ROCZNIKI GLEBOZNAWCZE T XLVIII NR 3/4, WARSZAWA 1997: 137-149 JACEK DŁUGOSZ CHARACTERISTICS OF SOILS FORMED ON GROUND MORAINE OF VISTULA GLACIATION FROM KRAJEŃSKA UPLAND (POLAND) Department of Soil Science, University of Technology and Agriculture, Bydgoszcz INTRODUCTION A large area of northern Poland is covered by material formed in the Vistula glaciation. The main part of this material is glacial till which forms terminal and ground moraines. Different types of soils were formed from glacial till and they may further undergo strong transformations. In this paper, some results of the research on the changes of mineralogical composition of soil formed from the glacial till of the Vistula glaciation, during the soil-forming processes and anthropogenic factors, were included. The aim of this paper was to present variability of profiles of the analysed soils and classify them according to U.S.D.A. system and PTG classification. MATERIAL AND METHODS This study was undertaken in Gliszcz in northern Poland. The site was located at 53 14 N and 17 44 E, at the attitude 112 m a.s.l. The Quaternary glacial deposit of the study area is in the Krajeńska Upland. This landscape contains: ground moraine, terminal moraine and subglacial gully. The Krajeńska Upland was formed by the Vistula glaciation [Lindner 1992] (Figure 1). Pedons selected and described for studies were located on tops and slopes of hill of ground moraine (Fig. 2). They had various thickness of the argillic horizon. From the surface and parent material horizon the samples were taken from top "ind floor of these horizons. The number of samples taken from the argillic horizon depended on thickness of this horizon. This way of taking samples was caused by the main aim of the research, that was to determine the changes of the mineralogical composition of the clay fraction under the influence of illuvial process.
138 7. Długosz FIG U R E 1. Geom orphological map of Gliszcz area [Kazim ierczak 1991]: 1 - plain ground m o raine, 2 - slopes ground moraine, 3 - knolls of terminal moraine, 4 - hills of term inal moraine, 5 - caving formed during unequal glaciation activity, 6 - caving formed after dead ice, 7 - peat plain, 8 - subglacial gully, 9 - line of narrow-gauge railway, 10 - roads, 11 - sequence of pedons selected for study Soil samples were brought to the laboratory and air-dried in the room temperature. Soil samples were gently crushed and passed through a 2 mm sieve, and then fragments 2 mm were removed. The particle-size distribution was determined in the samples from each of the genetic horizons described. Sand fraction was determined gravimetrically after sieving. Silt and clay fractions were determined by the pipette method after P - l P - 2 P -3 P -4 P -5 P - 6 FIG URE 2. Localization of selected profiles in toposequence dispersion with calgon [Soil Survey Laboratory 1992b]. The following chemical properties of soils were determined: ph in water and in IM KC1 [Soil Survey Laboratory 1992a], organic matter estimated by Tiurin method, total nitrogen by Kjeldahl method [Bremner 1960] and CaC03 by Scheibler method. Cation exchange capacity
