SURFACE QUALITY AND MECHANICAL PROPERTIES OF EPOXY-GLASS FIBRE LAMINATES MANUFACTURED BY VARI METHOD WITH USE OF GELCOAT

Podobne dokumenty
SURFACE QUALITY AND MECHANICAL PROPERTIES OF EPOXY-GLASS FIBRE LAMINATES MANUFACTURED BY RTM METHOD WITH USE OF GELCOAT

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

Porównanie zdolności pochłaniania energii kompozytów winyloestrowych z epoksydowymi

ROZPRAWY NR 128. Stanis³aw Mroziñski

OCENA WYTRZYMAŁOŚCI RESZTKOWEJ ZSZYWANYCH LAMINATÓW ŻYWICA POLIESTROWA-WŁÓKNO SZKLANE

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

DELTIM Sp. z o.o. S.K.A ul. Rząsawska 30/38; Częstochowa. Bumper bar X-Lander X-Move

Patients price acceptance SELECTED FINDINGS

Badania właściwości kompozytów poliestrowych napełnionych włóknami szklanymi i naturalnymi

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Has the heat wave frequency or intensity changed in Poland since 1950?

EVALUATION OF VACUUM RESIN INFUSION PROCESS ON SELECTED GLASS FIBRE PREFORMS

BARIERA ANTYKONDENSACYJNA

Streszczenie rozprawy doktorskiej

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

TOPOGRAFIA WSPÓŁPRACUJĄCYCH POWIERZCHNI ŁOŻYSK TOCZNYCH POMIERZONA NA MIKROSKOPIE SIŁ ATOMOWYCH

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

LOAD BEARING CAPACITY OF WOODEN BEAMS REINFORCED WITH COMPOSITE SHEETS

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Stargard Szczecinski i okolice (Polish Edition)

BADANIE PRZEBIEGU ZNISZCZENIA ZSZYWANYCH KOMPOZYTÓW POLIMER-WŁÓKNO SZKLANE PRZY ZGINANIU ZA POMOCĄ REJESTRACJI SYGNAŁU EMISJI AKUSTYCZNEJ

Krytyczne czynniki sukcesu w zarządzaniu projektami

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas

Typ TFP FOR CRITICAL AIR CLEANLINESS AND VERY CRITICAL HYGIENE REQUIREMENTS, SUITABLE FOR CEILING INSTALLATION

COMPARATIVE EVALUATION OF GFRP LAMINATE PANELS MANUFACTURED BY VARI AND RTM METHODS

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Tychy, plan miasta: Skala 1: (Polish Edition)

ZASTOSOWANIE TECHNOLOGII REP-RAP DO WYTWARZANIA FUNKCJONALNYCH STRUKTUR Z PLA

Veles started in Our main goal is quality. Thanks to the methods and experience, we are making jobs as fast as it is possible.


MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

p ISSN TRIBOLOGIA 1/2018 Key words: Abstract

Knovel Math: Jakość produktu

Typ MFPCR FOR THE MOST DEMANDING REQUIREMENTS ON THE PURITY OF INDOOR AIR, WORKSTATIONS, AND DEVICES

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

SNP SNP Business Partner Data Checker. Prezentacja produktu

Cracow University of Economics Poland

WYKORZYSTANIE ODPADÓW KOMPOZYTOWYCH JAKO WYPEŁNIACZA OSNOWY POLIMEROWEJ W MATERIAŁACH KOMPOZYTOWYCH

NIESTACJONARNY PRZEPŁYW CIEPŁA W TŁOKU DOŁADOWANEGO SILNIKA Z ZAPŁONEM SAMOCZYNNYM

WPŁYW OBCIĄŻEŃ ZMĘCZENIOWYCH NA WYSTĘPOWANIE ODMIAN POLIMORFICZNYCH PA6 Z WŁÓKNEM SZKLANYM

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

WPŁYW PRZETWÓRSTWA ORAZ WYGRZEWANIA NA WŁAŚCIWOŚCI DYNAMICZNE KOMPOZYTU POLIAMIDU 6,6 Z WŁÓKNEM SZKLANYM

Updated Action Plan received from the competent authority on 4 May 2017

Zarządzanie sieciami telekomunikacyjnymi

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

EVALUATION OF MECHANICAL PROPERTIES OF POLYMER SANDWICH SYSTEMS USED FOR NOISE REDUCTION PURPOSES


Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

miniature, low-voltage lighting system MIKRUS S

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu

WŁAŚCIWOŚCI MECHANICZNE KOMPOZYTÓW AlSi13Cu2- WŁÓKNA WĘGLOWE WYTWARZANYCH METODĄ ODLEWANIA CIŚNIENIOWEGO

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

DOI: / /32/37

European Crime Prevention Award (ECPA) Annex I - new version 2014

Przemysłowe zastosowania technologii generatywnych

Radiologiczna ocena progresji zmian próchnicowych po zastosowaniu infiltracji. żywicą o niskiej lepkości (Icon). Badania in vivo.

INFLUENCE OF POLYESTER MACROFIBERS ON SELECTED PHYSICAL AND MECHANICAL PROPERTIES OF CEMENT COMPOSITES

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Compression strength of pine wood (Pinus Sylvestris L.) from selected forest regions in Poland, part II

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Części nr 10

Development of SOFC technology in IEn OC Cerel

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

WPŁYW OSNOWY POLIMEROWEJ NA WŁAŚCIWOŚCI MECHANICZNE LAMINATÓW WZMOCNIONYCH WŁÓKNEM SZKLANYM

Sargent Opens Sonairte Farmers' Market

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Wpływ powłoki Al Si na proces wytwarzania i jakość zgrzewanych aluminiowanych rur stalowych

Odnawialne źródła energii. Renewable Energy Resources. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

Pomiary hydrometryczne w zlewni rzek

WPŁYW SORPCJI I DESORPCJI NA WŁASNOŚCI CIEPLNE I MECHANICZNE LAMINATÓW

WPŁYW WYPEŁNIACZA Z RECYKLATU POLIESTROWO-SZKLANEGO NA WŁAŚCIWOŚCI MECHANICZNE LAMINATÓW

WYKAZ DOROBKU NAUKOWEGO

Akademia Morska w Szczecinie. Wydział Mechaniczny

BUILDING BUILDING. Patrol Group offers a broad spectrum of building products: building buckets and containers of various shapes and sizes.

P/M COMPOSITES OF Al-Si-Fe-Cu ALLOY WITH SiC PARTICLES HOT-EXTRUDED AFTER PRELIMINARY COMPACTION

PROJECT. Syllabus for course Negotiations. on the study program: Management

WYTWARZANIE KOMPOZYTÓW WARSTWOWYCH METODĄ RFI

G14L LPG toroidal tank

Konsorcjum Śląskich Uczelni Publicznych

SNP Business Partner Data Checker. Prezentacja produktu

PROJECT. Syllabus for course Global Marketing. on the study program: Management

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

SCHREDER EVOLO 2 / 2018 / HPS 100W / 28289A / Karta danych oprawy

Streszczenia / Abstracts 6/ 2011

OPTYMALIZACJA KOMPUTEROWA KONSTRUKCJI WYKONANYCH Z KOMPOZYTU GFRP

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

Transkrypt:

16: 3 (2016) 167-173 Mateusz Kozioł*, Bartosz Hekner, Jakub Wieczorek Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, ul. Z. Krasińskiego 8, 40-019 Katowice, Poland *Corresponding author. E-mail: Mateusz.Koziol@polsl.pl Received (Otrzymano) 7.04.2016 SURFACE QUALITY AND MECHANICAL PROPERTIES OF EPOXY-GLASS FIBRE LAMINATES MANUFACTURED BY VARI METHOD WITH USE OF GELCOAT The aim of the study is a preliminary evaluation of the possibility and purposefulness of applying a gelcoat covering on GFRP (glass fibre reinforced polymer) laminates manufactured by the VARI (vacuum assisted resin infusion) method. A set of panels was manufactured on the basis of three types of glass fibre reinforcements: plain-woven fabric, chopped strand mat and 3D non-crimp fabric, while the composite matrix was epoxy resin. Alternatively, panels with and without the gelcoat layer were manufactured. The polyester gelcoat was laid on the mould by hand. Profilographometric tests were applied as the main method of evaluating the laminate surfaces. To evaluate the border area between the gelcoat layer and the laminate, microscopic visualization was performed with use of a scanning electron microscope (SEM) and - for chosen specimens - with use of a light microscope in Nomarski s contrast conditions. In order to evaluate the influence of the gelcot layer presence on the laminate mechanical properties, tests of static bending were conducted on the laminates with and without the layer. The obtained profilographometric results showed that application of the gelcoat resulted in improvement of surface quality (a decrease in the maximum and average profile height as well) practically in all the tested specimens. Micrographs made of the gelcoat-laminate border area confirm very good coupling between these two elements. The obtained results of the bending tests showed that the presence of the gelcoat layer does not significantly affect the mechanical performance of the laminates. The registered differences in flexural strength between the specimens with the gelcoat covering and those without it are not big - and in most cases they are in favor of the latter ones. The obtained results allow the authors to conclude that VARI technology is very well suited to manufacturing products with a gelcoat layer. The results and conclusions obtained within the study may be useful for manufacturers in planning and optimization of manufacturing processes for elements made of composite laminates. Keywords: laminate, gelcoat, vacuum assisted resin infusion (VARI) POWIERZCHNIA ORAZ WŁAŚCIWOŚCI MECHANICZNE LAMINATÓW ŻYWICA EPOKSYDOWA - - WŁÓKNO SZKLANE WYTWORZONYCH METODĄ INFUZJI PRÓŻNIOWEJ Z ZASTOSOWANIEM ŻELKOTU Celem niniejszej pracy jest wstępna ocena możliwości i celowości stosowania powłoki żelkotowej na laminaty wytwarzane metodą VARI (ang. vacuum assisted resin infusion, pol. infuzja próżniowa). Wytworzono zestaw płyt z laminatów na bazie trzech typów wzmocnień włókna szklanego: tkaniny krzyżowej, maty, tkaniny 3D. Płyty z laminatów formowano metodą VARI z użyciem żywicy epoksydowej. Wytworzono alternatywnie płyty bez oraz z warstwą żelkotu. Żelkot nakładano pędzlem. Jako główny element oceny powierzchni wytworzonych laminatów zastosowano badania profilografometryczne. Do oceny obszaru połączenia żelkotu z laminatem zastosowano wizualizację mikroskopową przeprowadzoną z użyciem mikroskopu skaningowego oraz (dla wybranych próbek) z wykorzystaniem mikroskopu świetlnego w kontraście Nomarskiego. W celu oszacowania wpływu obecności żelkotu na właściwości mechaniczne laminatu przeprowadzono próby zginania statycznego laminatów zi bez warstwy żelkotu. Uzyskane wyniki profilografometryczne pozwalają stwierdzić, że zastosowanie żelkotu praktycznie we wszystkich przypadkach spowodowało polepszenie jakości powierzchni laminatu, tzn. spadek zarówno maksymalnej, jak i średniej wysokości profilu tejże powierzchni. Zdjęcia mikroskopowe wykonane na granicy żelkot-laminat świadczą o bardzo dobrym połączeniu między tymi dwoma obszarami. Uzyskane wyniki prób zginania pozwalają stwierdzić, że wpływ żelkotu nie jest istotny dla właściwości mechanicznych laminatów. Zarejestrowane różnice wytrzymałości są niewielkie, przy czym z reguły na korzyść próbek z żelkotem. Na podstawie uzyskanych wyników można stwierdzić, że technologia VARI bardzo dobrze nadaje się do wykonywania wyrobów z warstwą żelkotu. Wyniki te mogą być pomocne przy planowaniu oraz optymalizacji struktur i technologii stosowanych na elementy konstrukcyjne z kompozytów. Słowa kluczowe: laminat, żelkot, infuzja próżniowa INTRODUCTION The aim of this study is a preliminary evaluation of the possibility and purposefulness of applying a gelcoat cover layer on GFRP (glass fibre reinforced polymer) laminates manufactured by the VARI (vacuum assisted resin infusion) method [1, 2]. The method is currently very intensively implemented since it enables the pro-

