Influence of regulating parameters on noise emitted by diesel engine powered with blends of diesel oil and ethyl tert-butyl ether

Podobne dokumenty
WPŁYW WŁAŚCIWOŚCI PALIW MINERALNYCH I ROŚLINNYCH NA PRĘDKOŚĆ NARASTANIA CIŚNIENIA W PRZEWODZIE WTRYSKOWYM I EMISJĘ AKUSTYCZNĄ WTRYSKIWACZA

Keywords: compression ratio, dual-fuel engine, combustion process, natural gas

Influence of agricultural engine fuelling mineral fuel and biofuels with on self-ignation delay in aspect of the environment

Andrzej AMBROZIK Piotr ORLIŃSKI Stanisław ORLIŃSKI. 1. Wprowadzenie. 1. Introduction

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Euro Oil & Fuel Biokomponenty w paliwach do silników Diesla wpływ na emisję i starzenie oleju silnikowego

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

WPŁYW WŁAŚCIWOŚCI PALIW NATURALNYCH I ROŚLINNYCH NA WSKAŹNIKI EKONOMICZNE I ENERGETYCZNE SILNIKA O ZAPŁONIE SAMOCZYNNYM

FUNCTIONAL AGRIMOTOR TESTING SUPPLIED BY THE VEGETABLE ORIGIN FUELS BADANIE FUNKCJONALNE SILNIKA ROLNICZEGO ZASILANEGO PALIWAMI POCHODZENIA ROŚLINNEGO

PTNSS Wstęp. 2. Zakres modyfikacji silnika. Jerzy KAPARUK Sławomir LUFT

NIESTACJONARNY PRZEPŁYW CIEPŁA W TŁOKU DOŁADOWANEGO SILNIKA Z ZAPŁONEM SAMOCZYNNYM

Impact of ETBE addition to diesel oil on variation of engine crankshaft acceleration process

GRANICA SPALANIA STUKOWEGO W DWUPALIWOWYM SILNIKU O ZAPŁONIE SAMOCZYNNYM KNOCK COMBUSTION LIMIT IN A TWO-FUEL DIESEL ENGINE

OCENA ZUŻYCIA PALIWA PRZEZ SILNIK O ZAPŁONIE SAMOCZYNNYM PRZY ZASILANIU WYBRANYMI PALIWAMI

WYBRANE PARAMETRY PROCESU SPALANIA MIESZANIN OLEJU NAPĘDOWEGO Z ETEREM ETYLO-TERT-BUTYLOWYM W SILNIKU O ZAPŁONIE SAMOCZYNNYM

Biogas buses of Scania

Ocena emisji składników spalin silnika wysokoprężnego zasilanego mieszaninami oleju napędowego z estrami metylowymi oleju rzepakowego

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

CZTEROKULOWA MASZYNA TARCIA ROZSZERZENIE MOŻLIWOŚCI BADAWCZYCH W WARUNKACH ZMIENNYCH OBCIĄŻEŃ

IMPACT OF FUEL APPLICATIONS MICROEMULSION THE HYDROCARBON -ESTER - ETHANOL INDICATORS FOR EFFECTIVE WORK ENGINE PERKINS C -44


Changes in blow-by and compression pressure of a diesel engine during a bench durability test

WINCENTY LOTKO, KRZYSZTOF GÓRSKI

OCENA PORÓWNAWCZA ZUśYCIA PALIWA SILNIKA CIĄGNIKOWEGO ZASILANEGO BIOPALIWEM RZEPAKOWYM I OLEJEM NAPĘDOWYM

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013

The influence of physicochemical fuel properties on operating parameters in diesel engine

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

PARAMETRY ENERGETYCZNE I ASPEKT EKOLOGICZNY ZASIALNIA SILNIKA ZS PALIWEM MINERALNYM POCHODZENIA ROŚLINNEGO

EM.033 EM EM.033.2

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

The study of derived cetane number for ethanol-diesel blends


Medical electronics part 10 Physiological transducers

ANALIZA WIELKOŚCI SZYBKOZMIENNYCH SILNIKA AD3.152 UR ZASILANEGO PALIWEM MINERALNYM, PALIWEM POCHODZENIA ROŚLINNEGO I ICH MIESZANINAMI