Characteristics o f soils formed on ground moraine... 139 TA B LE 1. Selected m orphology features for investigated pedons Profile H orizon Thickness [cm] dry Color m oist T exture1 Structure2 C arbonates3 P-1 Ap 0-35 10YR 5/3 10YR 3/3 fsl 2FCR n. r. B it 35-43 10YR 5/6 10YR 4/6 SCL 2 M PL n. r. B2t 43-53 10YR 5/4 10Y R 4/6 SCL 2M PR v. si. efferv. В tea 53-78 10YR 8/3 10YR 6/6 fsl 2M A BK v. s. efferv. Cgca 78-150 10YR 7/3 10YR 5/3 fsl 2M ABK s. efferv. P-2 Ap 0-3 7 10YR 5/2 10YR 3/2 fsl 2M CR n. r. Bt 3 7 ^ 5 10YR 6/6 10YR 4/6 SCL 2M PL n. r. Btca 45-57 10YR 8/3 10YR 6/3 SCL 2M ABK v. s. efferv. Cca 57-78 10YR 8/3 10YR 6/4 fsl 2M ABK v. s. efferv. Cgca 78-150 10YR 7/3 10YR 5/4 fsl 2M ABK v. s. efferv. P-3 Ap 0-39 10YR 5/3 10YR 3/4 fsl 2 M CR n. r. B it 39-59 10YR 6/4 10YR 4/6 SCL 2M PR n. r. B2t 59-72 10YR 6/4 10YR 4/6 SCL 2M PR n. r. Cgca 72-150 10YR 7/4 10YR 5/4 fsl 1MABK s. efferv. P-4 Ap 0-1 7 10YR 5/3 10YR 4/3 fsl 2FCR si. efferv. A2p 17-35 10YR 6/4 10YR 4/3 SCL 2M CR si. efferv. Cgca 35-150 10YR 7/4 10YR 5/6 fsl 2M ABK s. efferv. P-5 Ap 0-35 10YR 5/3 10YR 3/4 fsl 2FCR si. efferv. B it 35 4-5 10YR 5/4 10YR 4/6 SCL 2M PR v. si. efferv. B2t 45-75 10YR 5/4 10YR 4/6 fsl 2M PR v. si. efferv. Cgca 75-150 10YR 7/4 10YR 5/4 fsl 2M ABK s. efferv. P-6 Ap 0-23 10YR 6/2 10YR 4/4 fsl 2FCR v. si. efferv. A2p 23-35 10YR 5/2 10YR 3/3 SCL 2M CR v. si. efferv. B it 35-59 10YR 6/4 10YR 4/6 SCL 2M PR n. r. B2t 59-104 10YR 5/4 10YR 4/6 SCL 2M ABK n. r. Cgca 104-170 10YR 7/3 10YR 5/4 fsl 2M ABK s. efferv. 'Texture: fsl = fine sandy loam, SCL = sandy clay loam. Structure: 1 = weak, 2 = moderate, 3 = strong, F = fine, M = medium, С = coarse, CR = crumb, PL - platy, PR = prismatic, ABL = angular blocky. 3Carbonates: n. r. = no reaction, v. si. efferv. = very sligth effervesce, s. efferv. = strong effervesce, v. s. efferv. = very strong effervesce. (CEC) and exchangeable K+, Na+, Mg+, Ca++ of the extracts were measured by means of an AAS spectrophotometer. Exchange acidity was also determined by the BaCl2 method [Melich 1960]. Total contents of K, Na, Ca, Mg, Fe, A1 were determined by atomic absorption spectrophotometry and total Ti by tiron method after dissolving in mixture of H2F2 and H CI04 (4:1) [Jackson 1965]. Content of total Si was determined by gravimetrical method after fusing it with Na2C 0 3 [Jackson 1965]. RESULTS The morphological description of the analyzed soils is presented in Table 1. The main morphological difference of the studied pedons was various thickness
140 J. Długosz of the illuvial horizon. The highest thickness of this horizon was in P-6 profile (69 cm), while in the P-4 profile the illuvial horizon was deleted. In P-l and P-2 profiles, under the thin Bt horizon, the horizon with a large amount of C ac 03 (above 20%) (Table 2) occurred. The structure of the analysed soils was differentiated, especially in the illuvial horizon, in which prismatic dominated, but also plate structure (Bit, P-l and P-2 profiles) as well as angular blocks (B2t, P-6 profile) were present (Table 1). The aggregates of studied soils belong to the medium class while dimension is concerned and