ANALYSIS OF LOCAL INFLUENCES IN STRUCTURAL DETAILS OF THE BRIDGES

Podobne dokumenty
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Zarządzanie sieciami telekomunikacyjnymi

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

ANALIZA TEORETYCZNA WPŁYWU POSTĘPUJĄCEGO PĘKANIA NA ZMIANĘ CZĘSTOTLIWOŚCI DRGAŃ WŁASNYCH KRATOWEGO MOSTU KOLEJOWEGO

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

TO ADVANCED MODELLING OF END PLATE JOINTS

ZMIANY CZĘSTOTLIWOŚCI DRGAŃ WŁASNYCH KRATOWNICOWEGO MOSTU KOLEJOWEGO W WYNIKU POSTĘPUJĄCEGO USZKODZENIA

Lecture 18 Review for Exam 1

DOI: / /32/37

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

OpenPoland.net API Documentation

Krytyczne czynniki sukcesu w zarządzaniu projektami

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Outline of a method for fatigue life determination for selected aircraft s elements


Auditorium classes. Lectures

UMOWY WYPOŻYCZENIA KOMENTARZ

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016

Akademia Morska w Szczecinie. Wydział Mechaniczny

ROZPRAWY NR 128. Stanis³aw Mroziñski

Installation of EuroCert software for qualified electronic signature

Hard-Margin Support Vector Machines


STATISTICAL METHODS IN BIOLOGY

Inverse problems - Introduction - Probabilistic approach

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

OBCIĄŻENIA TERMICZNE W ZESPOLONYCH DŹWIGARACH MOSTOWYCH THERMAL LOADS IN BRIDGE COMPOSITE STRUCTURES

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

BLACKLIGHT SPOT 400W F

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

DELTIM Sp. z o.o. S.K.A ul. Rząsawska 30/38; Częstochowa. Bumper bar X-Lander X-Move

Tychy, plan miasta: Skala 1: (Polish Edition)

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Helena Boguta, klasa 8W, rok szkolny 2018/2019

SYMULACJA TŁOCZENIA ZAKRYWEK KORONKOWYCH SIMULATION OF CROWN CLOSURES FORMING

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Instrukcja obsługi User s manual

Appendix. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej R. 10. Zeszyt 2 (17) /

Extraclass. Football Men. Season 2009/10 - Autumn round

Struktury proponowane dla unikalnych rozwiązań architektonicznych.

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

F-16 VIRTUAL COCKPIT PROJECT OF COMPUTER-AIDED LEARNING APPLICATION WEAPON SYSTEM POWER ON PROCEDURE

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Sargent Opens Sonairte Farmers' Market

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

G14L LPG toroidal tank

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

TR18 INSTALATION MANUAL / INSTRUKCJA MONTAŻU. cart for flat displays

RADIO DISTURBANCE Zakłócenia radioelektryczne

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Cracow University of Economics Poland

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

miniature, low-voltage lighting system MIKRUS S

Zbigniew H. ŻUREK BADANIA STANU FERROMAGNETYCZNYCH ELEMENTÓW MASZYN W POLU MAGNETYCZNYM

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Space for your logo, a photograph etc. Action (WBU)

Has the heat wave frequency or intensity changed in Poland since 1950?

The Overview of Civilian Applications of Airborne SAR Systems

Badania doświadczalne wielkości pola powierzchni kontaktu opony z nawierzchnią w funkcji ciśnienia i obciążenia

Knovel Math: Jakość produktu

RADIO DISTURBANCE Zakłócenia radioelektryczne

Streszczenie rozprawy doktorskiej

DIAGNOSIS OF WORKING MECHANISMS IN MACHINERY AND EQUIPMENT

STEROWANIA RUCHEM KOLEJOWYM Z WYKORZYSTANIEM METOD SYMULACYJNYCH

Patients price acceptance SELECTED FINDINGS

EN/PL COUNCIL OF THE EUROPEAN UNION. Brussels, 29 August /13 Interinstitutional File: 2013/0224 (COD)

SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ WSTĘP KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14

PRACA DYPLOMOWA Magisterska

Rodzaj obliczeń. Data Nazwa klienta Ref. Napędy z pasami klinowymi normalnoprofilowymi i wąskoprofilowymi 4/16/ :53:55 PM

Vehicle data. DEKRA Poland - Headquarters Warszawa, ul. Rzymowskiego 28 tel. (22) , faks (22)

ZWROTNICOWY ROZJAZD.

