXII 16
18 ) Model Nasze rozumowanie jest jednak błędne... Daliśmy się zwieść pozorom... e ω L Rozkład masy wewnatrz sześcian nie musi być równomierny!!! τ µ Mimo pozornej symetrii, sześcian może mieć niediagonalny tensor momentu bezwładności (w układzie równoległym do krawędzi sześcianu) osie główne obrócone względem osi symetrii z y x różne momenty bezwładności względem osi głównych wektor momentu pędu nie musi być równoległy do wektora prędkości katowej A.F.Żarnecki Wykład XXII 17
19 Model Sześcian będzie wirował zgodnie z równaniami Eulera. W układzie zwiazanym z sześcianem Na poszatku precesja wektorów )i Po pewnym czasie y τ e ω µ L y τ e µ os glowna L ω z x z x neutrino elektronowe neutrino mionowe A.F.Żarnecki Wykład XXII 18
20 ) Model W układzie laboratoryjnym: ruch wirowy sześcianu szybka precesja wektora wokól kierunku powolne przesuwanie ześciany na ścianę Na poszatku τ e ω µ L Po pewnym czasie e τ os glowna µ Chwilę później L µ ω ω e L neutrino elektronowe neutrino mionowe neutrino mionowe A.F.Żarnecki Wykład XXII 19
21 Model Po pewnym czasie e τ os glowna µ L ω Ale jeszcze później τ e ω µ L neutrino mionowe znów neutrino elektronowe Po czasie równym okresowi precesji wektor (prostopadłe do czerwonej ściany) wraca w położenie poczatkowe A.F.Żarnecki Wykład XXII 2
22 Oscylacje Warunek oscylacji, w naszym modelu: niesymetryczny rozkład masy osie główne nie pokrywaja się z osiami prostopadłymi do ścian ruch wirowy wokół osi prostopadłych do ścian (o ustalonym zapachu leptonowym) trzeba rozkładać na składowe wzdłuż osi głównych wektory, nie sa wektorami własnymi tensora bezwładności, (prostopadłe do odpowiednich ścian) Oczywiście sześcian musi mieć niezerowa masę. Gdyby masa była zerowa, to żadnych oscylacji byśmy mieć nie mogli... A.F.Żarnecki Wykład XXII 21
23 Dla dwóch neutrin, np. i a mieszankami stanów fizycznych i Oscylacje Z neutrinami jest bardzo podobnie: neutrina produkowane w oddziaływaniach leptonów, nie sa pokrywaja się z prawdziwymi, fizycznymi czastkami trzeba je rozkładać na składowe odpowiadajace stanom fizycznym,, (o ustalonej masie) Aby oscylacje były możliwe, neutrina musza mieć masę!...,, które s : $! * - kat mieszania; w naszym modelu sześcianu odpowiada katowi między osia główna tensora momentu bezwładności i osia prostopadła do jednej ze ścian Dla (w ogólności: może całkowicie zamienić się w /) mamy maksymalne mieszanie A.F.Żarnecki Wykład XXII 22
24 Oscylacje Częstość precesji w układzie dwóch neutrin: ( - energia neutrina, )! - Prawdopodobieństwo, że wyprodukowane zamieni się w $ / $ *! )! * $ * $ * :! / Naogół nie mierzymy czasu tylko )- odległość jaka pokonało neutrino ( ) P(ν µ ν τ ) 1.75 sin 2 2Θ 12 = 1 m 2 =.25 ev 2 Prawdopodobieństwo przejścia zależy od:.5.25 Dla dużych L/E [km/gev] A.F.Żarnecki Wykład XXII 23
25 Oscylacje Neutrina atmosferyczne Wyniki pomiarów neutrin atmosferycznych w Super-Kamiokande można wytłumaczyć przyjmujac, że neutrina mionowe znikaja na skutek oscylacji w neutrina taonowe Dopasowanie parametrów mieszania # : " '!! "/ Neutrina słoneczne Deficyt neutrin słonecznych można z kolei wytłumaczyć oscylacjami # " / dużo słabsze oscylacje neutrina musza miec masy rzędu.1 ev dopiero na odległościach Ziemia-Słońce A.F.Żarnecki Wykład XXII 24
26 * $ ' " ' / " '% * ' " + + " % % $ " ' / + " "!, ' " /, "/ ' 1 Oscylacje Eksperyment SNO Deficyt neutrin słonecznych został potwierdzony m.in. przez eksperyment SNO. Porównujac wyniki SNO i Super-Kamiokande możemy wykazać, że jest to rezultatem przemiany i w inne rodzaje neutrin ( ). 8 φ(ν e ) (relative to BPB1) φ SK ES = φ(ν e ) φ(ν µτ ) φ SK ES φ SNO 1.6 CC 1.4 Wyniki na strumień neutrin / : φ(ν µτ ) (1 6 cm -2 s -1 ) φ SK+SNO x φ SSM x φ(ν µτ ) (relative to BPB1) Ostatecznie otrzymujemy: w porównaniu z przewidywaniami SSM φ(ν e ) (1 6 cm -2 s -1 ) nic nie brakuje!... A.F.Żarnecki Wykład XXII 25