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

Ocena wybranych parametrów procesu spalania w silniku AD3.152 zasilanym mieszaninami oleju napędowego z estrami metylowymi oleju rzepakowego

Drgania głowicy silnika wysokoprężnego zasilanego dwupaliwowo

CHARAKTERYSTYKI PRACY SILNIKA HCCI ZASILANEGO BIOGAZEM

ASSESSMENT OF THE FUEL DYNAMIC DELIVERY ANGLE INFLUENCE ON THE SELF-IGNITION DELAY IN THE ENGINE FUELLED WITH EKODIESEL PLUS OILS

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

The effect of adding gasoline to diesel fuel on its self-ignition properties

Regionalny Dyrektor Ochrony Środowiska ul. 28 czerwca 1956 Poznań

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Opóźnienie samozapłonu wybranych paliw węglowodorowych

SELECTION OF LUBRICATING OIL AIMED AT REDUCTION OF IC ENGINE FRICTION LOSSES

ANALIZA ZACIERANIA ELEMENTÓW POMPY WTRYSKOWEJ ROZDZIELACZOWEJ CAV DPA ZASILANEJ MIESZANINĄ ON I EETB

BARIERA ANTYKONDENSACYJNA

Euro Oil & Fuel. Biokomponenty w paliwach do silników Diesla. wplyw na emisje i starzenie oleju silnikowego. Bio-components in Diesel fuels impact

Wpływ wybranych właściwości olejów napędowych na niektóre parametry silników o różnym systemie zasilania paliwem

INFLUENCE OF THE WEAR OF SPRAY NOZZLE TIPS ON EXHAUST GAS TOXICITY IN DIESEL ENGINES

Analysis of the influence of injection pressure in common rail system on spray tip penetration of the selected alternative fuels

Badania procesów wtrysku i spalania paliwa rzepakowego w silniku o zapłonie samoczynnym

MODELE REGRESYJNE SIECI NEURONOWYCH W ZASTOSOWANIU DO IDENTYFIKACJI PRZEBIEGU PARAMETRÓW PROCESU SPALANIA W SILNIKU O ZAPŁONIE SAMOCZYNNYM

The Archives of Automotive Engineering Archiwum Motoryzacji Vol. 79, No. 1, 2018

WPŁYW KĄTA WYPRZEDZENIA WTRYSKU NA JEDNOSTKOWE ZUŻYCIE PALIWA ORAZ NA EMISJĘ SUBSTANCJI TOKSYCZNYCH W SILNIKU ZS ZASILANYM OLEJEM RZEPAKOWYM

CATALOGUE CARD LEO S L XL / BMS KARTA KATALOGOWA LEO S L XL / BMS

WPŁYW ZASTOSOWANIA DODATKU ETANOLU DO MIESZANINY OLEJU NAPĘDOWEGO Z ESTREM FAME NA EKONOMICZNE I EKOLOGICZNE WSKAŹNIKI PRACY SILNIKA PERKINS-1104C-44

PN-ISO 10843:2002/AC1

1. WSTĘP 2. PRZYCZYNY POWSTAWANIA HAŁASU W AGREGATACH HYDRAULICZNYCH

Akademia Morska w Szczecinie. Wydział Mechaniczny

WPŁYW MIESZANIN ETANOLU Z OLEJEM NAPĘDOWYM NA EMISJĘ WYBRANYCH SKŁADNIKÓW SPALIN

OCENA WPŁYWU ZUŻYCIA NA POZIOM HAŁASU URZĄDZEŃ Z JEDNOCYLINDROWYMI SILNIKAMI SPALINOWYMI

Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów

WPŁYW ZASILANIA SILNIKA PERKINS 1104C BIOETANOLEM NA EKONOMICZNE I ENERGETYCZNE WSKAŹNIKI JEGO PRACY

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(97)/2014

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT

LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE

Hard-Margin Support Vector Machines

WPŁYW WZROSTU DAWKI PALIWA NA ZMIANY AMPLITUD SKŁADOWYCH HARMONICZNYCH DRGAŃ SKRĘTNYCH WAŁU ZESPOŁU SPALINOWO-ELEKTRYCZNEGO