to moderate grade of stability. The results of particle-size distribution of investigated soils are showed in Table 2. The content of over 2 mm fraction in investigated pedons was very different (0.3-5.9%) (Table 2). These results were consistent with the results obtained for other soils formed from glacial till [Cieśla 1968, Komisarek 1993]. Contents of sand fraction were differentiated in the investigated pedons (Table 2). The main part of this fraction was fine sand, the amount of which was 20.7-28.5% (Table 2). The similar domination of fine sand fraction was in the soils analysed by Cieśla [ 1968] and Marcinek [ 1961 ]. The minimum content of sand fraction was observed in Bt horizon (45.0-54.8%). This decrease resulted from the illuvial process, which formed these soils. The distribution of clay fraction (<2 LLm) in investigated soils was inverse. The highest content of fine fraction was observed in Bt horizon an it decreased with the increasing thickness of the illuvial horizon. However, the amount of this fraction in Bt horizon was always higher than in the surface horizon (Table 2). The ratio of clay fraction from Bt horizon to clay fraction from surface horizon was always higher than 1.2, which is characteristic for the argillic horizon. The similar distribution was observed for the fine clay fraction (< 0,2 \im) (Fig. 3). The content of C-org. in the surface horizon of analysed pedons was from 0.92% to 1.12%, and the content of nitrogen was from 0.23 to 0.35% (Table 3) and the C:N ratio varied 3.4-4.9. The obtained C-org. value and narrow C/N ratio indicate the mollic horizon in surface horizon. The amount of C-org. was lower than that determined in other soils of the Wielkopolska region [Cieśla, Dąbkowska-Naskręt 1983]. Another characteristic attribute of investigated soils was high ph in parent material (7.54-7.67 in KC1), which decreased with the decreasing of depth (Table 3). The high ph value in parent material resulted from high C ac 03 (7.51-9.14%) content in glacial till (Table 3). This content was lower than C ac 03 content for glacial till from Wielkopolska and Mazury [Cieśla, Dąbkowska-Naskręt 1983; Uggla et al. 1974] and similar to the content determined in glacial till from Kaszuby Lake District [Pondel 1963]. In the Btca horizon of P-l and P-2 pedons a significant increase of C ac 03 content occurred which indicates the illuvial process [Rust 1983]. The high content of CaC03 in this horizon classify it was the calcic horizon. CEC in the analysed soils achieved the highest values in Bt horizon (15.43-21.25 cmol(+)/kg) and it was the lowest in parent material horizon. Such CEC distribution in the profile resulted from the illuvial process and was correlated with the amount of clay fraction. The major exchangeable cation in CEC was Ca++ (5.0-15.25 cmol+/kg), which was 80-90% CEC at the 90-99% base saturation (Table 4). The CEC data obtained in investigated soils are similar to values
Characteristics o f soils formed on ground moraine... 141 échangeable cations [%] %fme day fraction FIG URE 3. Content of fine clay fraction in investigated soils Figure 4. Content of exchangeable cations in investigated pedons
