SESJA TERENOWA E FIELD SESSION E



Podobne dokumenty
Surface analysis sub-carbonifeourus NE part of the Bohemian Massif and the consequent implications for the analysis of neotectonic movements

SESJA TERENOWA C FIELD SESSION C

SESJATERENOWAA FIELD SESSION A

Klastyczne systemy depozycyjne

Joint fractures on the southern shore of Bellsund, Spitsbergen

ROZWÓJ SEDYMENTACJI WARSTW CERGOWSKICH JEDNOSTKI GRYBOWSKIEJ (KAMIENIO OM W KLÊCZANACH, ZACHODNIE KARPATY FLISZOWE)

DOI: / /32/37

NEOTECTONIC MOVEMENTS RECORD IN THE SPIT DEPOSITS OF THE WESTERN AND CENTRAL POLISH COAST IN THE LIGHT OF GEOLOGICAL AND SEISMIC INVESTIGATIONS

Sargent Opens Sonairte Farmers' Market

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

Austrian Journal of Earth Sciences Volume 105/1

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Geotourism 1 2 (40 41) 2015: 37 48

Morskie Oko powstało w dawnym wyrobisku. Morskie Oko (The Eye of the Sea) was developed. Nad wodą. By the water

Architektura depozycyjna warstw magurskich w strefie Siar na po³udnie od Gorlic (p³aszczowina magurska, polskie Karpaty zewnêtrzne) Micha³ Warcho³*

Zadanie A. 1. Interpretacja strukturalna utworów miocenu i jego podłoża


Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2009, ročník IX, řada stavební článek č. 34.

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Geotourism 1 2 (44 45) 2016: 19 26

Hard-Margin Support Vector Machines

NAJMNIEJSZE I JEDYNE UZDROWISKO KARPACKIE Z WODAMI SIARCZKOWYMI W MIEJSCOWOŒCI WAPIENNE KO O GORLIC

Has the heat wave frequency or intensity changed in Poland since 1950?

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Patients price acceptance SELECTED FINDINGS

Extraclass. Football Men. Season 2009/10 - Autumn round

Riyadu (Arabia Saudyjska)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Podhale Palaeogene Flysch as geotouristic attractive region first look to its unique geological values

THE INVESTMENT AREAS - BYTOM, LEŚNA STREET TERENY INWESTYCYJNE - BYTOM, ULICA LEŚNA

Cracow University of Economics Poland

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

STUDIA GEOLOGICA POLONICA

WYKŁAD 2016 ETD ETS SEDYMENTACJA. Erozja Transport Depozycja. Diageneza

The Overview of Civilian Applications of Airborne SAR Systems

Badania i geotermalne projekty inwestycyjne w Polsce przegląd

PODZIAŁ SEKTOROWY OBSZARU KONTROLOWANEGO ACC W FIR WARSZAWA SECTORS OF ACC CONTROLLED AREA WITHIN WARSZAWA FIR

WYKORZYSTANIE SEJSMIKI REFLEKSYJNEJ DO BADAŃ PŁYTKIEGO PODŁOŻA zarys problematyki

Knovel Math: Jakość produktu

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Krytyczne czynniki sukcesu w zarządzaniu projektami

Spatial planning in floodplains in mountain catchments of different row, in the basin of the Upper Vistula and the Upper and Central Odra

GEOLOGICAL CHARACTERISATION OF THE KRYNICA SUBUNIT IN THE VICINITY OF KROŒCIENKO ON THE DUNAJEC RIVER (MAGURA NAPPE, OUTER FLYSCH CARPATHIANS)

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Tychy, plan miasta: Skala 1: (Polish Edition)


PROGRAM STAŻU. Nazwa podmiotu oferującego staż / Company name IBM Global Services Delivery Centre Sp z o.o.

PhD Łukasz Gawor Silesian University of Technology, Gliwice Akademicka Street 2, Gliwice, PL, phone , fax

KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy KATOWICE SPECIAL ECONOMIC ZONE - GLIWICE SUBZONE

PODZIAŁ SEKTOROWY OBSZARU KONTROLOWANEGO ACC W FIR WARSZAWA SECTORS OF ACC CONTROLLED AREA WITHIN WARSZAWA FIR

nr 2/2009 Budowa geologiczna

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH


MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

ACTA UNIVERSITATIS LODZIENSIS KSZTAŁTOWANIE SIĘ WIELKOŚCI OPADÓW NA OBSZARZE WOJEWÓDZTWA MIEJSKIEGO KRAKOWSKIEGO

AIP VFR POLAND AIRAC effective date GRANICE PIONOWE I KLASA PRZESTRZENI VERTICAL LIMITS AND AIRSPACE CLASSIFICATION.

Stargard Szczecinski i okolice (Polish Edition)

099 Łóżko półpiętrowe 2080x1010(1109)x Bunk bed 2080x1010(1109)x1600 W15 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTION

SEDYMENTOLOGIA, CECHY TEKSTURALNE OSADÓW ziarno, osad ziarnisty, uziarnienie, interpretacja procesowa

A trail of storms imprinted in Triassic rocks on the touristic path: an example from Grodziec (Dąbrowa Basin, southern Poland)

deep learning for NLP (5 lectures)

KARTA KURSU (realizowanego w module specjalności) Biologia z przyrodą. (nazwa specjalności)

New trends in adaptive radiation of Early Tertiary rodents

Galeria Handlowa Starogard Gdański

DELEGACJA SŁUŻB ATS DELEGATION OF ATS

The Lights of Chartres Eustachy Kossakowski,

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Geotourism 3 4 (26 27) 2011: 51 64

098 Łóżko piętrowe 2080x1010(1109)x Double bunk bed 2080x1010(1109)x1600 W15 MONTAGEANLEITUNG ASSEMBLY INSTRUCTION

AIP VFR POLAND AIRAC effective date GRANICE PIONOWE I KLASA PRZESTRZENI VERTICAL LIMITS AND AIRSPACE CLASSIFICATION.

