Automation and Drives



Podobne dokumenty
Kurtyny świetlne i ich praca w układzie sterowania bezpiecznym zatrzymaniem maszyny z przekaźnikami bezpieczeństwa część I

Nowy podręcznik aplikacyjny Siemens All Rights Reserved.

Kurs Projektowanie i programowanie z Distributed Safety. Spis treści. Dzień 1. I Bezpieczeństwo funkcjonalne - wprowadzenie (wersja 1212)

Styczniki i przekaźniki easyconnect SmartWire

Układ napędowy tramwaju niskopodłogowego na przykładzie układu ENI-ZNAP/RT6N1

Zasada i wymagania dotyczące ryglowania i blokowania osłon ruchomych. Marek Trajdos LUC-CE Consulting

PROGRAMOWALNE STEROWNIKI LOGICZNE

UKŁAD ROZRUCHU TYPU ETR 1200 DO SILNIKA PIERŚCIENIOWEGO O MOCY 1200 KW. Opis techniczny

AP3.8.4 Adapter portu LPT

Karta charakterystyki online. C2C-SA07530A10000 detec OPTOELEKTRONICZNE KURTYNY BEZPIECZEŃSTWA

Programowanie sterowników przemysłowych / Jerzy Kasprzyk. wyd. 2 1 dodr. (PWN). Warszawa, Spis treści

Sterowniki Programowalne (SP)

Systemy bezpieczeństwa zagadnienia bezpieczeństwa w automatyce

Zastosowanie Safety Integrated na przykładzie obrabiarki Scharmann Heavycut

Podstawy PLC. Programowalny sterownik logiczny PLC to mikroprocesorowy układ sterowania stosowany do automatyzacji procesów i urządzeń.

UKŁAD SAMOCZYNNEGO ZAŁĄCZANIA REZERWY ZASILANIA (SZR) z MODUŁEM AUTOMATYKI typu MA-0B DOKUMENTACJA TECHNICZNO-RUCHOWA

INSTRUKCJA INSTALATORA

Instrukcja obsługi AP3.8.4 Adapter portu LPT

Karta charakterystyki online UE45-3S13D330 UE45-3S1 PRZEKAŹNIKI BEZPIECZEŃSTWA

Marek Trajdos Klub Paragraf 34 SBT

Podstawy Automatyki. Wykład 12 - Układy przekaźnikowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

INSTRUKCJA OBSŁUGI Przekaźnik na USB Nr katalogowy RELx-USB-00

Ćwiczenie 4: Eksploatacja systemu kontroli dostępu jednego Przejścia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Karta charakterystyki online. C2C-EA06030A10000 detec OPTOELEKTRONICZNE KURTYNY BEZPIECZEŃSTWA

PROGRAMOWANIE PWM. Porty, które mogą być zamienione na PWM w każdym module RaT16 to port 3,4,5,6

STEROWANIE MASZYN I URZĄDZEŃ I. Laboratorium. 4. Przekaźniki czasowe

1. Cel ćwiczenia. 2. Podłączenia urządzeń zewnętrznych w sterowniku VersaMax Micro

Konfiguracja i programowanie sterownika GE Fanuc VersaMax z modelem procesu przepływów i mieszania cieczy

ROZRUCH I ZATRZYMANIE NAPĘDU ELEKTRYCZNEGO ZGODNIE Z ZASADNICZYMI WYMAGANIAMI BEZPIECZEŃSTWA

Karta charakterystyki online UE23-3MF2A3 UE23-3MF PRZEKAŹNIKI BEZPIECZEŃSTWA

Ćwiczenie 3 Układy sterowania, rozruchu i pracy silników elektrycznych

Elementy współpracy elektrycznych urządzeń blokujących i czujników położenia z osłonami maszyn - część 2.

str. 1 Temat: Sterowanie stycznikami za pomocą przycisków.