142 7. Długosz TA B LE 2. Particle-size investigated soils from G liszcz Profile H orizon D epth Particle-size distribution [%] [cm] >2 2-1 1-0.5 0.5-0.25 0.2 5-0.1 i S о о 0.0 5-0.002 <0.002 P -l Ap 11-18 3.9 1.3 4.3 10.1 27.3 16.2 25.0 15.8 24-32 4.1 1.4 3.9 9.5 26.4 16.1 25.0 17.7 B it 36-42 2.4 1.3 3.3 8.6 20.7 14.3 21.8 30.0 B2t 4 5-5 2 0.4 1.4 3.8 7.8 21.0 13.1 21.6 31.3 Btca 58-71 3.6 2.1 4.0 9.2 24.3 15.7 26.7 18.0 Cgca 80-91 1.4 1.5 4.3 9.5 27.3 17.5 24.9 15.0 126-135 2.2 1.6 3.8 9.7 26.9 17.7 25.8 14.5 P-2 Ap 16-24 1.7 1.5 4.6 9.6 28.1 13.3 23.3 19.6 30-36 0.6 1.0 4.3 9.6 26.5 16.5 23.2 18.9 Bt 38-43 0.9 1.0 3.2 7.6 21.0 12.6 19.9 34.7 Btca 47-55 1.8 2.0 3.9 8.9 23.1 13.1 22.4 26.6 Cca 68-77 0.3 1.1 4.0 10.8 25.3 11.4 37.3 10.1 Cgca 105-117 1.0 1.2 4.8 9.6 29.4 15.5 24.5 15.0 P-3 Ap 7-18 0.5 1.2 3.5 9.7 27.7 16.1 25.2 16.6 24-35 2.7 1.1 3.2 8.5 25.1 17.9 27.5 16.7 B it 36-43 0.6 0.9 3.4 8.2 23.2 15.5 23.2 25.6 48-57 2.7 1.2 3.5 7.6 22.7 14.9 22.2 27.9 B2t 63-69 0.3 1.8 2.6 7.1 22.1 15.5 21.7 29.2 Cgca 74-86 0.4 1.3 4.5 10.1 27.0 18.0 22.5 16.6 117-127 1.5 1.5 4.9 10.6 27.9 18.7 19.5 16.9 P-4 Ap 8-17 1.4 1.5 4.6 9.6 25.3 15.7 24.1 19.2 A2p 27-33 0.9 1.3 4.2 10.1 25.4 14.7 23.2 21.1 Cgca 36-47 1.2 1.7 3.4 11.3 25.1 12.8 28.1 17.6 65-73 3.6 1.4 3.2 10.2 21.8 12.3 25.6 25.5 95-110 1.7 2.0 5.1 12.7 20.2 12.6 27.5 19.9 P-5 Ap 5-15 0.5 1.2 4.1 9.2 25.7 15.3 26.2 18.3 22-33 0.7 1.3 2.4 7.6 24.7 16.7 25.3 22.0 B it 36-42 2.1 1.6 3.5 7.7 21.9 14.3 24.2 26.8 B2t 46-5 2 0.3 1.1 3.3 8.5 24.0 15.1 22.9 25.1 56-62 2.6 1.2 3.2 8.0 23.3 14.8 24.1 25.4 68-75 0.5 1.1 3.7 8.3 23.6 14.8 25.4 23.1 Cgca 85-96 5.9 1.3 4.1 8.8 24.7 15.7 27.1 18.3 110-125 1.3 1.4 4.2 9.0 25.5 16.2 25.5 18.2 P-6 Ap 10-23 0.7 1.4 5.6 6.9 28.5 14.0 24.3 19.3 A2p 28-35 2.0 1.2 4.5 12.4 27.3 11.7 22.7 20.2 B it 36-43 1.0 1.7 7.2 8.9 22.6 12.9 24.7 22.0 44-57 2.3 2.2 4.1 9.7 23.5 12.1 24.7 23.7 B2t 62-71 1.0 1.1 3.9 10.3 24.6 13.1 25.0 22.0 72-83 1.0 2.0 3.1 10.2 23.9 12.3 25.6 22.9 86-92 1.2 1.6 3.5 10.2 23.3 13.8 25.3 22.3 96-103 0.5 1.7 3.6 10.8 24.3 13.8 23.7 22.1 Cgca 105-111 0.9 1.2 3.5 10.3 26.7 13.0 28.1 17.2 132-141 3.4 1.5 5.1 11.9 26.8 13.5 25.8 15.4
Characteristics o f soils formed on ground moraine... 143 TA BLE 3. Selected chem ical properties of investigated soils Profile H orizon Depth Content [%] C/N ph СаСОз [cm] C-org. mat. org. N H20 KC1 [%] P-1 Ap 11-18 1.11 1.91 0.31 3.9 6.92 6.48 24-32 1.18 2.03 0.35 3.8 6.80 5.97 B it 36-42 0.18 0.31 0.08 2.3 7.19 6.31 B2t 45-52 0.08 0.14 0.02 4.0 7.67 6.92 0.56 Btca 58-71 0.08 0.14 0.02 4.0 8.14 7.59 21.42 Cgca 80-91 8.51 7.61 9.00 126-135 8.42 7.67 9.14 P-2 Ap 16-24 1.08 1.86 0.29 3.7 6.76 6.07 30-36 1.13 1.95 0.23 4.9 6.59 5.87 Bt 38-43 0.16 0.27 0.07 2.3 7.61 6.90 0.64 Btca 47-55 0.08 0.14 0.02 4.0 7.91 7.37 21.85 Cca 68-77 8.43 7.63 14.40 Cgca 105-117 8.52 7.67 8.71 P-3 Ap 7-18 1.07 1.84 0.29 3.7 7.24 6.57 24-33 0.99 1.71 0.32 3.1 7.32 6.73 B it 34-43 0.25 0.43 0.11 2.3 7.59 6.42 48-57 0.19 0.32 0.08 2.4 7.73 6.59 B2t 63-69 0.07 0.12 0.01 7.0 7.86 6.68 Cgca 74-86 8.23 7.54 7.69 117-127 8.54 7.63 8.26 P-4 Ap 8-17 0.95 1.64 0.28 3.4 7.85 7.26 2.71 A2p 27-33 0.92 1.58 0.27 3.4 7.99 7.37 2.96 Cgca 36-47 0.29 0.50 0.12 2.4 8.41 7.59 9.14 65-73 0.10 0.17 0.02 5.0 8.26 7.60 9.14 95-110 8.42 7.64 8.71 P-5 Ap 5-15 1.12 1.93 0.23 4.9 7.97 7.41 3.62 28-33 1.04 1.79 0.29 3.6 7.99 7.40 3.48 B it 36-42 0.27 0.47 0.10 2.7 8.13 7.34 0.82 B2t 46-52 0.19 0.32 0.08 2.4 8.10 7.27 0.75 56-62 0.11 0.19 0.02 5.5 8.05 7.35 1.00 68-75 0.05 0.08 0.01 5.0 8.08. 