168 M. Kozioł, B. Hekner, J. Wieczorek duction of laminates exposing workers to lower levels of solvent vapours and it results in better repeatability in comparison with hand lay-up manufacturing [3, 4]. Due to the specific conditions of the VARI process (vacuum bag pressure for reinforcing layers, resin flow), manufacturers do not apply gelcoat coverings with this technology. They rather prefer painting products with proper paint after the process is finished [5, 6]. The problem of applying gelcoat in pressure- and vacuum-assisted techniques of laminate moulding has practically not been addressed in professional literature. Some mentions are have been made in branch publications, however, they are very general and not precise [7]. Nevertheless, in many types of composites - among others in those reinforced with natural components [8, 9], which are increasingly being applied and investigated [10, 11] - the surface often does not meet the quality requirements. In such situations, the application of gelcoat could be useful, as well as in the case of composites reinforced with non-crimp or stitched fibrous preforms - which was shown by the authors of research preceding this study. An additional advantage of the presence of the gelcoat layer on a laminate is the shielding effect against UV rays. The undertaken research task consisted in defining the simultaneous effect of the presence of the gelcoat layer and the structure of the reinforcing preform on surface quality and the mechanical properties of laminates manufactured by the VARI method. The problem proposed to analyse arises from the fact that the structure of the laminate is usually subordinated mainly to the requirements related to its strength [4, 12], without the issue of the impact of the structure on the laminate surface quality and technological properties of the fiber preform. Nonetheless, the lack of proper quality of the laminate surface (smoothness, lack of gaps and gas bubbles) may have a negative influence on the mechanical properties of the laminate - especially by the trends of damage arising due to local stress concentrations, even at a relatively low strain of the material [4, 13]. It is a preliminary study on the model structures and model technological conditions. The results may be helpful in the planning and optimization of structures and technologies used for structural components made of composite laminates. MATERIALS AND TECHNOLOGICAL PROCEDURE A set of laminate panels was manufactured on the basis of three types of reinforcing glass fibre structures: 1. Plainwoven fabric (10 layers, areal mass 320 g/m 2, KROSGLASS, Poland) 2. Chopped strand mat (6 layers, areal mass 540 g/m 2, KROSGLASS, Poland) 3. 3D fabric (7 non-crimp layers, areal mass 3280 g/m 2, 3TEX, USA). Panels 320 x 250 mm were moulded by the VARI method, without a bleeder (spreading fabric) - only with vacuum bag foil and release fabric. A diagram of the process is given in Figure 1. Fig. 1. Diagram of applied VARI system: a) plan view, b) side crosssectional view and indication of gelcoat covering layer in mould (alternative case) Rys. 1. Schemat zastosowanego układu VARI: a) widok z góry, b) widok przekroju bocznego ze wskazaniem warstwy żelkotu na formie (dla części próbek) The power of the vacuum pump was 1100 W. LH 288 epoxy resin with H 281 hardener (both HAVEL COMPOSITES, Czech Republic) was applied as the composite matrix. The panels were manufactured alternatively with and without the gelcoat layer. The gelcoat was laid on the lower surface of the mould nest with a brush, until it fully covered the entire surface without lumens. Lay-up of the dry reinforcing layers and start of the moulding process were performed after the gelcoat was subjected to initial curing (consistence of rubber). HAVELGEL 2432 gelcoat by HAVEL COMPOSITES, Czech Republic, was applied. After the process, all the panels were cured at room temperature for 20 h and after-cured at 55 C for 4 h. Next they were acclimatized for at least 72 h at room temperature again. Specimens for the tests were prepared with use of a rotating blade. ANALYTICAL METHODS Profilographometric investigations were the main method of evaluating the manufactured laminate surfaces. They were performed using a MICRO PROF optical profilographometer by FRT, Germany. The information set concerning the tested materials is shown in Table 1.