ZALEŻNOŚĆ MIĘDZY WYSOKOŚCIĄ I MASĄ CIAŁA RODZICÓW I DZIECI W DWÓCH RÓŻNYCH ŚRODOWISKACH

SPITSBERGEN HORNSUND


LITOSTRATYGRAFIA PROFILI GŁĘBOKICH OTWORÓW WIERTNICZYCH W REGIONIE OPOLSKIM

AIP VFR POLAND AIRAC effective date GRANICE PIONOWE I KLASA PRZESTRZENI VERTICAL LIMITS AND AIRSPACE CLASSIFICATION.

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS?

The Beloveža Formation of the Rača Unit, Magura Nappe, in the Beskid Wysoki Mts (Polish Flysch Carpathians) north of Babia Góra Mountain

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Potencjał geoturystyczny otoczenia pewnej doliny kopalnej z okolic Olesna(woj.opolskie)

Struktury proponowane dla unikalnych rozwiązań architektonicznych.

CHANGES OF THE MORPHOLOGY OF THE ROPA RIVER UPSTREAM AND DOWNSTREAM OF THE KLIMKÓWKA WATER RESERVOIR

DEVELOPMENT AND BIOSTRATIGRAPHY OF THE PALEOGENE GORZEŃ BEDS, SUBSILESIAN UNIT, OUTER CARPATHIANS, POLAND

Załącznik 2. Wykaz opublikowanych prac naukowych

Głębokomorski system depozycyjny

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Lecture 18 Review for Exam 1

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

PRESENT TENSES IN ENGLISH by

sylwan nr 9: 3 15, 2006

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

Geotourism 3 4 (26 27) 2011: 51 64

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

STRATYGRAFIA POLSKICH KARPAT FLISZOWYCH POMIÊDZY BIELSKIEM-BIA A NOWYM TARGIEM

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Transkrypt:

65 SESJA TERENOWA E FIELD SESSION E PŁYTKOMORSKA I LĄDOWA SEDYMENTACJA WĘGLANOWO-KLASTYCZNA KAJPRU KARPACKIEGO. ROZWÓJ SEDYMENTACJI PALEOGENU CENTRALNOKARPACKIEGO (ŽDIAR-ČERVENÁ SKALA ŽDIAR-SKALKA ŽDIAR-BIELA ŽDIAR-BLAŠČATSKÁ DOLINA PODSPÁDY JURGÓW) SHALLOW MARINE AND CONTINENTAL CLASTIC/CARBONATE MIXED DEPOSITS OF THE CARPATHIAN KEUPER (UPPER TRIASSIC). FACIES AND SEDIMENTATION DEVELOPMENT OF THE CENTRAL CARPATHIAN PALEOGENE (ŽDIAR-ČERVENÁ SKALA ŽDIAR-SKALKA ŽDIAR-BIELA ŽDIAR-BLAŠČATSKÁ DOLINA PODSPÁDY JURGÓW) L ubomír SLIVA 1, Tomasz RYCHLIŃSKI 2 & Joachim SZULC 2 1 Department of Geology and Paleontology, Comenius University, Mlynská dolina G, 84215 Bratislava; e-mail: sliva@fns.uniba.sk 2 Instytut Nauk Geologicznych, Uniwersytet Jagielloński, ul Oleandry, 2a, Kraków; e-mail:szulc@ing.uj.edu.pl; rychlin@ing.uj.edu.pl KAJPER KARPACKI - WPROWADZENIE INTRODUCTION TO THE CARPATHIAN KEUPER DEPOSITS Tomasz RYCHLIŃSKI & Joachim SZULC Trias górny (karnik i noryk) jednostki Fatricum budują mieszane osady klastycznowęglanowe, wykształcone w tak zwanej facji kajpru karpackiego. Osady klastyczne reprezentowane są przez pstre łupki z wkładkami piaskowców (zawierających lokalnie szczątki roślin) i zlepieńców zaś osady węglanowe zdominowane są przez dolomity. Miąższość osadów triasu górnego sięga 300 metrów (Turnau-Morawska, 1953; Gaździcki et. al., 1979). W jednostce Fatricum dolną granicę górnego triasu tworzy często powierzchnia krasowa rozwinięta na skałach węglanowych ladynu (np. w Tatrach Bielskich w jednostce Hawrania (Rychliński, 2001), por. też wycieczkę A). Po ponadregionalnej regresji morskiej u schyłku ladynu, następujące potem epizody transgresywne miały charakter krótkotrwałych ingresji zaznaczających się depozycją dolomitów z rozproszonymi ewaporatami. W czasie regresji formowały się pstre osady klastyczne deponowane w środowisku równi mułowej i piaszczystej. Osady kajpru karpackiego wykazują wyraźną cykliczność będącą wynikiem wahań eustatycznych 3 i 4 rzędu, szczególnie dobrze widocznych w prezentowanym odsłonięciu w Ždiarze. Okres późnego triasu cechowała duża labilność klimatyczna (Szulc, 2000) stąd przypuszczać można, że część fluwialnych osadów gruboklastycznych, szczególnie tych z detrytusem roślinnym, powstawała w okresach pluwializacji klimatu i ożywienia działalności rzecznej. Rzeczną genezę części osadów sugerował już Borza (1959). Trudno jednoznacznie ustalić zakres wpływu fluktuacji klimatycznych gdyż zachodzące równolegle wahania eustatyczne mogły maskować efekty zmian klimatycznych. Generalnie osady kajpru karpackiego wykazują dużą zmienność lateralną wynikającą prawdopodobnie ze zróżnicowanej morfologii basenu i/lub syndepozycyjnej tektoniki blokowej obszaru Fatrikum. SUMMARY The Upper Triassic of the Fatricum unit is dominated by mixed continental clastic and shallow marine carbonate sediments called as Carpathian Keuper. The sediments are organised in regular cyclic pattern. Each cycle starts with coarse grained fluvial sandstones that are gradually replaced by muddy sediments and then by evaporitic and dolomitic complex. Considering the lithofacies succession and thickness of the cycles (ranging between 5 and 10 m.) the cycles are believed to represent the 3 rd or 4 th order depositional cycles, related to eustatic fluctuations. INTRODUCTION TO GEOLOGY OF THE CENTRAL CARPATHIAN PALEOGENE BASIN OF THE SPIŠSKÁ MAGURA MTS. Ľubomír SLIVA The Central Carpathian Paleogene Basin (CCPB; Podtatranská skupina Group sensu Gross et al., 1993) is extended at approximately 9 000 km 2. Its sedimentary fill is predominantly formed by deep marine siliciclastic sediments, several hundred metres to several kilometres thick (Soták et al., 2001). The CCPB is interpreted as a forearc basin situated at front of the Outer Carpathian accretionary wedge (Royden & Baldi, 1988; Tari et al., 1993). The basement and southern boundary of the CCPB is formed by the Central Carpathian units, at its northern boundary by the Pieniny Klippen Belt, which represents transpressional strikeslip zone related to a plate boundary (Csontos et al., 1992). The sedimentary fill of the CCPB consists of four formations: Borové Fm., Huty Fm., Zuberec Fm. and Biely Potok Fm. according to Gross