27 SNO Eksperyment SNO (Sudbury Neutrino Observatory) Ogromny zbiornik wypełniony 7 t wody ( ) W środku kula z 1 t ciężkiej wody ( ) Promieniowanie Czerenkowa mierzone przez ok. 95 fotopowielaczy. Detektor umieszczony jest na głębokości ponad 2 m (w kopalni) A.F.Żarnecki Wykład XXII 26
Neutrina. Fizyka I (B+C) Wykład XXIV:
Neutrina Fizyka I (B+C) Wykład XXIV: Budowa materii - przypomnienie Deficyt neutrin słonecznych Zagadka neutrin atmosferycznych z SuperKamiokande Model bryłowy neutrin Oscylacje neutrin Wyniki SNO i KamLand
Bardziej szczegółowoNeutrina. Fizyka I (B+C) Wykład XXVII:
Neutrina Fizyka I (B+C) Wykład XXVII: Budowa materii - przypomnienie Deficyt neutrin słonecznych Zagadka neutrin atmosferycznych z SuperKamiokande Model bryłowy neutrin Oscylacje neutrin Wyniki SNO i KamLand
Bardziej szczegółowoNeutrina. Elementy fizyki czastek elementarnych. Wykład VIII. Oddziaływania neutrin Neutrina atmosferyczne
Neutrina Wykład VIII Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrina słoneczne Eksperyment SNO Neutrino elektronowe
Bardziej szczegółowoNeutrina (2) Elementy fizyki czastek elementarnych. Wykład VIII
Neutrina (2) Wykład VIII Neutrina słoneczne Wyniki Super-Kamiokande Eksperyment SNO Eksperyment Kamland Podsumowanie Elementy fizyki czastek elementarnych Przypomnienie Wyniki LSND Zmierzono przypadki
Bardziej szczegółowoNeutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne
Neutrina Wykład VII Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrino elektronowe Zaproponowane
Bardziej szczegółowoNeutrina. Elementy fizyki czastek elementarnych. Wykład VII. Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne
Neutrina Wykład VII Historia neutrin Oddziaływania neutrin Neutrina atmosferyczne Elementy fizyki czastek elementarnych Eksperyment Super-Kamiokande Oscylacje neutrin Neutrino elektronowe Zaproponowane
Bardziej szczegółowoNeutrina. Wszechświat Czastek Elementarnych. Wykład 12. prof. dr hab. Aleksander Filip Żarnecki
Neutrina Wykład 12 Neutrina i ich własności Źródła neutrin Pomiary neutrin Oscylacje neutrin prof. dr hab. Aleksander Filip Żarnecki Wszechświat Czastek Elementarnych Neutrina Promieniotwórczość Odkryta
Bardziej szczegółowoZderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XVIII: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia nieelastyczne Zderzenia elastyczne - czastki
Bardziej szczegółowoZderzenia relatywistyczne
Zderzenia relatywistyczne Fizyka I (B+C) Wykład XIX: Zderzenia nieelastyczne Energia progowa Rozpady czastek Neutrina Zderzenia relatywistyczne Zderzenia elastyczne 2 2 Czastki rozproszone takie same jak
Bardziej szczegółowoNeutrina (2) Elementy fizyki czastek elementarnych. Wykład IX
Neutrina (2) Wykład IX Elementy fizyki czastek elementarnych Oscylacje neutrin atmosferycznych i słonecznych Eksperyment K2K Eksperyment Minos Eksperyment Kamland Perspektywy badań neutrin Neutrina atmosferyczne
Bardziej szczegółowoWszechświat czastek elementarnych
Wykład 2: prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2: Detekcja Czastek 27 lutego 2008 p.1/36 Wprowadzenie Istota obserwacji w świecie czastek
Bardziej szczegółowoMetamorfozy neutrin. Katarzyna Grzelak. Sympozjum IFD Zakład Czastek i Oddziaływań Fundamentalnych IFD UW. K.Grzelak (UW ZCiOF) 1 / 23
Metamorfozy neutrin Katarzyna Grzelak Zakład Czastek i Oddziaływań Fundamentalnych IFD UW Sympozjum IFD 2008 6.12.2008 K.Grzelak (UW ZCiOF) 1 / 23 PLAN Wprowadzenie Oscylacje neutrin Eksperyment MINOS