Surface quality and mechanical properties of epoxy-glass fibre laminates manufactured by VARI method with use of gelcoat 169 TABLE 1. Description of shorted names of tested specimens applied in further part of study TABELA 1. Objaśnienie nazw badanych próbek zastosowanych w dalszej części pracy Shorted name of specimen type Plain Plain gelcoat Mat Mat gelcoat 3D 3D gelcoat Description of plain-woven fabric of plain-woven fabric, with gelcoat layer of chopped strand mat of chopped strand mat, with gelcoat layer of 3D fabric of 3D fabric, with gelcoat layer To evaluate the coupling between the gelcoat layer and the main laminate structure, microscopic visualization of the border area was applied. Pictures of the representative specimens were made with use of a HITACHI S-3400N scanning electron microscope (SEM), equipped with a camera. Additional photo graphs, showing better contrast, were made using a NIKON ECLIPSE 200 MA light microscope in Nomarski s contrast, equipped with a camera. In order to evaluate the effect of the gelcoat layer presence on the mechanical properties of the laminate, static bending tests were performed. They were conducted with use of an INSTRON 4469 tester, at a 5 mm/min loading bar velocity and 5 kn loading head. The conditions of the tests were compatible with the PN-EN ISO 14125 standard. The tests were conducted on 5 specimens of each laminate type. RESULTS AND DISCUSSION The chosen profilographometric analysis results, enabling comparison of the tested laminates, are presented in Figures 2-7. Below the figures, in Table 2, the main surface parameters of the measured profiles are presented. These parameters were automatically determined by the profilographometer in relation to the proper reference plane, according to the ISO 25178 standard. The measured profile parameters for all the tested samples listed together allow comparison of them and evaluation of the effect of the presence of the gelcoat layer on these parameters. Fig. 2. Isometric image of surface in 2D view (upper) and 3D surface image (lower): a) plain laminate, b) plain gelcoat laminate Rys. 2. Izometryczny obraz powierzchni 2D (góra) oraz 3D (dół): a) laminat klasyczny, b) laminat klasyczny - żelkot Fig. 3. Distribution of roughness on selected surface area: a) plain laminate, b) plain gelcoat laminate Rys. 3. Rozkład chropowatości na wybranym fragmencie powierzchni: a) laminat klasyczny, b) laminat klasyczny - żelkot

170 M. Kozioł, B. Hekner, J. Wieczorek Fig. 4. Isometric image of surface in 2D view (upper) and 3D surface image (lower): a) mat laminate, b) mat gelcoat laminate Rys. 4. Izometryczny obraz powierzchni 2D (góra) oraz 3D (dół): a) laminat mata, b) laminat mata - żelkot Fig. 5. Distribution of roughness on selected surface area: a) mat laminate, b) mat gelcoat laminate Rys. 5. Rozkład chropowatości na wybranym fragmencie powierzchni: a) laminat mata, b) laminat mata - żelkot Fig. 6. Isometric image of surface in 2D view (upper) and 3D surface image (lower): a) 3D laminate, b) 3D gelcoat laminate Rys. 6. Izometryczny obraz powierzchni 2D (góra) oraz 3D (dół): a) laminat 3D, b) laminat 3D - żelkot