7.36 1.00 Cgca 85-96 8.37 7.63 7.69 110-125 8.44 7.66 8.55 P-6 Ap 10-23 1.05 1.81 0.25 4.2 7.64 7.35 0.68 A2p 28-35 1.19 2.05 0.27 4.1 7.57 7.29 0.64 B it 36-43 0.32 0.55 0.14 2.3 7.59 6.69 0.48 4 4-57 0.12 0.31 0.03 4.0 7.48 7.22 B2t 62-71 0.10 0.17 0.02 5.0 7.43 6.67 72-83 7.47 6.64 86-92 7.63 6.81 96-103 7.84 7.10 Cgca 105-111 8.04 7.56 8.21 132-141 8.13 7.65 7.51
144 J. Długosz TABLE 4. Sorption properties of investigated pedons Profile H orizon Depth [cm] Ca2+ M g2+ K+ Na+ H+ EC CEC V [% ] [cmol(+)x kg!] P -l Ap 11-18 8.50 1.13 0.24 0.04 0.83 10.74 13.81 92 24-32 9.73 0.91 0.24 0.03 1.20 12.11 14.83 90 B it 36-42 15.25 1.44 0.17 0.05 0.45 17.38 20.00 97 B2t 45-5 2 15.05 1.31 0.16 0.07 0.30 16.89 19.74 98 Btca 58-71 7.33 0.84 0.13 0.09 0.17 8.56 9.83 98 C2gca 80-91 5.00 0.65 0.14 0.06 0.15 6.00 10.46 97 126-135 5.06 1.01 0.10 0.07 0.08 6.32 10.63 99 P-2 Ap 16-24 11.17 1.06 0.36 0.03 1.05 13.70 14.20 92 30-36 11.49 1.08 0.35 0.03 1.24 14.19 14.91 91 Bt 38-43 12.75 1.36 0.32 0.05 0.38 14.86 20.80 97 Btca 47-55 13.96 0.87 0.22 0.05 0.15 15.25 18.40 99 Cca 68-77 7.91 0.80 0.12 0.07 0.12 9.02 9.60 99 Cgca 105-117 6.57 1.21 0.16 0.08 0.13 8.15 10.60 98 P-3 Ap 7-18 4.87 0.94 0.27 0.04 0.38 6.50 14.82 94 24-33 6.54 0.77 0.38 0.03 0.45 8.17 14.52 94 B it 34-43 9.28 0.96 0.32 0.03 0.49 11.08 19.63 96 48-57 10.54 0.80 0.18 0.04 0.41 11.97 19.84 97 B2t 63-69 15.30 0.74 0.19 0.04 0.41 16.68 21.25 98 Cgca 74-86 6.81 0.38 0.15 0.04 0.17 7.55 12.21 98 117-127 7.50 0.55 0.15 0.05 0.15 8.40 12.26 98 P-4 Ap 8-17 11.40 0.74 0.19 0.06 0.22 12.61 15.26 98 A2p 27-33 11.48 1.01 0.41 0.05 0.22 13.17 14.82 98 Cgca 36-47 8.66 0.67 0.10 0.07 0.15 9.65 12.03 98 65-73 8.57 0.68 0.15 0.06 0.18 9.64 12.67 98 95-110 8.39 1.00 0.11 0.07 0.17 9.74 12.00 98 P-5 Ap 5-15 10.05 0.71 0.45 0.03 0.34 11.58 16.42 97 28-33 10.39 0.74 0.27 0.05 0.23 11.68 17.03 98 B it 36-42 11.23 1.02 0.19 0.03 0.29 12.76 18.00 98 B2t 46-52 11.10 1.35 0.15 0.03 0.27 12.90 17.06 98 56-62 11.45 0.84 0.13 0.04 0.26 12.72 17.42 98 68-75 12.7 0.90 0.13 0.04 0.23 14.07 18.45 98 Cgca 85-96 9.14 0.67 0.15 0.06 0.27 10.29 12.63 97 110-125 10.34 0.98 0.10 0.06 0.29 11.77 13.25 98 P-6 Ap 10-23 5.06 0.82 0.50 0.04 0.36 6.78 15.81 95 A2p 28-35 5.15 0.78 0.53 0.03 0.36 6.85 15.83 95 B it 36-43 6.55 1.06 0.37 0.06 0.41 8.45 16.45 95 4 4-57 8.95 0.87 0.11 0.04 0.34 10.31 18.03 97 B2t 62-71 9.09 0.65 0.20 0.05 0.38 10.37 17.82 96 72-83 10.47 0.73 0.22 0.05 0.41 11.88 18.43 97 86-92 11.04 0.86 0.24 0.07 0.40 12.61 18.47 97 96-103 9.34 1.01 0.14 0.07 0.26 10.82 15.43 98 Cgca 105-111 7.41 0.79 0.09 0.07 0.18 8.54 12.64 98 132-141 7.84 0.82 0.10 0.07 0.19 9.02 10.46 98 EC - exchangeable cations, CEC - cation exchange capacity, V - base saturation.