Bardziej szczegółowoNeutrina. Źródła neutrin: NATURALNE Wielki Wybuch gwiazdy atmosfera Ziemska skorupa Ziemska
Neutrina X Źródła neutrin.. Zagadki neutrinowe. Neutrina słoneczne. Neutrina atmosferyczne. Eksperymenty neutrinowe. Interpretacja pomiarów. Oscylacje neutrin. 1 Neutrina Źródła neutrin: NATURALNE Wielki
Bardziej szczegółowoMasywne neutrina w teorii i praktyce
Instytut Fizyki Teoretycznej Uniwersytet Wrocławski Wrocław, 20 czerwca 2008 1 Wstęp 2 3 4 Gdzie znikają neutrina słoneczne (elektronowe)? 4p 4 2He + 2e + + 2ν e 100 miliardów neutrin przez paznokieć kciuka
Bardziej szczegółowoSkad się bierze masa Festiwal Nauki, Wydział Fizyki U.W. 25 września 2005 A.F.Żarnecki p.1/39
Skad się bierze masa Festiwal Nauki Wydział Fizyki U.W. 25 września 2005 dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Skad się bierze masa Festiwal Nauki,
Bardziej szczegółowoMaria Krawczyk, Wydział Fizyki UW. Neutrina i ich mieszanie
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 12 21.12.2010 Maria Krawczyk, Wydział Fizyki UW Neutrina i ich mieszanie Neutrinos: Ghost Particles of the Universe F. Close polecam wideo i audio
Bardziej szczegółowoRozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS)
Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS) Kilka interesujących faktów Każdy człowiek wysyła dziennie
Bardziej szczegółowoMechanika. Fizyka I (B+C) Wykład I: dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej
Fizyka I (B+C) Mechanika Wykład I: Informacje ogólne Wprowadzenie Co to jest fizyka? Czym zajmuje się fizyka? dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki
Bardziej szczegółowoNa tropach czastki Higgsa
Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005 A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Na tropach czastki Higgsa Wykład inauguracyjny 2004/2005
Bardziej szczegółowoSłońce obserwowane z kopalni Kamioka, Toyama w Japonii
Jak zobaczyć Słońce zkopalni? Ewa Rondio, CERN/IPJ Warsaw CERN, 16 kwietnia 2010. plan wykladu co chcemy zobaczyć, jakie cząstki mają szanse jaką metodą należy patrzeć patrzeć dlaczego takie eksperymenty
Bardziej szczegółowoBryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie
Bardziej szczegółowoNaturalne źródła neutrin, czyli neutrina sa
Naturalne źródła neutrin, czyli neutrina sa wszędzie Tomasz Früboes Zakład Czastek i Oddziaływań Fundamentalnych 16 stycznia 2006 Proseminarium fizyki jadra atomowego i czastek elementarnych Tomasz Früboes
Bardziej szczegółowoPodstawy fizyki cząstek III. Eksperymenty nieakceleratorowe Krzysztof Fiałkowski
Podstawy fizyki cząstek III Eksperymenty nieakceleratorowe Krzysztof Fiałkowski Zakres fizyki cząstek a eksperymenty nieakceleratorowe Z relacji nieoznaczoności przestrzenna zdolność rozdzielcza r 0.5fm
Bardziej szczegółowoZagadki neutrinowe. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande
Zagadki neutrinowe Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande Deficyt neutrin słonecznych - w eksperymentach radiochemicznych - w wodnych detektorach Czerenkowa Super-Kamiokande,
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop
Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt
Bardziej szczegółowoNeutrina i ich oscylacje. Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin
Neutrina i ich oscylacje Neutrina we Wszechświecie Oscylacje neutrin Masy neutrin Neutrina wokół nas n n n γ ν ν 410 cm 340 cm 10 10 nbaryon 3 3 Pozostałe z wielkiego wybuchu: Słoneczne Już obserwowano
Bardziej szczegółowoCzy neutrina mogą nam coś powiedzieć na temat asymetrii między materią i antymaterią we Wszechświecie?