66 Geologia Tatr: Ponadregionalny kontekst sedymentologiczny. Polska Konferencja Sedymentologiczna Fig. 1. Mapa geologiczna Magury Spiskiej wg Janočko et al., (2000b), nieco zmieniona Fig. 1. Geological map of the Spišská Magura Mts. after Janočko et al., (2000b) slightly modified et al. (1984) (Fig. 1). The sediments are Bartonian to lower Miocene in age (Olszewska & Wieczorek, 1998; Soták, 1998). The Paleogene of the Spišská Magura Mts. is situated between the High Tatra Mts. and the Pieniny Klippen Belt. On the east the Ružbachy fault and the Mesozoic of the Ružbachy Island bound it. On the west it gradually passes into the Paleogene of the Podhale Basin. The Spišská Magura Mts. Paleogene is a part of the Central Carpathian Paleogene and it is formed by the Borové Fm., Huty Fm. and Zuberec Fm. (Janočko et al., 2000). The Biely Potok Fm. is not present here because of considerable erosion of the upper part of the basin fill. The scale of erosion is documented by analysis of fluid inclusions (Hurai et al., 2004). The erosion Fig. 2. Stratygrafia i główne etapy rozwojowe paleogenu basenów Podhala i Levočy wg Soták (1998) Fig. 2. Stratigraphy and main evolution stages of Paleogene of the Podhale and Levoča Basins after Soták (1998)