Characteristics o f soils form ed on ground moraine.. 145 TABLE 5. Chem ical composition of investigated soils [%] Profile H orizon S i0 2 AI2O3 БегОз T i0 2 M go CaO M no K2O N a20 P -l Ap 82.29 9.23 2.64 0.199 1.09 1.15 0.040 2.61 0.74 80.72 9.87 2.61 0.198 0.12 1.94 0.031 2.70 0.79 B it 78,26 11.83 4.24 0.249 1.23 0.78 0.052 2.97 0,88 B2t 78.48 10.61 4.36 0.248 1.31 1.27 0.056 2.89 0.71 Btca 71.84 8.31 2.37 0.169 1.64 12.69 0.039 2.35 0.59 Cgca 79.15 8.13 2.54 0.172 1.72 4.78 0.044 2.73 0.71 79.33 8.09 2.38 0.174 1.56 4.95 0.034 2.69 0.76 P-2 Ap 80.64 9.67 2.83 0.213 1.08 1.91 0.034 2.69 0.92 81.19 9.78 2.52 0.211 1.08 1.62 0.032 2.69 0.87 Bt 78.23 11.55 4.01 0.231 1.29 0.88 0.062 2.72 1.02 Btca 71.93 7.88 2.99 0.186 1.64 12.38 0.052 2.36 0.57 Cca 76.47 7.30 2.23 0.182 1.61 9.05 0.043 2.41 0.70 Cgca 78.43 7.23 2.49 0.186 1.65 6.71 0.037 2.56 0.70 P-3 Ap 81.19 8.60 2.53 0.206 1.16 1.42 0.027 2.93 0.92 82.54 8.33 2.49 0.203 1.13 1.30 0.028 2.93 0.99 B it 78.40 10.92 3.95 0.225 1.32 1.05 0.057 3.07 1.03 78.35 10.42 4.01 0.228 1.43 1.29 0.062 3.18 1.00 B2t 77.38 11.14 4.33 0.230 1.47 1.21 0.052 3.15 1.04 Cgca 78.44 8.52 2.93 0.207 1.46 4.77 0.043 2.68 0.95 80.12 6.91 2.59 0.199 1.53 5.03 0.037 2.64 0.90 P-4 Ap 80.66 7.97 2.29 0.203 1.28 3.89 0.048 2.56 1.10 A2p 79.92 7.89 2.68 0.195 1.47 3.90 0.046 2.98 1.03 Cgca 76.54 7.63 2.12 0.213 1.63 7.33 0.053 2.67 1.81 75.43 7.36 2.29 0.206 1.77 8.49 0.046 2.69 1.76 77.25 7.01 2.20 0.206 1.70 7.17 0.048 2.67 1.78 P-5 Ap 81.52 7.74 2.74 0.203 1.42 2.68 0.045 2.81 0.87 81.25 7.86 2.95 0.204 1.42 2.54 0.049 2.74 1.02 B it 79.87 9.94 3.59 0.224 1.32 1.19 0.053 2.84 0.95 B2t 80.06 9.19 3.71 0.224 1.37 1.26 0.045 2.99 1.11 70.12 11.01 4.00 0.226 1.34 1.32 0.047 2.95 0.98 78.98 10.19 3.74 0.233 1.29 1.54 0.049 2.97 1.10 Cgca 79.42 7.74 2.35 0.202 1.74 4.67 0.056 2.95 0.89 80.55 7.56 2.38 0.193 1.62 3.72 0.040 2.83 1.05 P-6 Ap 82.21 7.01 1,77 0.205 1.24 3.07 0.041 2.73 1.70 A2p 81.67 7.74 1,74 0.189 1.19 3.20 0.052 2.62 1.58 B it 78.53 10.04 2.99 0.228 1.44 2.18 0.043 2.93 1.63 79.50 10.10 3.06 0.221 1.39 1.08 0.048 2.94 1.66 B2t 79.15 10.27 2.56 0.212 1.34 1.90 0.039 2.84 1.67 80.33 9.38 2.93 0.214 1.49 1.13 0.047 3.03 1.40 79.08 10.12 3.16 0.208 1.46 1.08 0.045 3.13 1.73 78.37 10.06 3.08 0.220 1.58 2.02 0.047 3.16 1.50 Cgca 77.12 9.52 2.73 0.173 1.61 4.49 0.044 2.84 1.48 75.75 9.43 2.77 0.181 1.73 5.72 0.043 2.89 1.5
146 J. Długosz TABLE 6. M olar ratios in investigated soils Profile Horizon D epth [cm] Si0 2 /A l2 0 3 Si02/Fe2C>3 А 120з/Ре20з P-1 Ap 11-18 15.2 82.8 5.5 24-32 13.9 82.2 5.9 B it 36-42 11.7 49.1 4.2 B2t 45-52 12.6 47.8 3.8 Btca 58-71 14.7 80.6 5.5 Cgca 80-91 16.5 82.8 5.0 126-135 16.6 88.6 5.3 P-2 Ap 16-24 14.2 75.7 5.4 30-36 14.1 85.6 6.1 Bt 38-43 11.5 51.9 4.5 Btca 47-55 15.5 63.4 4.1 Cca 68-77 17.8 91.1 5.1 Cgca 105-117 18.4 83.7 4.6 P-3 Ap 7-18 16.2 86.3 5.3 24-35 16.8 88.1 5.2 B it 36-43 12.2 52.8 4.3 48-57 12.8 51.9 4.1 B2t 63-69 11.8 47.5 4.0 Cgca 74-86 15.6 71.2 4.6 117-127 19.7 82.2 4.2 P-4 Ap 8-17 17.2 93.6 5.5 A2p 27-33 17.9 79.3 4.6 Cgca 36-47 17.0 96.0 5.6 65-73 17.4 87.5 5.0 95-110 18.7 93.3 5.0 P-5 Ap 5-15 17.9 79.1 4.4 22-33 17.5 73.2 4.2 B it 36-42 13.6 59.1 4.3 B2t 46-52 14.8 57.4 3.8 56-62 12.0 51.9 4.3 68-75 13.2 56.1 4.3 Cgca 85-96 17.4 89.9 5.2 110-125 18.1 90.0 5.0 P-6 Ap 10-23 19.9 123.4 6.2 A2p 28-35 17.9 124.8 7.0 B it 36-43 13.3 69.8 5.3 44-57 13.4 68.1 5.2 B2t 62-71 13.1 82.2 6.3 72-83 14.5 72.9 5.0 86-92 13.3 66.5 5.0 96-103 13.2 67.6 5.1 Cgca 105-111 13.8 75.1 5.5 132-141 13.6 72.7 5.3