Czy neutrina mogą nam coś powiedzieć na temat asymetrii między materią i antymaterią we Wszechświecie? Tomasz Wąchała Zakład Neutrin i Ciemnej Materii (NZ16) Seminarium IFJ PAN, Kraków, 05.12.2013 Plan
Bardziej szczegółowoWszechświat Cząstek Elementarnych dla Humanistów Oddziaływania silne
Wszechświat Cząstek Elementarnych dla Humanistów Oddziaływania silne Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 6 listopada 2018 A.F.Żarnecki WCE Wykład 5 6 listopada 2018 1 / 37 Oddziaływania
Bardziej szczegółowoZagadki neutrinowe. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande
Zagadki neutrinowe Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande Deficyt neutrin słonecznych - w eksperymentach radiochemicznych - w wodnych detektorach Czerenkowa Super-Kamiokande,
Bardziej szczegółowoElementy Fizyki Jądrowej. Wykład 5 cząstki elementarne i oddzialywania
Elementy Fizyki Jądrowej Wykład 5 cząstki elementarne i oddzialywania atom co jest elementarne? jądro nukleon 10-10 m 10-14 m 10-15 m elektron kwark brak struktury! elementarność... 1897 elektron (J.J.Thomson)
Bardziej szczegółowoFizyka cząstek elementarnych i oddziaływań podstawowych
Fizyka cząstek elementarnych i oddziaływań podstawowych Wykład 1 Wstęp Jerzy Kraśkiewicz Krótka historia Odkrycie promieniotwórczości 1895 Roentgen odkrycie promieni X 1896 Becquerel promieniotwórczość
Bardziej szczegółowocząstki, które trudno złapać Justyna Łagoda
NEUTRINA cząstki, które trudno złapać Justyna Łagoda Plan Historia Jak wykrywać neutrina? Źródła neutrin Oscylacje neutrin Eksperymenty neutrinowe z długą bazą udział grup polskich Co dalej? Historia 3
Bardziej szczegółowoNeutrina mają masę - Nagroda Nobla 2015 z fizyki. Tomasz Wąchała Zakład Neutrin i Ciemnej Materii (NZ16)
Neutrina mają masę - Nagroda Nobla 2015 z fizyki Tomasz Wąchała Zakład Neutrin i Ciemnej Materii (NZ16) Plan Laureaci: T. Kajita i A. B. McDonald oraz nagrodzone publikacje Krótka historia neutrina i hipoteza
Bardziej szczegółowoOddziaływania podstawowe
Oddziaływania podstawowe grawitacyjne silne elektromagnetyczne słabe 1 Uwięzienie kwarków (quark confinement). Przykład działania mechanizmu uwięzienia: Próba oderwania kwarka d od neutronu (trzy kwarki
Bardziej szczegółowoTajemnicze neutrina Agnieszka Zalewska
Tajemnicze neutrina Agnieszka Zalewska Dzień otwarty IFJ, Polecam: Krzysztof Fiałkowski: Opowieści o neutrinach, wydawnictwo Zamiast korepetycji http://wwwlapp.in2p3.fr/neutrinos/aneut.html i strony tam
Bardziej szczegółowoMaria Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 14.X.2009 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne I? Cząstka i fale falowe własności cząstek elementarnych Cząstki fundamentalne
Bardziej szczegółowoOddziaływania elektrosłabe
Oddziaływania elektrosłabe X ODDZIAŁYWANIA ELEKTROSŁABE Fizyka elektrosłaba na LEPie Liczba pokoleń. Bardzo precyzyjne pomiary. Obserwacja przypadków. Uniwersalność leptonów. Mieszanie kwarków. Macierz
Bardziej szczegółowoCząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.
Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy
Bardziej szczegółowoBozon Higgsa prawda czy kolejny fakt prasowy?
Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami
Bardziej szczegółowoPodstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 2 9 października 2017 A.F.Żarnecki
Bardziej szczegółowoWSTĘP DO FIZYKI CZĄSTEK. Julia Hoffman (NCU)
WSTĘP DO FIZYKI CZĄSTEK Julia Hoffman (NCU) WSTĘP DO WSTĘPU W wykładzie zostały bardzo ogólnie przedstawione tylko niektóre zagadnienia z zakresu fizyki cząstek elementarnych. Sugestie, pytania, uwagi:
Bardziej szczegółowoCząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
Bardziej szczegółowoWYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe:
Wszechświat cząstek elementarnych WYKŁAD 3 Maria Krawczyk, Wydział Fizyki UW Masy i czasy życia cząstek elementarnych Kwarki: zapach i kolor Prawa zachowania i liczby kwantowe: liczba barionowa i liczby
Bardziej szczegółowoZderzenia relatywistyczna
Zderzenia relatywistyczna Dynamika relatywistyczna Zasady zachowania Relatywistyczne wyrażenie na pęd cząstki: gdzie Relatywistyczne wyrażenia na energię cząstki: energia kinetyczna: energia spoczynkowa:
Bardziej szczegółowoNeutrina najbardziej tajemnicze cząstki we Wszechświecie
Neutrina najbardziej tajemnicze cząstki we Wszechświecie Katarzyna Grzelak i Magdalena Posiadała-Zezula Zakład Cząstek i Oddziaływań Fundamentalnych Wydział Fizyki UW Kampus Ochota 18.06.2016 Wstęp Część
Bardziej szczegółowoFizyka neutrin. Źródła neutrin Neutrina reliktowe Geoneutrina Neutrina z wybuchu Supernowych Neutrina słoneczne. Deficyt neutrin słonecznych
Fizyka neutrin Źródła neutrin Neutrina reliktowe Geoneutrina Neutrina z wybuchu Supernowych Neutrina słoneczne - reakcje termojądrowe źródłem neutrin słonecznych - widmo energetyczne - metody detekcji
Bardziej szczegółowoWszechświat cząstek elementarnych
Wszechświat cząstek elementarnych Maria Krawczyk i A. Filip Żarnecki Instytut Fizyki Teoretycznej i Instytut Fizyki Doświadczalnej Wydział Fizyki UW semestr letni, rok akad.. 2010/11 http://www www.fuw.edu.pl/~
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXIII: Tensor momentu bezwładności i osie główne Równania Eulera Bak swobodny. Podsumowanie wykładu Egzamin
Bryła sztywna Wykład XXIII: Fizyka I (BC) Tensor momentu bezwładności i osie główne Równania Eulera Bak swobodny Podsumowanie wykładu Egzamin Tensor momentu bezwładności Tensor momentu bezwładności pozwala
Bardziej szczegółowoElementy fizyki czastek elementarnych
Źródła czastek Elementy fizyki czastek elementarnych Wykład II Naturalne źródła czastek Źródła promieniotwórcze Promieniowanie kosmiczne Akceleratory czastek Akceleratory elektrostatyczne, liniowe i kołowe
Bardziej szczegółowoWszechświat czastek elementarnych Detekcja czastek
Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki
Bardziej szczegółowoWszechświat czastek elementarnych Detekcja czastek
Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki
Bardziej szczegółowoSymetrie. D. Kiełczewska, wykład 5 1
Symetrie Symetrie a prawa zachowania Spin Parzystość Spin izotopowy Multiplety hadronowe Niezachowanie parzystości w oddz. słabych Sprzężenie ładunkowe C Symetria CP Zależność spinowa oddziaływań słabych
Bardziej szczegółowoWszechświat Cząstek Elementarnych dla Humanistów Detekcja cząstek
Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 24 października 2017 A.F.Żarnecki WCE Wykład 4 24 października
Bardziej szczegółowoOscylacje neutrin. Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande
Oscylacje neutrin Deficyt neutrin atmosferycznych w eksperymencie Super-Kamiokande Deficyt neutrin słonecznych - w eksperymentach radiochemicznych - w wodnych detektorach Czerenkowa Super-Kamiokande, SNO
Bardziej szczegółowoAnaliza oscylacji oraz weryfikacje eksperymentalne
Analiza oscylacji oraz weryfikacje eksperymentalne Formalizm oscylacji 3 zapachy Analiza oscylacji neutrin atmosferycznych Analiza oscylacji neutrin słonecznych Weryfikacja oscylacji neutrin słonecznych
Bardziej szczegółowoPodstawy fizyki wykład 5
Podstawy fizyki wykład 5 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN,
Bardziej szczegółowoWszechświat czastek elementarnych Detekcja czastek
Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki
Bardziej szczegółowoElementy fizyki czastek elementarnych
Elementy fizyki czastek elementarnych dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Plan wykładu: Świat czastek elementarnych czastki, jednostki, kinematyka relatywistyczna Akceleratory
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
Bardziej szczegółowoBąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).
Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie
Bardziej szczegółowoWszechświat cząstek elementarnych
Wszechświat cząstek elementarnych Maria Krawczyk i A. Filip Żarnecki Instytut Fizyki Teoretycznej i Instytut Fizyki Doświadczalnej Wydział Fizyki UW semestr letni, rok akad. 2011/12. 210/9 http://www www.fuw.edu.pl/~
Bardziej szczegółowoWszechświat czastek elementarnych Detekcja czastek
Wszechświat czastek elementarnych Detekcja czastek Wykład Ogólnouniwersytecki Wydział Fizyki U.W. prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych, Instytut Fizyki Doświadczalnej A.F.Żarnecki
Bardziej szczegółowoJak się tego dowiedzieliśmy? Przykład: neutrino
Jak się tego dowiedzieliśmy? Przykład: neutrino Przypomnienie: hipoteza neutrina Pauli 30 Przesłanki: a) w rozpadzie β widmo energii elektronu ciągłe od 0 do E max (dla α, γ dyskretne) b) jądra przed-
Bardziej szczegółowoElementy fizyki czastek elementarnych
Elementy fizyki czastek elementarnych dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Plan wykładu: Świat czastek elementarnych czastki, jednostki, kinematyka relatywistyczna Akceleratory
Bardziej szczegółowoWszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana
Wszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana Aleksander Filip Żarnecki Wykład ogólnouniwersytecki Wydział Fizyki Uniwersytetu Warszawskiego 21 listopada 2017 A.F.Żarnecki WCE Wykład
Bardziej szczegółowoWszechświat Cząstek Elementarnych dla Humanistów Diagramy Faynmana
Wszechświat Cząstek Elementarnych dla Humanistów Aleksander Filip Żarnecki Wykład ogólnouniwersytecki 27 listopada 2018 A.F.Żarnecki WCE Wykład 8 27 listopada 2018 1 / 28 1 Budowa materii (przypomnienie)
Bardziej szczegółowoSymetrie. D. Kiełczewska, wykład 5 1
Symetrie Symetrie a prawa zachowania Spin Parzystość Spin izotopowy Multiplety hadronowe Niezachowanie parzystości w oddz. słabych Sprzężenie ładunkowe C Symetria CP Zależność spinowa oddziaływań słabych
Bardziej szczegółowoAtomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Bardziej szczegółowoPromieniowanie jonizujące
Promieniowanie jonizujące Wykład II Promieniotwórczość Fizyka MU, semestr 2 Uniwersytet Rzeszowski, 8 marca 2017 Wykład II Promieniotwórczość Promieniowanie jonizujące 1 / 22 Jądra pomieniotwórcze Nuklidy
Bardziej szczegółowoczastki elementarne Czastki elementarne
czastki elementarne "zwykła" materia, w warunkach które znamy na Ziemi, które panuja w ekstremalnych warunkach na Słońcu: protony, neutrony, elektrony. mówiliśmy również o neutrinach - czastki, które nie
Bardziej szczegółowoTomasz Szumlak WFiIS AGH 03/03/2017, Kraków
Oddziaływanie Promieniowania Jonizującego z Materią Tomasz Szumlak WFiIS AGH 03/03/2017, Kraków Labs Prowadzący Tomasz Szumlak, D11, p. 111 Konsultacje Do uzgodnienia??? szumlak@agh.edu.pl Opis przedmiotu
Bardziej szczegółowoPromieniowanie jonizujące
Promieniowanie jonizujące Wykład II Krzysztof Golec-Biernat Promieniotwórczość Uniwersytet Rzeszowski, 18 października 2017 Wykład II Krzysztof Golec-Biernat Promieniowanie jonizujące 1 / 23 Jądra pomieniotwórcze
Bardziej szczegółowoElementy fizyki czastek elementarnych
Elementy fizyki czastek elementarnych dr hab. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych IFD Plan wykładu: Świat czastek elementarnych czastki, jednostki, kinematyka relatywistyczna Akceleratory
