Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa układu. Na rys.a przedstawiono schemat układu z wielokrotną pętlą sprzężenia zwrotnego, w którym możliwa jest realizacja aktywnego iltru dolno-, górno- lub środkowo przepustowego. Rys.b przedstawia widok płytki drukowanej według schematu z rys.a. L WEJ a) Z Z Z Z5 7 +E Z Z U TL u/5v E E u/5v L WYJ CC n CC n +E LZ b) c) 8 7 5 5 7 E TL E regulacja osetu wejście odwracające wejście nieodwracające E 5 regulacja osetu wyjście 7 +E 8 N.C. 8 7 8 5 Sheet Rys.. Układ z wielokrotną pętlą sprzężenia: a) schemat zastępczy układu, b) widok płytki z rozmieszczeniem elementów, c) wzmacniacz operacyjny TL wyprowadzenie pinów.
Symbol Parametr Tab.. Podstawowe parametry wzmacniacza operacyjnego TL Warunki pomiaru Wartości Min Typ Max ± E Napięcie zasilania ±8 V VI Maksymalne napięcie wejściowe ±5 V Pmax Maksymalna moc 8 mw VIO Wejściowe napięcie niezrównoważenia UO = V 5 mv IIO Wejściowy prąd niezrównoważenia 5 pa KUR Różnicowe wzmocnienie napięciowe RL = kω, = Hz Jedn. 5 V/V GB Pole wzmocnienia (gain bandwidth) RL = kω MHz RI Rezystancja wejściowa Ω RO Rezystancja wyjściowa Ω CMRR współczynnik tłumienia sygnału współbieżnego 8 8 db SR szybkość zmian napięcia wyjściowego VI = mv, RL = kω, Ku =.5,5 V/µs.. Filtr środkowoprzepustowy Na rys. przedstawiono układ iltru aktywnego środkowoprzepustowego realizowanego w strukturze układu z rys.. a) b) C R WE R C +E 7 TL WY db R R 5 śr d śr śr g Rys.. Filtr aktywny środkowoprzepustowy: a) realizacja iltru, b) charakterystyka amplitudowa iltru. Transmitancja iltru środkowoprzepustowego II rzędu z rys. ma postać: H S s Uwy ( s) RC = =. () U ( ) we s + R R s + s + + RC RC RCC Wartości elementów iltru środkowoprzepustowego dla zadanych śr, Ku, :
R =, () R C = C = C, () C =, () π R R = π śr C ( ) śr, (5) R =, () π C śr śr śr = =, (7) śr g R + śr śr d R =, (8) π C R R R gdzie: R5 rezystor stosowany w celu zminimalizowania błędu niezrównoważenia (R5 R).. Przygotowanie do zajęć... Materiały źródłowe [] Materiały Laboratorium i Wykładów Zespołu Układów Elektronicznych. [] U. Tietze, Ch. Schenk, Układy półprzewodnikowe, WNT, Warszawa, 9, s. 8-8, 87-88. [] P. Horowitz, W. Hill, Sztuka elektroniki, WKiŁ, Warszawa,, s. 78-9. [] S. Kuta, Elementy i układy elektroniczne, cz., AGH, Kraków,, s. 8-9... Pytania kontrolne. Podstawowe różnice między iltrami aktywnymi a biernymi.. Klasyikacja iltrów aktywnych.. Podstawowe parametry iltrów aktywnych.. Właściwości i podstawowe parametry wzmacniaczy operacyjnych. 5. Omówić iltry o charakterystykach: amplitudowej maksymalnie płaskiej, amplitudowej równomiernej alistej, azowej maksymalnie liniowej.. Różnica pomiędzy częstotliwością graniczną a charakterystyczną... Zadanie projektowe Dla zadanych przez prowadzącego parametrów iltru środkowoprzepustowego:. obliczyć i dobrać elementy iltru (wartości rezystorów z szeregu E, kondensatorów z wartości dostępnych w laboratorium: n, n5, n, n7, n8, n, 5n, n, nf),. sporządzić wykres z charakterystykami częstotliwościowymi iltru (np. LTspice).