67 depth decreases westward and toward marginal part of the Spišská Magura Mts. In adjacent part of the Podhale Basin, the Brzegi Beds (upper Oligocene - lower Miocene) are preserved (Gedl, 2000). This unit is presumably coeval to the Biely Potok Fm. Borové Formation The Borové Fm. extends along the northern margin of the High Tatra Mts. and the Ružbachy Island (Fig. 2). Its contact with underlying Mesozoic rocks of the Krížna nappe is transgressive; however, tectonic reduction or erosion by overlying conglomerates near Ždiar village causes its local absence. The overlying Huty Fm. rests there immediately on the Mesozoic rocks. Thickness of the Borové Fm. varies from several metres up to 150 m (Sliva, 1999; Janočko et al., 2000). Coarse-grained, carbonate breccias and conglomerates form the lower part of the formation. They represent alluvial to nearshore deposits. In the vicinity of Ždiar village, coarse-grained delta deposits are developed. The upper part of the Borové Fm. contains massive or crudely-bedded sandstones or sandy limestones with abundant fauna of large foraminifers containing Nummulites semicostatus (Kaufmann), Nummulites striatus (Brunggiére), Nummulites cf. kavassisiensis Hantken & Mararasz, Nummulites variolarius Lamarck, Nummulites puschi d Archiac, Nummulites brongniarti d Archiac, Nummulites perforatus perforatus (Montfort). The age of the Borové Fm. based on large foraminifers is upper Bartonian to Priabonian (P14 to P15 zones of planktonic foraminifers) (Janočko et al., 2000). Huty Formation The Huty Fm. is one of the most extensive units in the Spišská Magura Mts (Fig. 2). Its lithological content is variable. The lowermost part of formation is typically formed by a 50 70 m thick complex of dark mudstones intercalated with mainly massive sandstones, massive or graded conglomerates and breccias, which represent sediments of a fan delta(?) to deep marine slope. A thick complex of the Tokáreň conglomerates (170 200 metres) is cut into the lower part of the Huty Fm., up to the Borové Fm. and the Mesozoic basement. The Tokáreň conglomerates consist of thick-bedded conglomerates, breccias separated by thin layers of sandstones. Finning- and thinning-upward trends are typical for this unit. It is interpreted as a deep marine canyon fill (Marschalko & Radomski, 1970; Janočko & Jacko, 1999; Sliva, 1999). The Tokáreň conglomerates are overlain by a complex of massive mudstones with relatively abundant, several metres thick olistostrome breccias, representing a basin slope environment. The sedimentary complexes of the Huty Fm. in the Spišská Magura Mts. are not typical for this formation in the remaining areas. The complexes may be coeval with the Šambron (Szaflary) Beds developed in northern part of the Podhale Basin (Westwalewicz & Mogilska, 1986; Gedl, 2000; Soták et al., 2001). They can be related to a global cooling and a sea-level fall (Janočko & Jacko, 1999; Soták et al., 2001). The uppermost, mudstone-rich part of the Huty Fm. is separated from the underlying part of the unit by a 6 m thickhorizon of massive sandstones. This is a very good correlation horizon. These sandstones represent a delta-fed fan or part of a basin-floor fan (Janočko et al., 2000). Classical development of the Huty Fm. above the correlation sandstone horizon is typified by thick, massive mudstones separated by thin sandstones and siltstones with missing basal divisions of the Bouma (1962) sequence. Thick-bedded sandstones and mainly sharp-based conglomerates and breccias occur here rarely. This part of the Huty Fm. represents a mud-rich fan deposits accumulated during a see level rise (Soták et al., 2001). Palaeocurrent indicators in the Huty Fm. suggest palaeotransport to the north and northeast. The age of the Huty Fm. is middle Eocene (Bartonian) to lowermost Oligocene (early Ruppelian; NP 17 22 zones of calcareous nannoplankton). The formation is at least 1200 m thick (Janočko et al., 2000). Zuberec Fm. The sediments of the Zuberec Fm. gradually evolve from of the underlying Huty Fm. They form the uppermost part of the Paleogene succession in the eastern and middle parts of the Spišská Magura Mts. The Zuberec Fm. represents typical flysch deposits consisting of alternating sandstones and mudstones with sandstone/shale ratio 1:2 to 2:1. In the Spišská Magura Mts., Janočko & Jacko (1999) described two subunits in this formation, i.e. a mud-rich subunit in the western part of the region, and a sand-rich one in the east. The sandstone beds are predominantly thin- to medium-bedded and display more complete intervals of the Bouma (1962) sequence comparing to those of the Huty Fm. Their facies suggest deposition in channel-levees, depositional lobes or on a basin plain. Palaeocurrent features suggest palaeotransport to the east. The age of the Zuberec Fm. is upper Eocene to upper Oligocene (Janočko et al., 2000). Brzegi Beds The Brzegi Beds are known only from the vicinity of the Tatranská Javorina village in the Spišská Magura Mts. due to relatively low erosion depth in this area. The best outcrops of the Brzegi Beds occur near Brzegi village in the Podhale Basin (Gedl, 2000). The Brzegi Beds are typified by dominance of mudstones. Sandstones are less common and are mainly 1-10 cm thick, with Tcd divisions of the Bouma (1962) sequence. Thicker