CENTRALA SYGNALIZACJI POŻAROWEJ

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 14 DTR Katowice, ul. Szopienicka 62 C tel/fax.: +48 (32)

Dokumentacja Techniczno-Ruchowa

Karta charakterystyki online UE44-3SL2D330 UE44-3SL PRZEKAŹNIKI BEZPIECZEŃSTWA

Systemy wbudowane. Wprowadzenie. Nazwa. Oznaczenia. Zygmunt Kubiak. Sterowniki PLC - Wprowadzenie do programowania (1)

Karta charakterystyki online UE48-3OS2D2 UE48-3OS PRZEKAŹNIKI BEZPIECZEŃSTWA

Automatyka i sterowania

Politechnika Gdańska. Gdańsk, 2016

Zalety rozdzielnic SN typu MILE wyposażonych w wyłączniki o napędzie magnetycznym

Karta charakterystyki online UE48-2OS3D2 UE48-2OS PRZEKAŹNIKI BEZPIECZEŃSTWA

Badanie napędu z silnikiem bezszczotkowym prądu stałego

Karta charakterystyki online UE43-2MF3D2 UE43-2MF PRZEKAŹNIKI BEZPIECZEŃSTWA

Falownik FP 400. IT - Informacja Techniczna

Karta charakterystyki online. C2C-SA04530A10000, C2C-EA04530A10000 detec OPTOELEKTRONICZNE KURTYNY BEZPIECZEŃSTWA

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 14W DTR Katowice, ul. Szopienicka 62 C tel/fax.: + 48 (32)

Elastyczne systemy wytwarzania

Karta charakterystyki online UE23-2MF2D3 UE23-2MF PRZEKAŹNIKI BEZPIECZEŃSTWA

Współpraca elementów inicjujących i wykonawczych z programowalnymi przekaźnikami bezpieczeństwa MSS (1)

WSTĘP. Rys.1 Szablon do projektowania schematu elektrycznego wraz ze specyfikacją obwodów.

REGULATOR NAPIĘCIA STR DOKUMENTACJA TECHNICZNA INSTRUKCJA

Karta charakterystyki online UE44-3SL2D33 UE44-3SL PRZEKAŹNIKI BEZPIECZEŃSTWA

MODUŁ STEROWANIA ZAWOREM Z NAPĘDEM ELEKTRYCZNYM

Układ ENI-ZNAP/T3L441

KARTA KATALOGOWA. Przekaźnik ziemnozwarciowy nadprądowo - czasowy ZEG-E EE

INSTRUKCJA OBSŁUGI. Przekaźnik czasowy ETM ELEKTROTECH Dzierżoniów. 1. Zastosowanie

POLITECHNIKA SZCZECIŃSKA WYDZIAŁ ELEKTRYCZNY

Sterownik SZR-V2 system automatycznego załączania rezerwy w układzie siec-siec / siec-agregat

Karta charakterystyki online. RLY3-OSSD100 ReLy PRZEKAŹNIKI BEZPIECZEŃSTWA

Karta charakterystyki online. C4C-SB12030A10000 detec OPTOELEKTRONICZNE KURTYNY BEZPIECZEŃSTWA

Karta charakterystyki online UE43-3MF2A3 UE43-3MF PRZEKAŹNIKI BEZPIECZEŃSTWA

PRZEKAŹNIKI CZASOWE W PRZEKAŹNIKI CZASOWE I KONTROLI SERIA 5 PRZEKAŹNIKI MODUŁOWE SERIA 6 PRZEKAŹNIKI PRZEMYSŁOWE. strona 440

Karta charakterystyki online. C2C-SA16530A10000, C2C-EA16530A10000 detec OPTOELEKTRONICZNE KURTYNY BEZPIECZEŃSTWA

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 15 DTR Katowice, ul. Szopienicka 62 C Tel/fax.: +48 (32)

PROGRAMOWANIE UKŁADÓW REGULACJI CIĄGŁEJ PCS

PRZEKAŹNIKI CZASOWE W PRZEKAŹNIKI CZASOWE I KONTROLI SERIA 5 PRZEKAŹNIKI MODUŁOWE SERIA 6 PRZEKAŹNIKI PRZEMYSŁOWE. strona 440