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013

Wpływ ustawienia kąta wyprzedzenia wtrysku na procesy zachodzące w komorze spalania silnika rolniczego zasilanego biopaliwami

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(87)/2012

Effect of the compression ratio on operational parameters of a natural gas fuelled compression ignition engine operating in a dual-fuel mode

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE. Możliwości aplikacyjne emisji akustycznej do badania układów wtryskowych silników okrętowych

WPŁYW ZASILANIA PALIWEM MIKROEMULSYJNYM NA PROCES JEGO WTRYSKU W SILNIKU O ZAPŁONIE SAMOCZYNNYM

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE

THE INFLUENCE OF THE ENGINE LOAD ON VALUE AND TEMPERATURE DISTRIBUTION IN THE VALVE SEATS OF TURBO DIESEL ENGINE

ANALIZA PARAMETRÓW PRACY DWÓCH NOWOCZESNYCH SILNIKÓW TURBODOŁADOWANYCH

Installation of EuroCert software for qualified electronic signature

WPŁYW ZASILANIA SILNIKA PERKINS 1104C BIOETANOLEM NA PRZEBIEG PROCESU WTRYSKU I PODSTAWOWE PARAMETRY ROZPYLANIA

Cracow University of Economics Poland

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Effect of intake hydrogen addition on the performance and emission characteristics of a spark-ignition gasoline engine

European Crime Prevention Award (ECPA) Annex I - new version 2014

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Rating occurrence of knock combustion in a dual fuel CI engine powered by addition of biogas

THE CONTROLLING OF THE FUEL AUTOIGNITION PROCESS DURING DIESEL ENGINE START-UP

PTNSS 2013 SC Wstęp. Tomasz GILOWSKI Zdzisław STELMASIAK

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

INFLUENCE OF DIESEL ENGINE FED WITH MINERAL AND VEGETABLE FUELS ON PRESSURE INCREASE RATE IN INJECTION PIPE AND HEAT EMISSION CHARACTERISTICS

Knovel Math: Jakość produktu

Transkrypt:

Wincenty LOTKO, Paweł MACIĄG, Krzysztof GÓRSKI PTNSS 2011 SC 026 Influence of regulating parameters on noise emitted by diesel engine powered with blends of diesel oil and ethyl tert-butyl ether Abstract: The article will present results of research into assessment of noise emissions from AD3.152 engine powered with diesel fuel and its blends including between 10 and 40 % (by volume) of ethyl tert-butyl ether (ETBE). An estimate was attempted of how noise emissions of this engine change as dependent on regulation of the tested fuel's injection start angle. The investigations were executed in conditions of load characteristic profile (Mo = 40, 60, 80, 100, and 120 Nm) in respect of three different speeds of shaft crank rotation, i.e. 1200, 1600, and 2000 rpm. In addition, rates of pressure increase in the combustion chamber of AD3.152 engine powered with the tested fuels were determined. This helped to estimate dependences between the noise of the engine under testing and variation in rates of pressure increase in its combustion chamber. Key words: sound emission, alternative fuels, diesel fuel blends Wpływ parametrów regulacyjnych na hałas silnika wysokoprężnego zasilanego mieszaninami oleju napędowego z eterem etylo-tert butylowym Streszczenie: W artykule zostaną zaprezentowane wyniki badań z zakresu oceny emisji hałasu silnika AD3.152 zasilanego olejem napędowym oraz jego mieszaninami z eterem etylo-tert butylowym w ilości od 10 do 40 % (objętościowo). Starano się ocenić jak zmienia się emisja hałasu tego silnika w zależności od regulacji kąta wyprzedzenia wtrysku testowanego paliwa. Badania wykonano w warunkach charakterystyki obciążeniowej (Mo = 40, 60, 80, 100 i 120 Nm) i dla trzech różnych prędkości obrotowych wału korbowego tj. 1200, 1600 i 2000 obr/min. Ponadto wyznaczono prędkości narastania ciśnienia w komorze spalania silnika AD3.152 zasilanego testowanymi paliwami. Pozwoliło to ocenić zależności występujące pomiędzy hałasem badanego silnika i zmianami prędkości narastania ciśnienia w jego komorze spalania. Słowa kluczowe: emisja dźwięku, paliwa alternatywne, mieszaniny oleju napędowego 1. Introduction Search for alternative fuels to be used in internal-combustion engines has been conducted in a range of scientific centres for years now. It primarily concerns possible applications of vegetable oils and their esters and has led, in most European countries, to industrial-scale manufacture and distribution of biofuels containing blends of diesel oil and vegetable oil esters. Increasingly stringent standards of toxic exhaust gas emissions and the instable situation of the oil fuel market drive the search for new types of diesel engine fuels. A line of this research involves testing heavy oil additions to produce fuel blends of beneficial properties [1]. Such additions modify fractional composition and thereby affect physico-chemical properties of fuel (viscosity, density, lubricity, cetane number, lower heating value, etc.). This contributes to changes of the combustion process and results, among other things, in sound emission levels different than where pure diesel oil is applied. The article presents results of testing impact of regulation parameters on sound emission of the internal combustion engine AD3.152 powered with ON diesel oil and its blends with ethyl tert-butyl ether (EETB). The testing occurred in conditions of load characteristic profile for three values of fuel's injection start angle α dpt and three shaft crank rotations. Both pressure fluctuations in the combustion chamber and sound power Lw(A) emitted by the given engine were recorded at each measurement point. 2. Methods and materials Research was carried out in an engine laboratory of Technical University of Radom. The laboratory is equipped with AD3.152 diesel engine and a measurement system of high-speed parameters such as: in-cylinder pressure, needle lift, and pressure in the delivery pipe. Technical specifications of the measurement system of high speed parameters for IC engines are described in [2]. 2.1. Test stand The view of the tested engine connected to a water type brake /2/ is presented in Fig. 1. Measurements of engine noise were carried out with the 1

use of advanced Brüel & Kjaer 2595 model sound level meter /3/ connected to a B&K model 2595 microphone /4/. The analysis of sound parameters employed specialist software, code BZ7205, implemented in the analyzer s memory card. Incylinder pressure variations: in-cylinder pressure, 15 7 5 PC p c=f( α) p w=f( α) h i=f( α) 4 needle lift, and pressure in the delivery pipe were recorded by means of Keithely KPCI3110 data acquisition board inserted in a PC work station /5/. The engine load, coolant temperature, and crankshaft rotational speed were controlled by a dynamometer system /11/ [3]. 3 11 6 8 9 14 1 2 10 12 13 Fig. 1. View of the test stand: 1 AD3.152 engine, 2 engine brake, 3 sound analyser, 4 B&K model 2595 microphone, 5 PC with a measurement card, 6 signals amplifier, 7 in-cylinder pressure transducer (AVL QC34D), 8 needle lift sensor (CL80), 9 fuel pressure sensor (AVL QL61D), 10 engine crankshaft encoder, 11 dynamometer control system, 12 engine temperature sensor, 13 oil temperature sensor, 14 fuel temperature sensor, 15 measurement surface. Rys. 1. Widok stanowiska pomiarowego: 1 silnik AD3.152, 2 hamulec silnikowy, 3 analizator dźwięku, 4 mikrofon pomiarowy (B&K, typ 3595), 5 komputer z kartą pomiarową, 6 wzmacniacz sygnału, 7 czujnik ciśnienia w komorze spalania (AVL QC34D), 8 czujnik wzniosu iglicy (CL80), 9 czujnik ciśnienia paliwa w przewodzie wtryskowym (AVL QL61D), 10 nadajnik kąta obrotu wału korbowego, 11 system kontroli hamulca, 12 czujnik temperatury czynnika chłodzącego silnik, 13 czujnik temperatury oleju, 14 czujnik temperatury paliwa, 15 powierzchnia pomiarowa. Engine testing was performed on an in-line 3- cylinder 2.5-liter diesel engine (AD3.152) with a peak torque of 165 Nm at about 1200 rpm and a peak power of 34.6 kw. Selected technical specifications of the tested engine are presented in Table 1. The engine's oscillating parameters were measured as time-dependent. A 10 khz low-pass filter and signal sampling frequency of 100 khz were applied. High-frequency measurement noise was removed by wavelet shrinkage method. Necessary calculations were carried out with MathCAD ver. 14 software featuring a 'Wavelet Extension Pack'. Table. 1. Technical specification of AD3.152 diesel engine. Tabela. 1. Specyfikacja techniczna silnika AD3.152. No Parameter Value 1. Cylinder number and arrangement 3, in line 2. Cylinder diameter 91.44 mm 3. Piston stroke 127 mm 4. Engine capacity 2502 cm 3 5. Compression value 16.5 6. Maximum power 34.6 kw 7. Maximum torque 165.4 Nm 8. Crankshaft speed at idle run 750 rpm 9. Fuel injection system Lucas - CAV type DPA 2