68 Geologia Tatr: Ponadregionalny kontekst sedymentologiczny. Polska Konferencja Sedymentologiczna beds (30 50 cm) with Tab or Ta c intervals are rare. Locally, the sandstones show small thickening- and coarsening-upward trends. Palaeocurrent indicators suggest palaeotransportation toward east. Sediments of the Brzegi Beds were deposited in fan-fringe to basin plain environments and appear to represent distal part of sand-rich lobes of the Biely Potok Fm. in the Orava and western Podhale basins. Stop E2 - Ždiar-Skalka Paleogene submarine canyon deposits The locality is situated 4-km southwest from Ždiar village at the Skalka elevation point. OPIS STANOWISK EXPLANATION OF STOPS Punkt E1 - Ždiar-Červená Skala, odsłonięcie przy szosie Przy szosie za miejscowością Ždiar występuje około 30 metrowej miąższości odsłonięcie utworów kajpru karpackiego, tak zwana Červená Skala. Kontakt ze starszymi utworami ladynu nie jest widoczny. Profil składa się z 2 części przeciętych uskokiem. W obrębie pierwszej części profilu wyraźnie zaznacza się cykliczna alternacja osadów klastycznych i węglanowych (Fig. 3). Każdy z cykli rozpoczynają osady piaskowcowe, które stopniowo przechodzą w mułowce a te z kolei zastępowane są przez dolomity. Zarówno osady klastyczne jak i dolomity są zbioturbowane (miejscami występują rizobrekcjacje) (Fig. 4). Część materiału klastycznego w mułowcach nosi cechy transportu eolicznego (Chrzeszczyk-Giźińska & Superson, 2001) jednakże podstawowa masa osadów klastycznych nosi cechy transportu fluwialnego. Zmiany litofacjalne w danym cyklu odpowiadają wahaniom paleośrodowiskowym pomiędzy środowiskami sebhy-laguny a równią piaszczystą. Omawiane cykle, których miąższość waha się od 5-10 m. uznać można wstępnie za cykle depozycyjne 3 rzędu, z dobrze zdefiniowaną granicą sekwencji, wytyczoną przez fluwialne horyzonty piaszczyste pozostające w erozyjnym kontakcie z podścielającymi je osadami mułowcowymi bądź dolomitami. Jak wynika z badań izotopowych, wartości δ 13 C (-2 do -5 vs. PDB) wskazują na zróżnicowany dopływ normalnej wody morskiej. Wartości δ 18 O (-2.7 do - 5.0 vs. PDB) wskazują na znikomy dopływ wód meteorycznych w czasie tworzenia się dolomitów. Podczas badań rozpoznano niewielkie deformacje syndepozycyjne charakterystyczne dla impulsów sejsmicznych (Fig. 5), wskazujące na pewną aktywność tektoniczną w tym czasie. W kompleksie skalnym powyżej uskoku występują dolomity przeławicone z mułowcami, tworzone prawdopodobnie w warunkach bardziej trwałej transgresji o czym, poza cechami litologicznymi i strukturalnymi, świadczą występujące dość często otwornice i małże. Fig. 3. Profil osadów górnego triasu z odsłonięcia Červená Skala w Zdiarze z interpretacją trendów głebokościowych 1 - dolomity, 2 - pstre mułowce, 3 - szare mułowce, 4 piaskowce, 5 - margle, 6 - uskok, 7- ziarna kwarcu eolicznego, 8 - spękania sigmoidalne, 9 - pseudomorfozy po ewaporatach 10 - małżoraczki, 11 - warstwowanie przekątne, 12 - warstwowanie poziome, 13 synsedymentacyjne deformacje tektoniczne, 14 - bioturbacje, 15 - nodule kwarcowe, 16 - struktury pedogeniczne, 17 - małże, 18 - otwornice; sygnały izotopów stabilnych: 19 - δ 13 C ( PDB), 20 - δ 18 O ( PDB) Fig. 3. Section of the Upper Triassic rocks from the Červená Skala outcrop in Zdiar with interpretation of shalowing trends. 1 - dolomites, 2 shales, 3 grey mudstones, 4 sandstones, 5 marls, 6 fault, 7 grains of eolian s quartz, 8 sigmoidal deformations, 9 evaporite pseudomorphs, 10 ostracods, 11 diagonal lamination, 12 horizontal lamination, 13 synsedimentary tectonic deformations, 14 bioturbations, 15 nodules of quartz, 16 pedogenic structures, 17 bivalves, 18 foramnifers; stable isotope signals: 19 - δ 13 C ( PDB), 20 - δ 18 O ( PDB)

69 Fig. 4. Zbioturbowane margliste osady z górnej części profilu Fig. 4. Bioturbated marl deposits from the lower part of the section Fig. 5. Struktury sejsmiczne z dolnej części profilu. A. Mikroszczeliny dylatacyjne B. Struktury sigmoidalne Fig. 5. Seismically-originated structures from the lower part of the section A. Dilatance microcracks B. Sigmoidal deformation The Tokáreň conglomerate, belonging to the lower part of the Huty Fm., crops here out. These deposits are represented by a sandstone-conglomerate complex, which represents a submarine canyon fill. The canyon fill complex forms a lenticular body, ca. 7 km long, pinching gradually out to W and E (Marschalko & Radomski, 1970; Fig. 2). The maximum sediment thickness is around 170 m in the central part of the canyon. The canyon is cut about 60 m deep into the underlying Mesozoic and Paleogene deposits. It is filled with coarse-grained, unsorted or poorly sorted breccias and conglomerates, then normally or inversely graded, relatively better sorted conglomerates, and coarse-grained, massive, graded, horizontal and cross-bedded sandstones. Fine-grained sediments are very rare (Figs. 6, 7). Unsorted sharp-based breccias form sheet-like beds concentrated in the lower part of the succession. The amount of the normally graded conglomerates and sandstones increases toward the upper part of the succession. The conglomerates and sandstones with erosive bases commonly form relatively shallow channels. Several fining- and thinning-upward cycles are recorded in this succession. Mesozoic rocks of the Subtatric nappes, Paleozoic rocks of the Gemeric or the Veporic (?) units and Paleogene rocks of intrabasinal origin were the source of the clastic material. Palaeotransport was to NNE and NE, locally to NW. Unsorted and poorly sorted conglomerates and breccias are interpreted as sediments of cohesive and cohesionless debris flows sensu Nemec & Steel (1984). Sandstone layers at the top of debris flow beds represent sediments deposited by a more dilute, turbulent and laminar flows (op. cit.; Mutti, 1992). Nongraded sandstones with floating clasts are here interpreted as sandy debris flows (Shanmugam, 2000). Very rare mud lenses are products of sedimentation from suspension clouds. Sedimentary architecture of these deposits is similar to the alluvial part of fan deltas. However, the fining-upward cycles, presence of marine fauna and relatively incision into basement suggest a submarine canyon origin. The mass of gravel and sand was transported by river from source areas to a delta on the shelf of the basin and further to the canyon head. In the canyon, these sediments were mixed with local material from the shelf and canyon walls. Erosion of slope and deposition of the coarse-grained sediments in the lower part of the canyon was caused by tectonic activity of slope and sea level fall (Janočko & Jacko, 1999). Backfilling of the canyon was probably influenced by backwash of sea level rise and was stopped by a synsedimentary tectonic activity. Stop E3 - Ždiar-Biela Paleogene transgressive, shelf to slope/fan-delta(?) deposits This outcrop is situated in the bed of the Biela river, approximately 2-km to south from the Ždiar village. The outcropped sediments belong to the Borové Fm. and lowermost part of the Huty Fm. The sedimentary succession starts by transgressive breccia, which rests on claystones and dolomites of the Carpathian Keuper (Fig. 8). This breccia is overlain by a 5.5 m thick complex of organodetritic, numulitic sandy limestones and numulitic sandstones, which have massive fabric or crude horizontal bedding marked by wave