Surface quality and mechanical properties of epoxy-glass fibre laminates manufactured by VARI method with use of gelcoat 171 Fig. 7. Distribution of roughness on selected surface area: a) 3D laminate, b) 3D gelcoat laminate Rys. 7. Rozkład chropowatości na wybranym fragmencie powierzchni: a) laminat 3D, b) laminat 3D - żelkot TABLE 2. Chosen surface profile parameters for representative laminate specimens TABELA 2. Wybrane parametry profilu powierzchni dla reprezentatywnych próbek badanych laminatów Laminate type Maximum height of peaks S p Maximum height of valleys S v Maximum height of the surface S z Arithmetical mean height of the surface S a Plain 0.138 0.577 715 85.7 Plain gelcoat 2.63 8.04 10.7 0.783 Mat 5.7 20.3 26 1.72 Mat gelcoat 2.78 5.16 7.94 0.901 3D 3.89 10.5 14.4 1.13 3D gelcoat 4.29 4.88 9.17 1.21 * Parameters S p, S v, S z, and S a were determined automatically by profilographometer in relation to proper reference plane, according to ISO 25178 standard The obtained results allow one to conclude that the use of gelcoat, in practically all the cases resulted in improving the quality of the laminate surface - it caused a decrease in both the maximum and average height of that surface profile. In the case of the laminates without the gelcoat covering, the tendency to form an outer resin film reproducing the smooth surface of the mould is also visible. However, it is not comparably effective to the case of the gelcoat covering - see the gaps in Figures 2a and 4a. It is probably due to the lower viscosity of neat liquid resin in comparison with the liquid gelcoat mass which is more resistant to shrinkage and leveling. To evaluate the connection between the gelcoat layer and the main laminate structure, microscopic visualization was used. SEM photographs of the border area taken of representative specimens are presented in Figures 8-10. The additional photographs of the gelcoat layer - the main laminate structure border, taken of chosen specimens with use of the light microscope (Nomarski s contrast) are presented in Figure 11. Fig. 8. Gelcoat layer - main laminate structure border (indicated with white arrow) at two different magnifications - plain gelcoat laminate Rys. 8. Granica warstwa żelkotu - zasadnicza struktura laminatu (zaznaczona białą strzałką) przy dwóch różnych powiększeniach - laminat klasyczny - żelkot Fig. 9. Gelcoat layer - main laminate structure border ( indicated with white arrow) at two different magnifications - mat gelcoat laminate Rys. 9. Granica warstwa żelkotu - zasadnicza struktura laminatu (zaznaczona białą strzałką) przy dwóch różnych powiększeniach - laminat mata - żelkot

172 M. Kozioł, B. Hekner, J. Wieczorek Fig. 10. Gelcoat layer - main laminate structure border ( indicated with white arrow) at two different magnifications - 3D gelcoat laminate Rys. 10. Granica warstwa żelkotu - zasadnicza struktura laminatu (zaznaczona białą strzałką) przy dwóch różnych powiększeniach - laminat 3D - żelkot Fig. 11. Gelcoat layer - main laminate structure border - light microscope. Well visible border area: a) plain gelcoat laminate, b) 3D gelcoat laminate. Rys. 11. Granica warstwa żelkotu - zasadnicza struktura laminatu - mikroskop świetlny. Dobrze widoczny obszar granicy: a) laminat klasyczny - żelkot, b) laminat 3D - żelkot Practically all the taken photographs testify to the very good connection between the main structure of the laminate and the gelcoat layer. The transition appears to be rather discrete, but with a clear diffusion interlayer in the matrix-gelcoat bonding areas (Fig. 11b) and gelcoat penetration to the fiber strands in the areas of fiber- -gelcoat bonding (Fig. 11a). Evaluation of the mechanical properties of the produced laminates in static bending tests was to assess the effect of the application of gelcoat on these properties. Due to the preliminary nature of the study, the mechanical analysis was limited just to static bending tests. The results are shown in Table 3. TABLE 3. Results of static bending tests of laminates TABELA 3. Wyniki prób statycznego zginania badanych laminatów Laminate type Flexural strength R g [MPa] Deflection at maximum load f Rg [%] plain 327 ± 35 2.8 ± 0.7 plain gelcoat 400 ± 18 3.2 ± 0.2 mat 206 ± 5 3.0 ± 1.0 mat gelcoat 287 ±19 4.1 ± 0.2 3D* 534 ± 23 3.8 ± 0.2 3D gelcoat* 488 ± 51 3.5 ± 0.2 * - measured at direction parallel to strands of translaminar interweave The obtained results allow one to conclude that the effect of gelcoat presence is not significant for the mechanical performance of the laminates. The registered differences in strength between the laminates with and without the gelcoat covering are slight, especially with regard to the obtained deviations. The differences probably arose from technological causes, other than the presence of the gelcoat (pressure-assisted moulding processes often show a very stochastic course) [13, 4] and from imperfections in arrangement of the laminate layers. By analysing the mechanical results (Table 3) and the profilographometric results (Table 2) together, one may conclude that when comparing the similar types of composites having and not having the gelcoat covering, the influence of the presence of the gelcoat on the mechanical properties of the laminate is obvious: a smoother surface (lower profile heights) and higher flexural strength. Such a trend is visible for the plain and mat laminates; only the 3D laminate showed a different trend. It is probably associated with fact that, on the one hand, the gelcoat layer gives smoothness to the laminate surface, but on the other hand, it is susceptible to fracture. A crack arising within the gelcoat layer may relatively easily migrate into the main structure of the laminate, which considerably weakens the material [14, 15]. The obtained results also showed that the deformability of the tested laminates (Table 3) does not change due to the presence of gelcoat covering. In addition, tests of pulling the gelcoat layers out of the laminate main structure were undertaken. Nevertheless,