2.2. Measurements of engine noise emissions Acoustic measurements were carried out with Brüel & Kjaer 2260 sound analyzer connected to 3595 microphone (Fig. 2). It is a two-microphone probe for measuring sound intensity. The application of a two-microphone technique provides information on both the instantaneous pressure and pressure gradient in the sound field. The microphones are separated by a fixed distance in the sound field, and the microphone signals are fed to a sound intensity processor which calculates the sound intensity. The sound intensity is calculated as average sound pressure of the unit time multiplied by particle velocity (calculated from the measured pressure gradient). Such a system measures the component of the sound intensity along the probe axis and also indicates the direction of energy flow [4, 5]. Fig. 2. View of Brüel & Kjaer 2260 sound analyser with measurement microphones and calibrator. Rys. 2. Widok analizatora 2260 firmy Brüel & Kjaer z mikrofonami pomiarowymi i kalibratorem. The analyzer is equipped with BZ7205 software dedicated to measuring sound intensity and calculating sound power. The sound level meter allows real-time 1/1- and 1/3-octave frequency analysis and broadband statistical distributions. Area of the measurement surface equals 0.48 m 2 and is located directly above the tested engine head. The sound power measurements were carried out according to ISO 9614-2:1996 Acoustics. Determination of sound power levels of noise sources using sound intensity. Measurement by scanning. The measurement period is approximately 10 seconds. The tested surface was scanned twice in such a short time. This method of sound emission measurements can be utilised in conditions of near field of noise source (where the distance from the measurement microphone to the source of sound is less than three times the size of a tested item), which obtains in most engine-testing laboratories. 2.3 Properties of tested fuels Diesel oil and its blends with ethyl tert-butyl ether were used. Selected physico-chemical properties of these fuels are illustrated in table 2. ETBE (etyl tert-butyl ether) is considered a semirenewable compound produced from ethanol and isobutene. In Poland, ETBE is used as an oxygenated compound in the formulation of gasolines. One of the most important properties of ETBE is its high value of octane number (about 119). For this reason, the ether can be used as an excellent antiknock additive to gasoline. In the case of diesel engines, cetane number is a more important property of fuel. As illustrated by Table 2, the increasing addition of ETBE to diesel oil causes a significant decrease of cetane number value. It affects the first phase of fuel combustion process (longer ignition delay). The ignition delay in diesel engines has an important, indirect effect on higher engine noise. In case of too long ignition delay, the rate of fuel burning can be too rapid, resulting in engine knock that decreases efficiency while increasing engine noise and wear. The addition of ETBE to diesel fuel affects other physicochemical properties of the tested blends as well. The increasing addition of ETBE in diesel oil leads to a proportional decrease of: density, viscosity, surface tension, and heating value. For this reason, injection and combustion processes of such fuel blends are different than of neat diesel oil. Results of these investigations will be presented in further publications. 3