Bardziej szczegółowoBryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Bardziej szczegółowoDynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:
Bardziej szczegółowoBryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka
Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły
Bardziej szczegółowoSymetrie w fizyce cząstek elementarnych
Symetrie w fizyce cząstek elementarnych Odkrycie : elektronu- koniec XIX wieku protonu początek XX neutron lata 3 XX w; mion µ -1937, mezon π 1947 Lata 5 XX w zalew nowych cząstek; łączna produkcja cząstek
Bardziej szczegółowoDynamika relatywistyczna
Dynamika relatywistyczna Fizyka I (Mechanika) Wykład XII: masa niezmiennicza i układ środka masy zderzenia elastyczne czastki elementarne rozpady czastek rozpraszanie nieelastyczne Dynamika relatywistyczna
Bardziej szczegółowoM. Krawczyk, Wydział Fizyki UW
Wszechświat cząstek elementarnych WYKŁAD 3 M. Krawczyk, Wydział Fizyki UW Zoo cząstek elementarnych 6.III.2013 Masy, czasy życia cząstek elementarnych Liczby kwantowe kwarków (zapach i kolor) Prawa zachowania
Bardziej szczegółowoCząstki elementarne wprowadzenie. Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski
Cząstki elementarne wprowadzenie Krzysztof Turzyński Wydział Fizyki Uniwersytet Warszawski Historia badania struktury materii XVII w.: ruch gwiazd i planet, zasady dynamiki, teoria grawitacji, masa jako
Bardziej szczegółowoWstęp do fizyki cząstek elementarnych
Wstęp do fizyki cząstek elementarnych Ewa Rondio cząstki elementarne krótka historia pierwsze cząstki próby klasyfikacji troche o liczbach kwantowych kolor uwięzienie kwarków obecny stan wiedzy oddziaływania
Bardziej szczegółowoZderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda
Zderzenia Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda Układ środka masy Układ izolowany Izolowany układ wielu ciał: m p m 4 CM m VCM p 4 3
Bardziej szczegółowoNowa fizyka a oscylacja neutrin. Pałac Młodzieży Katowice 29 listopad 2006
Nowa fizyka a oscylacja neutrin Pałac Młodzieży Katowice 29 listopad 2006 Nowa fizyka a oscylacja neutrin Ostatnie lata przyniosły wielkie zmiany w fizyce neutrin. Wiele różnych eksperymentów pokazało,
Bardziej szczegółowoWszechświat cząstek elementarnych dla przyrodników WYKŁAD 2
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 2 Maria Krawczyk, Wydział Fizyki UW Jak badamy cząstki elementarne? 2010/11(z) Ewolucja Wszech'swiata czas,energia,temperatura Detekcja cząstek
Bardziej szczegółowoWszechświat cząstek elementarnych (dla humanistów)
Wszechświat cząstek elementarnych (dla humanistów) Maria Krawczyk i A. Filip Żarnecki nstytut Fizyki Teoretycznej Instytut Fizyki Doświadczalnej Wydział Fizyki UW Odkrycie cząstki Higgsa w LHC (CERN )
Bardziej szczegółowoBozon Higgsa oraz SUSY
Bozon Higgsa oraz SUSY Bozon Higgsa Poszukiwania bozonu Higgsa w LEP i Tevatronie - otrzymane ograniczenia na masę H Plany poszukiwań w LHC Supersymetria (SUSY) Zagadkowe wyniki CDF Masy cząstek cząstki
Bardziej szczegółowoFIZYKA III MEL Fizyka jądrowa i cząstek elementarnych
FIZYKA III MEL Fizyka jądrowa i cząstek elementarnych Wykład 1 własności jąder atomowych Odkrycie jądra atomowego Rutherford (1911) Ernest Rutherford (1871-1937) R 10 fm 1908 Skala przestrzenna jądro