Characteristics o f soils formed on ground moraine... 147 obtained for other soils formed from glacial till [Cieśla 1968, Konecka-Betley 1961, Pondel 1971]. Also the results of chemical analysis showed in Table 5, are typical for soils with the illuvial horizon. The content of S i02 in investigated pedons ranges from 71.84 to 82.54% (Table 5). The lowest amount of S i0 2 was determined in argillic horizon (Table 5) but the difference in S i02 content between argillic horizon (Bt) and parent material (C) decreased with the increasing thickness of argillic horizon. Inverse was the trend of A120 3 content, witch achieved the highest value in the Bt horizon (Table 5). The highest content was determined in the Bt horizon of profile P-l (11.55%). The increase in A120 3 amount together with simultaneous decrease in S i0 2 content in argillic horizon are the evidence of the increase in the clay minerals content in this horizon. This is also confirmed by the narrow S i0 2:Al20 3 ratio in argillic horizon (Table 6). Also the content of Fe20 3 in investigated soils was very differentiated. The highest Fe20 3 amount was also determined in argillic horizon (2.96-4.36%). These amounts were clearly higher than those in surface horizon (1.74-2.95%) and parent material (2.12-2.74%) (Table 5). The increase in Fe20 3 in these horizons was caused by the illuvial process. This increase is confirmed by the S i0 2/Fe20 3 and Al20 3/Fe20 3 ratios, which are narrow in illuvial horizon (Table 6). The last component, which submitted the differentiation under the influence of illuvial process was CaO. The high content of CaO was observed in parent material (Table 5). The highest content of CaO was determined in Btca horizon of P -1 and P-2 profiles (12.69 and 12.38%). It resulted from the illuvial process, which formed the investigated soils. This horizon of these profiles corresponds with the described morphological calcic horizon. Based on the morphological study and laboratory analysis the endopedons in investigated soils can be identified as argillic horizon (P-l, P-2, P-3, P-5, P-6 profile) and calcic horizon (P-l, P-2 profile). Basing on identificated diagnostic horizons [Soil Survey Staff 1992b] the investigated soils were classificated as: Typic Hapludalfs (P-3, P-5, P-6 profiles) - with well formed argillic horizon, Ruptic Alfic Eutrochrepts (profiles P -1 and P-2) - with a little argillic horizon and clear calcic horizon, Typic Undorthents (P-4) - without argillic and calcic horizons. According to the PTG classification all the analysed soils belong to lessives soils. CONCLUSIONS In all the investigated soils no morphologically formed luvic horizon was present. This was a result of the erosion process, which is characteristic for the moraine areas as well as of intensive agricultural production. The principal process, which formed the pedons of the investigated soils was the illuvial process. The intensity of this process was very various which led different thickness of argillic horizon, the decrease in clay fraction content and CEC, together with the increase in thickness of Bt horizon. This process was visible too in total chemical content through the decrease of amounts S i02 and increase A120 3 and Fe20 3 contents in argillic horizon.