Table 2. Selected physico-chemical properties of tested fuel blends. Tabela 2. Wybrane właściwości fizykochemiczne badanych mieszanin paliwowych. Parameters Values DF ETBE10 ETBE 20 ETBE 30 ETBE 40 ETBE content in diesel oil, [%, by vol.] 0 10 20 30 40 Density at 15 C, [kg/m 3 ] 839 831 821 814 804 Kinematic viscosity at 40 C, [mm/s 2 ] 2,79 2,24 1,79 1,47 1,21 Lubricity at 25 C, [µm] 222,1 254 244,5 267,1 256,1 Surface tension, [mn/m] 25,9 24,6 23,3 22,1 21,2 Lower heating value, [MJ/kg] 42,8 42,1 41,1 40,8 40,0 Cetane number, [-] 51,2 46 42,7 38,4 31,4 * diesel oil lubricity measured at 25 ºC cannot be higher than 380 µm [1] 2.4 Testing conditions All the testing was performed under steady-state conditions for engine partial loads and selected crankshaft rotational speeds and angles of beginning of fuel injection. Detailed conditions of engine researches are presented in Table 3. Table. 3. Testing conditions of AD3.152 diesel engine fuelled with blends of ETBE and diesel oil. Tabela. 3. Warunki badań silnika AD3.152 zasilanego mieszaninami EETB z olejem napędowym. Parameters Values Crankshaft rotational speed, n [rpm] 1200 1600 2000 Angle of beginning of fuel injection, α dpt [ºCA] 12; 17 and 22 before TDC Engine torque, M o [Nm] 40; 60; 80; 100 and 120 Regulation of the dynamic angle of beginning of fuel injection was tested when the engine, powered with diesel oil, was running idle. A graphic interpretation of α dpt is presented in Fig. 3. According to Table 3, all the measurements were executed in conditions of load characteristic profile for three rotational speeds of the crankshaft: 1200, 1600, and 2000 rpm and in respect of selected load values, i.e. 40, 60, 80, 100, and 120 Nm. Regulation of α dpt was varied under these conditions of the speed and engine load. This helped to determine the effect of variations of this angle on the engine's acoustic parameters and the rate of pressure increment in the combustion chamber. Fig. 3. Graphic interpretation of α dpt angle: GMP top dead center (TDC), α [ºOWK] - angle position of engine crankshaft (ºCA), p w pressure variations in the delivery pipe, p c pressure variations in the combustion chamber, h i fuel injector needle lift. Rys. 3. Interpretacja graficzna kąta dynamicznego początku tłoczenia paliwa α dpt : GMP górne martwe położenie tłoka, α [ºOWK] położenie kątowe wału korbowego, p w przebieg ciśnienia w przewodzie wtryskowym paliwa, p c przebiegi ciśnienia w komorze spalania, h i wznios iglicy rozpylacza. 3. Results The paper has focused on determining dependences between the maximum rate of pressure increment in the combustion chamber and noise emissions of the engine AD3.152, powered with diesel oil and its EETB blends. Attempts have also been made to assess effects of variations of the dynamic angle of beginning of fuel injection on these dependences. 4

Fig. 4. Maximum rates of pressure increment (dp/dt) max in the combustion chamber of the engine AD3.152 as dependent on the latter's load, rotational speed, dynamic angle of beginning of fuel injection α dpt, and type of tested fuel Rys. 4. Wartości maksymalnych prędkości przyrostu ciśnienia (dp/dt) max w komorze spalania silnika AD3.152 w zależności od jego obciążenia, prędkości obrotowej, kąta dynamicznego początku tłoczenia paliwa α dpt i rodzaju badanego paliwa Figure 4 shows calculated maximum rates of pressure increment (dp/dt) max in the combustion chamber of the engine AD3.152 as dependent on the latter's load, rotational speed, dynamic angle of beginning of fuel injection α dpt, and type of tested fuel. It can be noted that as α dpt grows, (dp/dt) max increases markedly. This is especially evident in the case of fuel blends with higher ethyl tert-butyl ether content. 5