70 Geologia Tatr: Ponadregionalny kontekst sedymentologiczny. Polska Konferencja Sedymentologiczna Fig. 6. Profil sedymentologiczny brzeżnej części zlepieńców z Tokarni (Tokáreň) Fig. 6. Sedimentological log of the marginal part of the Tokáreň conglomerates

71 of these faults are affected by tilting of block during the uplift. Stop E4 - Ždiar-Blaščatská dolina Paleogene submarine slope deposits to mud-rich deep-sea fan deposits Fig. 7. Zlepieńce z Tokarni (Tokáreň), środkowa część podmorskiego kanionu wypełniona drobniejącymi ku górze osadami. Wzniesienie Tokáreň (Tokarnia) Fig. 7. Tokáreň conglomerates, the central part of the submarine canyon filled with distinct fining-upward trend. Tokáreň elevation point reworked nummulites and bivalves. This part of the section represents shallow, wave reworked shelf deposits. It is overlain by a 6-m thick matrix-supported breccia containing Mesozoic clasts and large foraminifers in matrix, originated from cohesive debris flows. This breccia is overlain by a 2.5-m thick package of graded pebble conglomerates to coarse-grained sandstones. This part of the section may represent distant, fan-delta front deposits. This interpretation is supported by the presence of about 30-m thick complex of conglomerates and sandstones, which are considered here as belonging to a wave-reworked fan-delta, located only 5-km northwestward. The uppermost part of the section (Fig. 8) belongs to the Huty Fm. It is formed by dark mudstones separating a thick complex of massive or faintly graded sandstones passing upward into graded conglomerates and breccias (Fig. 9). The sandstones represent deposits of high-density turbidity currents, conglomerates represent deposits of gravely high-density turbidity currents (Mutti, 1992) and cohesionless to cohesive debris flows (Nemec & Steel, 1984). This part of the section is deformed by low angle inverse and related faulting; thus we do not see continuous spectrum of sedimentary facies in vertical direction. Similarly, lateral changes of sedimentary facies are not visible because of its erosion by overlying submarine canyon fill conglomerates. This fact causes problems with interpretation of the sedimentary environments. In earlier works (Sliva, 1999), we interpreted these sediments as basin slope deposits. However, well-developed coarsening and thickening-upward trends, increasing contents of quartz clasts suggest a fan-delta origin of these sediments. The sediments are predominantly affected by inverse faulting. In this locality, there are welldeveloped compressional duplex structures in sandstones, which have southward trending. The faulting is related to uplift of the Tatra Mts. Some This outcrop is situated in the bed of the Blaščatská dolina valley, in the Ždiar village. Uncovered sediments belong to lower part of Huty Fm. Grey massive mudstones or mudstones with abundant silt laminae, which are intercalated with sandstones and conglomerates and breccias, are visible in the outcrop (Fig. 10). Sandstones are predominantly fine-grained with mean bed thickness 3 10 cm, commonly pinching laterally out. The sandstones display Tc and Td divisions of the Bouma (1962) sequence. Thick-bedded sandstones with more complete Bouma sequence and synsedimentary-deformed sandstones are less common. These sandstones are associated with granule to pebble conglomerates, which represent deposits of high-density turbidity currents. This coarse-grained facies associated with thin-bedded facies are developed in small channel levee system of a mud-rich fan. Two to 3 metres thick beds of unsorted, clast or matrix supported conglomerates and breccias, deposited by cohesive or cohesionless debris flows (Nemec & Steel, 1984) are typical for this section. Massive breccias contain large (up to 2 m) blocks of Mesozoic limestones and numulitic and sandstones, which result from erosion of shelf area. Mainly massive mudstones associated with debris flow breccias and conglomerates were deposited on deep-marine slope, documented also by Janočko & Jacko (1999) from this part of the Huty Fm. Lateral extent of channel fill conglomerates and slope breccias is small, in the Bachledová dolina section, which is very close to this one, channel fill sediments are not documented. Stop E5 - Ždiar-Blaščatská dolina Paleogene deep-marine sandy-fan deposits Sediments belonging to the Huty Fm. outcropped in a small quarry in the Blaščatska dolina valley (Ždiar village) are visited in this stop. The sediments are represented by a 6 metres-thick body of massive or very faintly laminated sandstones forming a very good correlation horizon, observable at a distance of more than 10 km (Figs. 11, 12). The sandstones occur in amalgamated beds and show undulated amalgamation surfaces. Plant fragments are here common and mudstone intraclasts occur rarely. Thick, massive sandstones passing into thin-bedded ones, separated by mudstones occur in the uppermost part of the outcrop. These are sediments deposited in a small, sandrich, probably delta-fed fan. Janočko et al. (2000) interpreted these sandstones as part of a basinfloor fan Ṫhe sediments are deformed by brittle dis-