UWAGA: Wykres przygotować w skali, która umożliwi naniesienie na rysunek również rzeczywistych charakterystyk mierzonych w laboratorium. (Zazwyczaj dobra okazuje się charakterystyka w db i zakresie częstotliwości ±.*, w skali liniowej).. sporządzić wykres z odpowiedzią układu na pobudzenie skokiem jednostkowym (LTspice).. Przebieg ćwiczenia.. Złożyć układ iltru dolnoprzepustowego zgodnie z rys... Zasilić wzmacniacz operacyjny symetrycznym napięciem ± 5 V.. Do wejścia podłączyć generator przebiegu sinusoidalnego. Do wejścia i wyjścia układu podłączyć sondy oscyloskopu (rys.). GENERATOR FILTR U I V V AKTYWNY U o CH CH Rys.. Układ do pomiaru właściwości iltru aktywnego. Obserwując stosunek napięć na wyjściu i wejściu układu określić częstotliwości graniczne (db). Wyjaśnić ewentualne różnice pomiędzy pomiarami a założeniami projektowymi. W razie konieczności skorygować dobór elementów w układzie. 5. Pomiar charakterystyk częstotliwościowych iltru. Przy stałej amplitudzie sygnału z generatora, dobranej tak by iltr pracował liniowo, zmieniać częstotliwość generowanego sygnału w zakresie podobnym do przeprowadzonej symulacji. Odczytywać stosunek napięcia wyjściowego do wejściowego (charakterystyka amplitudowa). Wyniki pomiarów nanosić na przygotowany wykres z charakterystyką uzyskaną w symulacji. Odczytywać wartość przesunięcia azowego pomiędzy napięciami wejściowym a wyjściowym (charakterystyka azowa). Pomiary przesunięcia azowego wykonywać metodą oscyloskopową opisaną w dodatku A. Wyniki pomiarów nanieść na przygotowany wykres z charakterystyką uzyskana w symulacji.. Pomiar odpowiedzi impulsowej iltru. Na wejście iltru podać alę prostokątną o częstotliwości powtarzania dziesięciokrotnej niższej od częstotliwości granicznej iltru, Na przygotowany w symulacji wykres, nanieść przebiegi napięcia wejściowego i wyjściowego lub wydrukować ekran z oscyloskopu, Oszacować z wykresu częstotliwość środkową iltru i dobroć.. Wnioski.. Porównać otrzymane parametry iltru z założeniami projektowymi (wskazać i uzasadnić różnice wyników teoretycznych i rzeczywistych).. Określić zakres pasma przepustowego badanego iltru.. Opisać parametry odpowiedzi impulsowej iltru. Co opisuje odpowiedź impulsowa iltru i jakie parametry iltru mają na nią wpływ.
5. D O D A T E K A Pomiar przesunięcia azowego metoda oscyloskopową Pomiar przesunięcia azowego pomiędzy dwoma sygnałami najprościej wykonać na ekranie oscyloskopu. Podczas pomiaru należy pamiętać, że osie zerowe obu przebiegów muszą się pokrywać jak pokazano na rys.a.. Wówczas przesunięcie pomiędzy przebiegami obliczamy: t ϕ = = * t *, (A.) T gdzie: x, x - odstępy odczytywane z ekranu oscyloskopu rys.a. t Rys.A.. Idea pomiaru przesunięcia azowego w trybie pracy dwukanałowej oscyloskopu T Przesunięcie to można również zmierzyć przy wykorzystaniu krzywej Lissajous uzyskanej na ekranie oscyloskopu pracującego w trybie X-Y (rys.a.). Przesunięcie azowe pomiędzy przebiegami obliczamy ze wzoru: a ϕ = arcsin, (A.) b gdzie: a, b- odstępy odczytywane z ekranu oscyloskopu rys.a. b a Rys.A.. Idea pomiaru przesunięcia azowego w trybie pracy X-Y oscyloskopu 5