Fig. 5. Value of Lw(A) emitted by AD3.152 as dependent on the engine's load, rotational speed, dynamic angle of beginning of fuel injection α dpt, and type of tested fuel. Rys. 5. Wartości mocy dźwięku Lw(A) emitowanej przez silnik AD3.152 w zależności od jego obciążenia, prędkości obrotowej, kąta dynamicznego początku tłoczenia paliwa αdpt i rodzaju badanego paliwa Sound power Lw(A) emitted by the engine AD3.152 as dependent on the latter's load, rotational speed, dynamic angle of beginning of fuel injection α dpt, and type of tested fuel is shown in Figure 5. Increasing α dpt raises Lw(A), which is particularly clear where AD.3.152 is fed with fuel blends of higher ethyl tert-butyl ether content and for greater loads. The power of noise emissions is noticeably greater as the engine's rotational speed rises, as well. 6

Correlations between the calculated maximum rates of pressure increment in the combustion chamber and the measured acoustic emission of the engine were subsequently determined. The point a) distributions obtained in Figures 6-8 suggest that they can be expressed with linear dependences. This also helps to preserve clarity of these illustrations and supports their further interpretations. b) c) Fig. 6. Attempted determination of dependences between maximum rates of pressure increment in the cylinder (dp/dt) max [MPa/ms] and sound Lw(A) [db] emitted by the engine AD3.152 powered with diesel oil and its blends with ethyl tert-butyl ether for the dynamic angle of beginning of fuel injection α dpt =12 [ºOWK] and varying loads: a) n=1200 [rpm], b=1600 [rpm], c) n=2000 [rpm] Rys. 6. Próba wyznaczenia zależności pomiędzy maksymalnymi prędkościami przyrostu ciśnienia w cylindrze (dp/dt) max [MPa/ms] a mocą dźwięku Lw(A) [db] emitowaną przez silnik AD3.152 zasilanego olejem napędowym i jego mieszaninami z eterem etylo-tert butylowym, dla kąta dynamicznego początku tłoczenia paliwa α dpt =12 [ºOWK] i różnych wartości obciążenia: a) n=1200 [obr/min], b=1600 [obr/min], c) n=2000 [obr/min] 7

a) b) c) Fig. 7. Attempted determination of dependences between maximum rates of pressure increment in the cylinder (dp/dt) max [MPa/ms] and sound Lw(A) [db] emitted by the engine AD3.152 powered with diesel oil and its blends with ethyl tert-butyl ether for the dynamic angle of beginning of fuel injection α dpt =17 [ºOWK] and varying loads: a) n=1200 [rpm], b=1600 [rpm], c) n=2000 [rpm] Rys. 7. Próba wyznaczenia zależności pomiędzy maksymalnymi prędkościami przyrostu ciśnienia w cylindrze (dp/dt) max [MPa/ms] a mocą dźwięku Lw(A) [db] emitowaną przez silnik AD3.152 zasilanego olejem napędowym i jego mieszaninami z eterem etylo-tert butylowym, dla kąta dynamicznego początku tłoczenia paliwa α dpt =17 [ºOWK] i różnych wartości obciążenia: a) n=1200 [obr/min], b=1600 [obr/min], c) n=2000 [obr/min] a) 8

b) c) Fig. 8. Attempted determination of dependences between maximum rates of pressure increment in the cylinder (dp/dt) max [MPa/ms] and sound Lw(A) [db] emitted by the engine AD3.152 powered with diesel oil and its blends with ethyl tert-butyl ether for the dynamic angle of beginning of fuel injection α dpt =22 [ºOWK] and varying loads: a) n=1200 [rpm], b=1600 [rpm], c) n=2000 [rpm] Rys. 8. Zależności pomiędzy maksymalnymi prędkościami przyrostu ciśnienia w cylindrze (dp/dt) max [MPa/ms] a mocą dźwięku Lw(A) [db] emitowaną przez silnik AD3.152 zasilanego olejem napędowym i jego mieszaninami z eterem etylo-tert butylowym, dla kąta dynamicznego początku tłoczenia paliwa α dpt =22 [ºOWK] i różnych wartości obciążenia: a) n=1200 [obr/min], b=1600 [obr/min], c) n=2000 [obr/min] Evaluation of Figures 6 8 clearly implies that the increasing maximum rates of pressure increment in the combustion chamber are accompanied by growing noise emissions. This regularity is not varied by changes of fuel types or regulation of α dpt. 4. Conclusion The process of fuel combustion is a source of noxious emissions of fuel components, subject to extensive research and publications. Ecological treatment of the engine should also consider the issue of its acoustic emissions, however. Therefore, 9