72 Geologia Tatr: Ponadregionalny kontekst sedymentologiczny. Polska Konferencja Sedymentologiczna Fig. 8. Profil sedymentologiczny formacji z Borovégo i spągowej części formacji z Hut. Ždiar, dolina potoku Biela Fig. 8. Sedimentological log of the Borové Fm. and lowermost part of the Huty Fm. Ždiar, Biela River valley

73 Fig. 9. Przejście od masywnych piaskowców do zlepieńców i brekcji; facje czoła (?) delty stożkowej. Spągowa część formacji z Hut. Ždiar, dolina potoku Biela Fig. 9. Massive sandstones passing upward into conglomerates and breccias; fan delta front (?) facies. Lowermost part of the Huty Fm. Ždiar, Biela River valley Fig. 10. Profil sedymentologiczny formacji z Hut, facje skłonu i małych kompleksów kanał-wał brzegowy. Ždiar, dolina Blaščatská Fig. 10. Sedimentological log of the Huty Fm., sedimentary facies of basin slope and small channel levee complexes. Ždiar, Blaščatská dolina valley

74 Geologia Tatr: Ponadregionalny kontekst sedymentologiczny. Polska Konferencja Sedymentologiczna continuities. Polygenetic faults belonging to eight substages (3-4 stages) are very well developed here. Inverse, strike-slip and normal faults have been measured and processed here by means of palaeostress analysis. The results of palaeostress analysis suggest that these faults belong to the two separate groups. The first group is formed by nontilted faults and the second one is characterised by faults tilted approximately around the rotational axis (ς 90/0 and angle 30 ). The rotational axis has been determined by tilted bedding planes. This was the tilting which caused the uplift of the Tatra Mts. during the Middle to Upper Miocene. Stop E6 - Podspády Paleogene interchannel channel levee and channel margin deposits Very distinct, approximately 40 metres high outcrop of the Oligocene Zuberec Fm situated on Javorinka riverbank near the Podspády village. Mainly thin-bedded turbidites comprising grey claystones intercalated with parallel and ripple laminated sandstones and siltstones, which sometimes pinch laterally out occur in this outcrop. Thick-bedded, massive and graded sandstones and fine-grained conglomerates and slumped sandstones occur here subordinately (Fig. 13). The thin-bedded turbidites were deposited in levee interchannel environment, which is typified by sediment starvation and rapid lateral pinching-out of sandstones and siltstones. The thick-bedded sandstones and conglomerates may represent channel margin deposits or crevasse splay deposits. Channel axis deposit is preserved in banks of adjacent Biela Voda river. Fig. 11. Profil sedymentologiczny piaskowców stożka zasilanego przez deltę, formacja z Hut. Ždiar, dolina Blaščatská Fig. 11. Sedimentological log of delta-fed fan sandstones. Huty Fm., Ždiar, Blaščatská dolina valley Stop E7 - Jurgów Paleogene outer fan deposits Sediments of the Brzegi Beds outcropped on the bank the Białka river near the Jurgów village Fig. 12. Zdeformowane tektonicznie piaskowce masywne, formacja z Hut. Ždiar, dolina Blaščatská Fig. 12. Massive, tectonically deformed sandstones. Huty Fm., Ždiar, Blaščatská dolina valley

75 Fig. 13. Profil sedymentologiczny osadów obrzeżenia kanału - wału brzegowego - międzykanałowych. Formacja z Zuberca, brzeg potoku Javorinka, Podspády. Fig. 13. Sedimentological log of the channel fringe levee interchanel sediments. Zuberec Fm, Javorinka River bank, Podspády.