PRZEKAŹNIK ZIEMNOZWARCIOWY NADPRĄDOWO-CZASOWY

Kontrola prędkości bezpiecznej za pomocą przekaźnika GLP. ProductUpdate

Formułowanie wymagań dotyczących wyposażenia bezpieczeństwa wykorzystującego technikę RFID

1. Wstęp. dr inż. Piotr Pawełko / Przed przystąpieniem do realizacji ćwiczenia patrz punkt 4!!!


EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody III stopnia

Instrukcja obsługi Czujnik dyfuzyjny z tłumieniem tła O1D101 / O1D104

SFC zawiera zestaw kroków i tranzycji (przejść), które sprzęgają się wzajemnie przez połączenia

Karta charakterystyki online. C2C-SA07510A10000, C2C-EA07510A10000 detec2 Core OPTOELEKTRONICZNE KURTYNY BEZPIECZEŃSTWA

Szybkie przekaźniki pośredniczące mocne PHU-2 PHU-3 PHU-4

Szkoła programisty PLC : sterowniki przemysłowe / Gilewski Tomasz. Gliwice, cop Spis treści

zastosowania różnego rodzaju zabezpieczeń zależności od branży lub rodzaju wykorzystywanych maszyn?

UKŁAD AUTOMATYCZNEGO PRZEŁĄCZANIA ZASILANIA APZ-2T1S-W1

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Autonomiczny Sterownik Urządzeń Wykonawczych ASW45

STEROWNIKI BEZPIECZEŃSTWA

Kurtyny świetlne GuardShield Typ 4 Zasięg do 18 m Rozdzielczość 14 lub 30 mm Możliwość programowania

HiTiN Sp. z o. o. Przekaźnik kontroli temperatury RTT 14 WD DTR Katowice, ul. Szopienicka 62 C tel/fax.: +48 (32)

Przekaźnik napięciowo-czasowy

Karta charakterystyki online UE43-3MF2D3 UE43-3MF PRZEKAŹNIKI BEZPIECZEŃSTWA

Aplikacje bezpieczeństwa z przekaźnikami 3SK1 Siemens Sp. z o.o Wszelkie prawa zastrzeżone. siemens.pl/safety

Karta charakterystyki online UE10-3OS3D0 UE10-3OS PRZEKAŹNIKI BEZPIECZEŃSTWA

DOKUMENTACJA TECHNICZNO ROZRUCHOWA AUTOMATU MPZ-2-SZR

URZĄDZENIE STERUJĄCE Typu SAS Urządzenie sterujące SAS

Modułowy programowalny przekaźnik czasowy firmy Aniro.

Bezprzewodowa sieć kontrolno-sterująca z interfejsem Bluetooth dla urządzeń mobilnych z systemem Android

Konfiguracja i programowanie sterownika GE Fanuc VersaMax z modelem procesu przepływów i mieszania cieczy. Przebieg ćwiczenia

POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ENERGOELEKTRONIKI I NAPĘDÓW ELEKTRYCZNYCH

SPECYFIKACJA HTC-K-VR. Kanałowy przetwornik CO2 z wyjściem analogowym V i progiem przekaźnikowym

SZR-278. Sterownik Załączenia Rezerwy. v Instrukcja obsługi

Przykładowe działania systemu R-CAD

Transkrypt:

Współpraca aktywnych optoelektronicznych urządzeń ochronnych (AOPD) z przekaźnikami bezpieczeństwa zagadnienia wybrane. Marek Trajdos, Wiesław Monkiewicz Wraz z rozwojem techniki urządzeń optoelektronicznych wzrasta rola użytkowa produktów związanych z systemem bezpiecznego zatrzymania maszyny. Właściwości aktywnych optoelektronicznych urządzeń ochronnych, znanych pod angielskojęzycznym skrótem AOPD pozwoliły na szerokie ich zastosowanie w aplikacjach przemysłowych we wszystkich kategoriach bezpieczeństwa. Ze względu na ogromne możliwości i znaczącą liczbę dostępnych produktów, w niniejszej pracy przedstawiono jedynie nieliczne reprezentatywne przykłady zastosowań AOPD w układach sterowania bezpiecznym zatrzymaniem maszyny. Skaner laserowy LS4. Skaner laserowy jako aktywne optoelektroniczne urządzenie ochronne stanowi w wielu przypadkach funkcjonalny element systemu sterowania zapewniającego bezpieczne zatrzymanie maszyny. Na Rys. 1. przedstawiono typowy fragment aplikacji w której skaner został dodatkowo wyposażony w przekaźnik bezpieczeństwa 3RG7847.. Dwa elektroniczne wyjścia skanera (1) zostały połączone ze wyspecjalizowanymi wejściami przekaźnika, który został wykonany w wersji w wyjściami przekaźnikowymi. Takie rozwiązanie pozwala zatem na zamianę sygnału skanera na sygnał bezpotencjałowy z separacją napięcia. Przekaźnik ponadto posiada wejście sprzężenia zwrotnego przeznaczonego dla aktuatorów (2). Do wyjść stykowych można podłączyć bezpośrednio cewki sterujące styczników lub przekaźników lub wejścia sterujące innymi urządzeniami wykonawczymi np. przekształtnika ze zintegrowanymi funkcjami bezpieczeństwa. Jak każde urządzenie realizujące funkcje bezpieczeństwa skaner posiada wejście resetujące (4), co pozwala uniknąć niespodziewanego uruchomienia. W zamieszczonym na rysunku 1. schemacie nie wykorzystano możliwości przełączania stref bezpieczeństwa. Rys. 2. przybliża działanie typowej funkcji bezpieczeństwa w tym wypadku bezpiecznego blokowania wyjściowych tranzystorów falownika PWM. Funkcja ta zapewnia bezpieczne (czytaj: niezawodne) zablokowanie dopływu energii do silnika napędowego. Pozwala to na realizację stopu typu 0. lub 1. zgodnie ze standardem PN-EN Rys. 1 Przykładowy schemat aplikacyjny skanera LS4 współpracującego z przekaźnikiem ewaluacyjnym 3RG7847. 1-2 wyjścia potencjałowe (OSSD), 2- obwód sprzężeń zwrotnych (styki pomocnicze styczników K4 i K5), 3 styczniki wyjściowe (do sterowania układem napędowym), 4- przycisk RESET. 60204-1 w zależności od zastosowanego urządzenia sterującego układem bezpieczeństwa. Przedstawione rozwiązanie pozwala na organizację systemu spełniającego wymagania 3. kategorii bezpieczeństwa wg normy PN-EN 954-1. Rys. 2. Wykorzystanie możliwości bezpiecznego blokowania tranzystorów falownika jako elementu układu sterowania bezpiecznym zatrzymaniem maszyny. Styk S1 inicjator, zaciski X533.1 i.2 wyjście do sprzężenia zwrotnego. Technika Łączeniowa n.n. 1 / 5