Surface quality and mechanical properties of epoxy-glass fibre laminates manufactured by VARI method with use of gelcoat 173 the tests did not succeed due to the strong coupling between these two elements (in fact it is very advantageous for the coupling). Direct evaluation of the strength of this coupling requires preparation of special specimens and a special, non-standard measuring method. SUMMARY The fundamental conclusion from the performed analysis is that the application of gelcoat does not negatively affect the mechanical properties of laminates manufactured by the VARI method. The conducted preliminary tests and analysis showed that VARI technology is suitable for manufacturing products with a layer of gelcoat. It may be applied in conditions similar to the hand lay-up manufacturing method. The obtained surfaces are of high quality - better that those of the equivalent laminates without the gelcoat layers. The guidelines for possible continuation of research are: further mechanical tests - pulling the gelcoat layers out of the laminate main structure, tests of curved panels, impact tests and at a later stage - manufacturing exemplary comparative products (with and without a gelcoat covering). Acknowledgements The study was funded by Silesian University of Technology, Faculty of Materials Engineering and Metallurgy as a part of statutory research 11/030/BK_ 16/0092. REFERENCES [1] Śleziona J., Podstawy technologii kompozytów, Wydawnictwo Politechniki Śląskiej, Gliwice 1998. [2] Castaing P., Lemoine L., Effects of water absorption and osmotic degradation on long-term behavior of glass fiber reinforced polyester, Polymer Composites 1995, 16, 5, 349- -356. [3] Królikowski W., Polimerowe kompozyty konstrukcyjne, WN PWN, Warszawa 2012. [4] Kozioł M., Rydarowski H., Wytwarzanie wyrobów z laminatów żywica utwardzalna - włókno na przykładzie łopaty wentylatora przemysłowego, Wydawnictwo Głównego Instytutu Górnictwa, Katowice 2014. [5] http://www.yachtaman.pl/farby_jacht.html (access 21.02.2016) [6] http://www.rynekfarb.pl/powloki-zircotec-chronia-kompozyty/ (access 21.02.2016). [7] https://www.rtmcomposites.com/process/resin-transfermolding-rtm (access 21.02.2016). [8] Pitarresi G., Tumino D., Mancuso A., Thermo-mechanical behaviour of flax-fibre reinforced epoxy laminates for industrial applications, Materials 2015, 8, 11, 7371-7388, DOI:10.3390/ma8115384. [9] Bajer K., Richert A., Bajer D, Korol J., Biodegradation of plastified starch obtained by corotation twin-screw extrusion, Polymer Engineering and Science 2012, 52, 12, 2537- -2542. [10] Virk A.S., Hall W., Summerscales J., Physical characterization of jute technical fibers: fiber dimensions, Journal of Natural Fibers 2010, 7, 3, 216-228. [11] Czaplicka-Kolarz K., Burchart-Korol D., Korol J., Environmental assesment of biocomposites based on LCA, Polimery 2013, 58, 6, 476-481. [12] Hyla I., Śleziona J., Kompozyty: elementy mechaniki i projektowania, Wydawnictwo Politechniki Śląskiej, Gliwice 2004. [13] Boczkowska A., Kapuściński J., Lindemann Z., Witemberg- -Perzyk D., Wojciechowski S., Kompozyty, Wydawnictwo Politechniki Warszawskiej, Warszawa 2013. [14] Whitney J.M., Nuismer R.J., Stress fracture criteria for laminated composites containing stress concentrations, Journal of Composite Materials 1974, 8, 3, 253-265. [15] Arasan S., Aktas M., Balcioglu H.E., Fracture toughness of woven glass and carbon reinforced hybrid and non-hybrid composite plates, Polymer Composites, article first published online 20 MAR 2016, DOI: 10.1002/pc.23999.