Bardziej szczegółowoCiemna strona Wszechświata
Ciemna strona Wszechświata prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej, Wydział Fizyki U.W. Warszawa, 23 listopada 2010 A.F.Żarnecki Ciemna strona Wszechświata
Bardziej szczegółowoNeutrino cząstka, która nie miała być nigdy odkryta
Aneks 2 Agnieszka Zalewska Neutrino cząstka, która nie miała być nigdy odkryta Neutrino hipotetyczna cząstka Pauliego Historia neutrina sięga odkrycia radioaktywnych rozpadów β jąder atomowych, w których
Bardziej szczegółowoWszechświat czastek elementarnych
Wszechświat czastek elementarnych Wykład 15: Ciemna Strona Wszechświata prof. A.F.Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wszechświat czastek elementarnych
Bardziej szczegółowoWszechświata. Piotr Traczyk. IPJ Warszawa
Ciemna Strona Wszechświata Piotr Traczyk IPJ Warszawa Plan 1)Ciemna strona Wszechświata 2)Z czego składa się ciemna materia 3)Poszukiwanie ciemnej materii 2 Ciemna Strona Wszechświata 3 Z czego składa
Bardziej szczegółowoTitle. Tajemnice neutrin. Justyna Łagoda. obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań
Title Tajemnice neutrin Justyna Łagoda obecny stan wiedzy o neutrinach eksperymenty neutrinowe dalszy kierunek badań Cząstki i oddziaływania 3 generacje cząstek 2/3-1/3 u d c s t b kwarki -1 0 e νe µ νµ
Bardziej szczegółowoV.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Bardziej szczegółowoRozpad alfa. albo od stanów wzbudzonych (np. po rozpadzie beta) są to tzw. długozasięgowe cząstki alfa
Rozpad alfa Samorzutny rozpad jądra (Z,A) na cząstkę α i jądro (Z-2,A-4) tj. rozpad 2-ciałowy, stąd Widmo cząstek α jest dyskretne bo przejścia zachodzą między określonymi stanami jądra początkowego i
Bardziej szczegółowo2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Bardziej szczegółowoElementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna
Elementy Fizyki Jądrowej Wykład 3 Promieniotwórczość naturalna laboratorium Curie troje noblistów 1903 PC, MSC 1911 MSC 1935 FJ, IJC Przemiany jądrowe He X X 4 2 4 2 A Z A Z e _ 1 e X X A Z A Z e 1 e
Bardziej szczegółowoZderzenia relatywistyczne
Zderzenia relatywistyczne Wstęp do Fizyki I (B+C) Wykład XVII: Energia progowa Rozpady czastek Neutrina Fotony Energia progowa Masa niezmiennicza Niezmiennik transformacji Lorenza, (nie zależy od wyboru
Bardziej szczegółowoWYKŁAD 8. Maria Krawczyk, Wydział Fizyki UW. Oddziaływania słabe
Wszechświat cząstek elementarnych WYKŁAD 8 Maria Krawczyk, Wydział Fizyki UW Oddziaływania słabe Cztery podstawowe siłyprzypomnienie Oddziaływanie grawitacyjne Działa między wszystkimi cząstkami, jest
Bardziej szczegółowoWYKŁAD 8. Wszechświat cząstek elementarnych dla przyrodników
Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 8 1 Maria Krawczyk, Wydział Fizyki UW 2.12. 2009 Współczesne eksperymenty-wprowadzenie Detektory Akceleratory Zderzacze LHC Mapa drogowa Tevatron-
Bardziej szczegółowoWYKŁAD 3. Maria Krawczyk, Wydział Fizyki UW. Masy i czasy życia cząstek elementarnych. Kwarki: zapach i kolor. Prawa zachowania i liczby kwantowe:
Wszechświat cząstek elementarnych WYKŁAD 3 Maria Krawczyk, Wydział Fizyki UW Masy i czasy życia cząstek elementarnych Kwarki: zapach i kolor Prawa zachowania i liczby kwantowe: liczba barionowa i liczby
Bardziej szczegółowo