148 J. Długosz REFERENCES B REM N ER J.M. 1960: Determ ination of nitrogen soil by the Kjeldahl method. J. Agr. Sei., 55: 1-23. C IEŚLA W. 1968: Geneza i właściwości gleb uprawnych w ytw orzonych z gliny zwałowej na W ysoczyźnie Kujawskiej. Rocz. WSR Poznań, 18: 1-60. C IEŚLA W., D ĄBK O W SK A -N A SK RĘT H. 1983: Skład chem iczny frakcji ilastej gleb w ytw o rzonych z gliny zwałowej moren dennych Niziny W ielkopolskiej. Rocz. Glebozn. 34: 37-54. JA C K SO N M.L. 1965: Soil chemical analysis. London: 272-324. KOM IS AREK J. 1993: Zm ienność przestrzenna czarnych ziem i gleb płowych falistej moreny dennej Równiny Kościańskiej. (M anuskrypt). Katedra G leboznaw stw a M elioracyjnego, AR Poznań. K ONECK A -BETLEY K. 1961: Studia nad kom pleksem sorpcyjnym gleb wytw orzonych z gliny zwałowej w nawiązaniu do ich genezy. Rocz. Glebozn. 10: 469-520. LIN D ER L. 1992: Czwartorzęd, osady, metody badań, stratygrafia. Wyd. PAE, pp 574-590. M A R CIN EK J. 1960: Studia nad fizyko-chem icznym i właściwościam i gleb bielicow ych i brunatnych Niziny W ielkopolsko-kujaw skiej. PTPN, 7. M EH LICH A. 1960: Charge characterization of soils. Trans. Int. Congr. Soil Sei. 7th, M edison W I, pp 292-311. PO N D EL H. 1963: Fizyko-chem iczne i chemiczne właściwości gleb brunatnych i bielicow ych w ytw orzonych z gliny zwałowej Pojezierza Kaszubskiego. Pam. P u l 9: 53-97. PO N D EL H. 1971: Zasobność gleb wytworzonych z piasków w różne formy w apnia i magnezu. Pam. Pul. 45: 93-107. R U ST R.H. 1983: Alfisols. C hapter 7. (In:) Pedogenesis and Taxonomy. D evelopm ent in Soil Sei., 1IB, Elsevier, A m sterdm -Oxford-N ew York: 253-283. SOIL SU RV EY STAFF 1992a: Key to soil taxonom y SMSS. Technical M onograph No 19, 5th Edition, Pocahontas Press Inc. SOIL SU RV EY STAFF 1992b: Soil Survey Laboratory M ethods M anual. Soil Survey Investigations Report No. 42, Version 2.0. U G G LA H., PIA ŚCIK H., W O CŁA W EK T. 1974: Charakterystyka gleb półwyspu Fuleda w aspekcie ich przydatności do uprawy ziem niaków bezwirusowych. Z e s z N a u k. Akad. R o l- Tech., Olsztyn 7: 29-40.
Characteristics^ o f soils form ed on ground_ moraine. 149 J. Długosz CHARAKTERYSTYKA GLEB WYTWORZONYCH NA MORENIE DENNEJ ZLODOWACENIA WISŁY Z WYSOCZYZNY KRAJEŃSKIEJ Katedra Gleboznawstwa Akademii Techniczno-Rolniczej w Bydgoszczy STRESZCZENIE Badania prowadzono w miejscowości Gliszcz w północnej Polsce. Wybrane do prac studialnych profile leżały na szczytach i stokach pagórków moreny dennej, powstałej w czasie zlodowacenia wisły. Badane gleby różniły się miąższością poziomu iluwialnego (0-69 cm) i cechowały się zróżnicowaną strukturą (angularna, pryzmatyczna, bryłowa). Zawartość ogółem frakcji ilastej (15,5-31,3%) i drobnej frakcji ilastej oraz kationowa pojemność wymienna były bardzo zróżnicowane. Największe ich wartości występowały w poziomie Bt. Wzrost wartości tych właściwości w poziomie wzbogacenia należy wiązać z procesem iluwiacji, który był głównym procesem formującym analizowane gleby. Proces ten uwidacznia się również w całkowitym składzie chemicznym. W poziomach iluwialnych występuje widoczny spadek zawartości S i0 2 oraz wzrost ilości A120 3 i Fe20 3. Intensywność iluwiacji w analizowanych glebach była bardzo zróżnicowana, czego rezultatem jest różna miąższość poziomu Bt oraz zmniejszanie się ilości frakcji ilastej wraz ze wzrostem miąższości tego poziomu. Według systematyki polskiej są to gleby płowe. Jednak na podstawie przeprowadzonych badań analizowane gleby zaliczono do: Typie Hapludalfs (profile P-3, P-5 i P-6), Ruptic Alfie Eutrochrepts (profile P -1, P-2) i Typie Undorthents (profil P-4) [USDA 1992]. D r Jacek Długosz Katedra Gleboznawstwa Akademii Techniczno-Rolniczej w Bydgoszczy 85-029 Bydgoszcz, Bernardyńska 6 Praca wpłynęła do redakcji w lipcu 1996 r.