potential use of EETB blended with diesel oil to power compression ignition engines was evaluated with regard to its impact on variations of pressure increment rates in the combustion chamber and on noise emissions. Attempts were then undertaken to define dependences between these two parameters. The results clearly indicate that increasing the dynamic angle of beginning of fuel injection helps to raise the rate of pressure increment in the combustion chamber. This can be explained by extension of the compressed ignition delay where fuel is too early injected into the combustion chamber. As a result, more fuel accumulates in the chamber and, at a certain point, begins to combust violently, thereby increasing values of (dp/dt) max. Delay of the compressed ignition can also be extended under the influence of the fuel's cetane number. EETB is characterised by low values of this number, therefore, its addition to the diesel oil causes the rate of pressure increment in the combustion chamber to accelerate. Measurements of noise Lw(A) emitted by the tested engine demonstrate that the noise climbs as the volume of EETB and diesel expands. This is particularly marked in respect of higher engine loads and increasing values of α dpt. The maximum variation of noise emissions by the engine powered with a blend of diesel and EETB40 reached approximately 3dB. It should be noted that the human ear receives such a difference as doubling of the noise intensity. The research was continued to determine dependences between maximum rates of pressure increment in the combustion chamber and the acoustic emission of the engine. Assessment of these dependences produced a distinct correlation: growth of (dp/dt) max is accompanied by greater noise emissions from the engine. This observation obtains for all the fuels tested by the authors of that paper. Nomenclature/Skróty i oznaczenia ETBE Etyl tert-butyl ether / eter etylo-tert butylowy Bibliography/Literatura [1] LOTKO W., GÓRSKI K., LONGWIC R.: Nieustalone stany pracy silnika wysokoprężnego zasilanego olejem napędowym z eterem etylo-tert butylowym, WKŁ. Warszawa 2010. [2] RÓŻYCKI A.: Microkomputer system for measurement of high speed parameters for IC engines. Bratislavia 2001. 8th EAEC, paper No SAITS 01196. [3] GÓRSKI K. MACIĄG P.: Noise emission of diesel engine powered by blends of diesel oil and ethyl tert-butyl ether ARCHIWUM MO- TORYZACJI 3, pp. 215-222 (2010). [4] LOTKO W., MACIĄG P., MACIĄG M.: Nowa metoda oceny hałasu maszyn i urządzeń, Materiały Konferencji Naukowo-Technicznej Pojazd a środowisko, Radom 1997. [5] Sound Intensity Software BZ7205 User Manual Bruel & Kjaer Sound and Vibration Measurement A/S Naerum, Denmark 1998. [6] MACIĄG P. Analiza hałasu wybranych silników wysokoprężnych zasilanych wybranymi paliwami Rozprawa doktorska Politechnika Radomska 2003. Mr Wincenty Lotko, Prof. DSc., DEng. Professor in the Faculty of Mechanical Engineering at Radom University of Technology. Prof. dr hab. inż. Wincenty Lotko profesor zwyczajny na Wydziale Mechanicznym Politechniki Radomskiej. Mr Paweł Maciąg, PhD., MEng. doctor in the Faculty of Mechanical Engineering at Radom University of Technology. Dr inż. Paweł Maciąg adiunkt na Wydziale Mechanicznym Politechniki Radomskiej. Mr Krzysztof Górski, PhD., MEng. doctor in the Faculty of Mechanical Engineering at Radom University of Technology. Dr inż. Krzysztof Górski adiunkt na Wydziale Mechanicznym Politechniki Radomskiej. 10