76 Geologia Tatr: Ponadregionalny kontekst sedymentologiczny. Polska Konferencja Sedymentologiczna Fig. 14. Osady stożka zewnętrznego, warstwy z Brzegów. Jurgów Fig. 14. Outer fan sediments. Brzegi Beds. Jurgów are visited in this stop (Fig. 14). The succession is built of grey claystones intercalated with thinbedded ripple or planar laminated, fine-grained sandstones and siltstones, massive and graded sandstones. Thirty to sixty cm thick sandstones occur here rarely. Sediments show no trends or show only a vague coarsening and thickening upward (well-developed approximately 2-km southward). The sediments were deposited on an outer fan, fan fringe to basin plain. Upper Oligocene (Gedl, 2000) to lower Miocene (Andreyeva-Grigorovich, unpublished data) age of these deposits suggests that they may represent distant parts of sand-rich lobes of the Biely Potok Fm. Deformational structures are present here except for the very well developed sedimentary structures. This site is located far away from the centre of uplift and tilting of the Paleogene sequence is absent here. LITERATURA REFERNCES Borza, K., 1959. Geologicko-petrografické pomery mezozoika Belanskỳch Tatier a Masivu Širokej. Geologickỳ Sbornik, 10: 133-182. Bouma, A. M., 1962. Sedimentology of some flysch deposits. Elsevier, Amsterdam, 168 pp. Chrzeszczyk-Gizińska, A. & Superson, A., 2001. Środowiska sedymentacji kajpru karpackiego jednostki kriżniańskiej Tatr Zachodnich i Tatr Bielskich. Praca magisterska. Archiwum Biblioteki Instytutu Nauk Geologicznych UJ. Csontos, L., Nagymaroszy, A., Horváth, F., & Kováč, M., 1992. Tertiary evolution of the Intra-Carpathian area: a model. Tectonophysics, 208: 221 241. Gaździcki, A., Michalik, J., Planderowa, E., Sỳkora, M., 1979. An Upper Triassic-Lower Jurassic sequence in the Križna Nappe (West Tatra Mts, West Carpathians, Czechoslovakia). Zapadne Karpaty, Sẻr. Geologia, 5, 119 148. Gedl, P., 2000. Palaeography of the Podhale Flysch (Oligocene, Central Carpathians, Poland) its relation to the neighbourhood areas as based on palynological studies. Slovak Geological Magazine, 2 3: 155 154. Gross, P., Köhler, E., Samuel, O., 1984. Nové litostratigrafické členenie vnútrokarpatského paleogénu. Geologické práce, Správy, 81: 113 117. Gross, P., Köhler, E., Mello, J., Halouzka, R., Haško, J., Nagy, A., 1993. Geológia južnej a východnej Oravy. GÚDŠ, Bratislava, 292 pp. Hurai, V., Tokarski, A., Swierczewska, A., Kotulová, J., Biroň, A., Soták, J., Hrušecký, I. & Marko, F., 2004. Methane Degassing and Exhumation of the Tertiary Accretionary Complex and Fore-arc Basin of the Western Carpathians. Geolines, 17: 42 45. Janočko, J. & Jacko, S., 1999. Marginal and deep-sea deposits of Central Carpathians Paleogene Basin, Spišská Magura region, Slovakia: implication for basin history. Slovak Geological Magazine, 4: 281 292. Janočko, J., Gross, P., Buček, S., Karoli, S., Žec, B., Rakús, M., Potfaj, M. & Halouzka, R., 2000. Geologická Mapa Spišskej Magury. 1:50 000. ŠGÚDŠ, Bratislava. Janočko, J. (ed.); Gross, P., Polák, M., Potfaj, M., Jacko, S. ml., Rakús, M., Halouzka, R., Jetel, J., Petro, Ľ., Kubeš, P., Buček, S., Köhler, E., Siráňová, Z., Zlínska, A., Halásová, E., Hamršmíd, B., Karoli, S., Žec, B., Fejdiová, O., Milička, J., Boorová, D. & Žecová, K., 2000. Vysvetlivky ku geologickej mape Spišskej Magury. 1:50 000. ŠGÚDŠ, Bratislava, 174 pp. Marschalko, R. & Radomski, A., 1970. Sedimentárne textúry a vývoj okrajových fácií eocénneho flyšu v Ždiari. Geologické práce, Správy, 53: 85 99.

77 Mutti, E., 1992. Turbidite Sandstones, Second Edition, Geosience Canada, Reprint Series,1: 1 275. Nemec, V. & Steel, R., J., 1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In: Coster, E. H.; Steel R. J., (eds), Sedimentology of gravels and conglomerates. Canadian Society of Petroleum Geologist, Memoir, 10: 1 31. Olszewska, B. & Wieczorek, J., 1998. The Paleogene of the Podhale basin (Polish Inner Carpathians) micropaleontological perspective. Przegląd Geologiczny, 46(8): 721 728. Royden, L. H., & Baldi, T., 1988. Early Cenozoic tectonics and paleogeography of the Pannonian and surrounding regions. Pre-Neogene evolution of the Western Carpathians: constraints from the Bochnia Tatra Mountains section (Polish Western Carpathians). The Pannonian Basin: a study of basin evolution. In: Royden, L.H. &. Horváth, F (eds),. American Association of the Petroleum Geologists, Memoir, 45: 1 16. Rychliński, T., 2001. Studium sedymentologiczne osadów triasu środkowego Tatr Bielskich (Słowacja). Praca magisterska. Archiwum Biblioteki Instytutu Nauk Geologicznych UJ. Szulc, J. 2000, Middle Triassic evolution of the northern Peri-Tethys area as influenced by early opening of the Tethys Ocean. Annales Societatis Geologorum Poloniae, 70: 1-48. Shanmugam, G., 2000. 50 years of the turbidite paradigm (1950s 1990s): deep water processes and facies models a critical perspective. Marine and Petroleum Geology, 17: 285 342. Sliva, Ľ., 1999. Geológia a sedimentológia okrajových litofácíí Centrálnokarpatského paleogénu v úseku Ždiar Jezersko. Manuskript, Katedra Geol. and Paleont., Univerzita Komenského. Bratislava, 118 pp. Soták, J., 1998. Central Carpathians Paleogene and its constrains: reply to Gross & Filo s and Potfaj s comments. Slovak Geological Magazine, 4: 203 211. Soták, J., Pereszlenyi, M., Marschalko, R., Milička, J. & Starek, D., 2001. Sedimentology and hydrocarbon habitat of the submarine fan deposits of the Central Carpathians Paleogene Basin (NE Slovakia). Marine and Petroleum Geology, 18: 87 114. Tari, G., Báldi, M. & Báldi-Beke, M., 1993. Paleogene retroarc flexural basin beneath the Neogene Panonian Basin: a geodynamic model. Tectonophysics, 225: 433 456. Turnau-Morawska, M., 1953. Kajper tatrzański, jego petrografia i sedymentologia. Acta Geologica Polonica, 3: 33-102. Westwalewicz-Mogilska, E., 1986. Nowe spojrzenie na genezę osadów fliszu podhalańskiego. Przegląd Geologiczny, 12: 690 698.