Rys. 3. Koncepcja tworzenia bezpiecznej aplikacji napędowej na przykładzie transportu wewnętrznego. 1- stalenie stref bezpieczeństwa i ostrzegawczych, 2- sekwencja wyboru aktywnej strefy, 3- skaner w układzie kategorii 3., 4- przekaźnik bezpieczeństwa skonfigurowany w kategorii 3. ze zwłoką czasową, 5- przekształtnik SINAMICS G120, 6- algorytm aplikacji z wykorzystaniem trzech stref bezpieczeństwa i prędkości bezpiecznych, 7- moduły sterowania bezpiecznym zatrzymaniem implementowane do przekształtnika SINAMICS (3 kategoria). Rys. 3. w sposób schematyczny przedstawia sposób tworzenia aplikacji przemysłowej służącą do zmian prędkości i adekwatnych rozmiarów stref bezpieczeństwa. Skaner pozwala nie tylko na definicję stref bezpieczeństwa o kształcie bardzo skomplikowanym, który pozwala na pracę urządzenia w bezpośrednim otoczeniu przeszkód, które nie naruszają strefy w sensie formalnym przeszkoda stała (jak filar hali) nie jest np. operatorem maszyny i nie jest narażona w tym sensie na wypadek. Każdej strefie bezpieczeństwa ze względu na niewidoczność dla obsługi towarzyszy strefa ostrzegawcza związana z sygnalizacją. Takie rozwiązanie pozwala minimalizować niepotrzebne zatrzymania maszyny w wyniku przypadkowego naruszenia strefy wyłączającej. Możliwość zdefiniowania wielu stref oraz (co ważne) jednoznacznego określenia za pomocą tabeli, dopuszczalnych przełączeń pozwala na przykład, jak to pokazano na rysunku 3. na unikanie kolizji strefy bezpieczeństwa z otoczeniem w czasie skrętu wózka (6). Działanie układu musi być sterowane i monitorowane przez układ nadrzędny (przekaźnik bezpieczeństwa lub programowany sterownik specjalistyczny (4)). Ze względu na konieczność zwolnienia przed zakrętem zalecane jest zastosowanie przekształtnika w możliwością wbudowania elementów gwarantujących działanie funkcji bezpieczeństwa (5) i (7). Ponieważ skaner LS4 oraz przekształtnik SINAMISC G120 pozwalają na uzyskanie kategorii 3., cały układ można zaprojektować na takim właśnie poziomie. Warto również dodać, że G120 pozwala na uzyskanie tzw. prędkości bezpiecznej gwarantowanej, co było nieosiągalne dla starszych modeli. Dla wózków samojezdnych kategoria 3. jest wystarczająca (PN-EN 1525). Technika Łączeniowa n.n. 2 / 5

Analiza zagrożeń i ocena ryzyka Walidacja Zadecydowanie o sposobach zmniejszenia ryzyka środkami sterowania Określenie wymagań dotyczących bezpieczeństwa (system sterowania) i sporządzenie ich wykazu Projektowanie Rys. 4. Proces doboru i projektowania środków bezpieczeństwa wg normy PN-EN 954-1. W odniesieniu do prowadzonych wyżej rozważań o charakterze projektowym należy jednak pamiętać że wiele norm (w tym wspomniana PN-EN 954-1) zaleca pewną chronologię postępowania projektanta. Pokazuje to rysunek 4. Należy zwrócić uwagę, że właściwe projektowanie, to znaczy dobór aparatury i czujników oraz ich parametrów jest dopiero czwartym etapem pracy nad daną aplikacją. Ponadto w celu upewnienie się co do prawidłowości realizacji założeń konieczna jest weryfikacja prac projektowych, a następnie jeszcze praktyczne sprawdzenie, czy przyjęte założenia sprawdzają się w eksploatacji produktu (tu: maszyny) jest to walidacja. Przedstawiony powyżej proces ulega znacznemu skróceniu gdy projektant dysponuje normą typu C (szczegółową) dotyczącą danego rodzaju maszyny. Norma taka podaje dokładne dane bezpieczeństwa dla projektu, pozwala więc na przejście od razu do etapu czwartego. Kurtyna świetlna 4. kategorii. W odróżnieniu od skanera kurtyny świetlne w niektórych wykonaniach umożliwiają realizację układów sterowania bezpiecznym zatrzymaniem maszyny z 4. kategorią bezpieczeństwa. Przykładowy schemat takiej aplikacji zamieszczono na Rys. 5. Na szczególną uwagę zasługuje układ dwóch styczników na wejściu falownika (FU). Trzeba bowiem pamiętać, że stycznik pozwala na realizację układu bezpieczeństwa w kategorii 4. zintegrowane funkcje falownika zaś jedynie w kategorii 3. Układ barier optycznych. W wielu wypadkach aby określić strefę bezpieczną wystarcza jedynie układ kilku promieni świetlnych (barier optycznych). Sytuacja taka została pokazana na rysunku 6. Ze względu jednak na możliwe wnikanie kończyn do wnętrza strefy norma PN-EN 999 podaje w tablicy nr 1 (patrz poniższa tabela) zalecane wysokości takich pojedynczych barier. Liczba promieni świetlnych i ich wysokość nad płaszczyną odniesienia w [mm] 4 300, 600, 900, 1200 3 300, 700, 1100 2 400, 900 Nowoczesne kurtyny świetlne są również wyposażone dzięki przekaźnikom ewaluacyjnym lub funkcjom zintegrowanym w dodatkowe funkcje sterowania sekwencyjnego, Należą do nich zawieszanie i przesłanianie. Na rysunku 7. pokazano przykładowy schemat układu wykorzystującego funkcję zawieszania działania kurtyny na czas przejazdu obiektu dopuszczalnego wymiarowo i czasowo. Jest to tzw. zawieszanie równoległe ze względu na układ przestrzennego rozmieszczenia pomocniczych czujników optycznych. Jako czujniki wykorzystać można właśnie bariery optyczne. Na schemacie widocznym na rysunku 7. pokazano przycisk kasowania/startu, który musi być Technika Łączeniowa n.n. 3 / 5

Rys. 5. Zastosowanie kurtyny świetlnej w 4. kategorii bezpieczeństwa do sterowania napędem z przekształtnikiem częstotliwości bez zintegrowanej funkcji bezpieczeństwa. umieszczony w miejscu uniemożliwiającym dostęp z wnętrza strefy niebezpiecznej. Ponadto operator mający dostęp do przycisku musi mieć w polu widzenia cały obszar strefy niebezpiecznej, aby stwierdzić, czy może uruchomić układ bez narażenia osób, które ewentualnie mogłyby się w niej znajdować. Jednoczesność naruszenia barier M2 i M3 jest w układzie kontrolowana przez przekaźnik ewaluacyjny. Podsumowanie. Jak przedstawiono w powyższych rozważaniach istnieją liczne możliwości realizacji układów sterowania bezpiecznym zatrzymaniem maszyny w wykorzystaniem aktywnych optoelektronicznych urządzeń ochronnych. Urządzenia takie w układzie sterowania spełniają rolę elektronicznych czujników inicjujących reakcję systemu w celu bezpiecznego wyeliminowania zagrożenia ruchem. Jednak ich właściwości i funkcje mogą być wykorzystywane w układzie jedynie w wypadku prawidłowego zastosowania, które uwzględnia zarówno ich prawidłowe umiejscowienie, właściwe wykorzystanie elementów optycznych, jak i powiązania z innymi elementami, jak przekaźniki bezpieczeństwa i aktuatory. Dzięki mnogości rozwiązań technicznych (produktów) możliwe jest realizowanie praktycznie dowolnych aplikacji we wszystkich kategoriach bezpieczeństwa. W czasie projektowania nie można jednak zapomnieć, że podstawę procesu stanowi w każdym wypadku analiza ryzyka, a łańcuch bezpieczeństwa jest tak mocny, jak jego najsłabsze ogniwo! Klub Paragraf 34. Rys. 6. Przykładowy układ czterech barier optycznych. Płaszczyzną odniesienia dla wysokości jest tu podłoga hali. Wciąż rozbudowywany jest wortal internetowy www.paragraf34.pl. Wraz z zebraniem założycielskim Klubu (Bronisławów 13.02.07 r.) Klub powstał w sposób formalny. W I Sympozjum Bezpieczeństwa, które odbyło się 14.02.07 r. wzięło udział ponad sto osób. Stało się zatem celowe utworzenie strefy wortalu z dostępem ograniczonym tylko dla Członków Klubu. Strefa ta została nazwana żółtą (co koresponduje z kolorystyką urządzeń związanych z bezpieczeństwem maszyn) w odróżnieniu od strefy szarej ogólnie dostępnej. Przewidywanym zastosowaniem strefy żółtej jest publikowanie wiadomości klubowych oraz analiz przypadków (case study) sytuacji przemysłowych, mających bezpośredni związek z bezpieczeństwem, nadsyłanych przez członków w celu dyskusji i budowy wspólnej bazy wiedzy. Technika Łączeniowa n.n. 4 / 5

Rys. 7. Przykładowe zastosowanie barier optycznych M2 i M3 w złożonej funkcji sekwencji zawieszania (mutingu) równoległego. Technika Łączeniowa n.n. 5 / 5