PROBLEMY GENERACJI SIATKI MES DLA KÓŁ ZĘBATYCH

ANALIZA WYTĘŻENIA ZWOI GWINTU W POŁĄCZENIU ŚRUBA- NAKRĘTKA ANALYSIS OF THREAD COIL EFFORT IN THE SCREW NUT JOINT

Umowa Licencyjna Użytkownika Końcowego End-user licence agreement

WYDZIAŁ NAUK EKONOMICZNYCH

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

LEARNING AGREEMENT FOR STUDIES

SNP SNP Business Partner Data Checker. Prezentacja produktu

EPS. Erasmus Policy Statement

t Rysunek 2: Wykres drgań podstawy wspornika u(t)


Transkrypt:

TRANSPORT PROBLEMS 2015 PROBLEMY TRANSPORTU Volume 10 Issue 1 bridge; engineering modelling; structural details; local influences; Adam RUDZIK*, Stefan PRADELOK Department of Mechanics and Bridges, Faculty of Civil Engineering, Silesian University of Technology Akademicka 5, 44-100 Gliwice, Poland *Corresponding author. E-mail: adam.rudzik@polsl.pl ANALYSIS OF LOCAL INFLUENCES IN STRUCTURAL DETAILS OF THE BRIDGES Summary. The article analyses the problems of local influences in structural details of bridges as the critical locations, whose damages or excessive force may directly affect the safety of users. These analyses are shown on selected examples. Presented is the example of local changes in the forms of proper vibrations in the node of the truss bridge that can be used in expert issues concerning the causes of damages. The second example are the changes in stresses in the stay cable anchorage element including the nonlinear material models. Models of this type can be successfully used by engineers as they allow for analysis of selected structural details without the need for detailed mapping of the entire structure, but only a selected section. ANALIZA LOKALNYCH WPŁYWÓW W SZCZEGÓŁACH KONSTRUKCYJNYCH MOSTÓW Streszczenie. W artykule podjęto problematykę analizy lokalnych wpływów w szczegółach konstrukcyjnych mostów, jako miejscach newralgicznych, których uszkodzenia lub nadmierne wytężenie może bezpośrednio wpłynąć na bezpieczeństwo użytkowania. Możliwość takich analiz pokazano na wybranych przykładach. Przedstawiono przykład lokalnych zmian postaci drgań własnych w wyniku uszkodzenia w węźle mostu kratownicowego, który może być wykorzystany w zagadnieniach eksperckich, dotyczących poszukiwań przyczyny powstałego uszkodzenia. Drugim przykładem są zmiany naprężeń w elemencie zakotwienia cięgna podwieszającego z uwzględnieniem nieliniowych modeli materiału. Modele tego typu mogą być z powodzeniem wykorzystywane przez projektantów, gdyż pozwalają na analizę wybranych detali konstrukcyjnych bez konieczności szczegółowego odwzorowania w modelu całego obiektu, a jedynie wybranego fragmentu. 1. INTRODUCTION Monitoring the structural health of bridge structures may require analysis of local influences in structural details. Disclosure of such influences, in the elastic and beyond elastic range, is only possible with an exact mapping of detail in the calculation model. Until recently, the available tools allow for the numerical analysis of the structure only in the elastic range. Currently available numerical tools also allow conduction of advanced analyses on complex models in beyond elastic range. However, this often leads to a task that requires the use of computer with high computing power. The article presents two examples of local influences in the structural details of bridges with

116 A. Rudzik, S. Pradelok the use of a personal computer. The first example shows an engineering method of detailed modelling of the part of the structure that minimizes the size of the task. The second example uses the elasticplastic material model, allowing for stress analysis in the "beyond elastic" range and their dependence on load history. 2. MODELLING AND ANALYSES OF STRUCTURAL DETAILS OF BRIDGES 2.1. Modelling of details and engineering modelling Theoretical analysis of local influences in structural details of bridges are possible only with accurate modelling. Calculation models of such details are usually built based on the finite element method. This solution is effective for simple models, whose size and analysis does not lead to a large calculation task that exceeds the capabilities of personal computers; otherwise, it is necessary to use a computer with high computing power. The solution is to build a detailed model of the section of the structure and attach it to the spatial bar system. More information on this type of engineering modelling can be found in [1, 2]. For the analysis described in the article used the Sony Vaio personal computer with the following parameters: processor: Intel Core i5 CPU; M460 2.53GHz 2 core; installed physical memory (RAM): 4.0 GB; available physical memory: 1.37 GB. Modelling and analysis were performed with using the following software: Robot Structural Analysis Professional, Autodesk Simulation Mechanical. 2.2. Analysis of local changes of selected dynamic parameters The subject of the problem is to show the ability of analysis of the work of the bridge s structural detail in the elastic range. The analysed element is the node of the truss railway bridge. The calculation model of the bridge was built as a frame spatial bar system. A detailed node consisting of over 3,100 coating elements (panels) was attached to one node of this system; these panels were given the appropriate thickness corresponding to the individual elements of the object (web, flanges, ribs, gusset plates). The analysis was based on the simulation of the node damage in the form of fracture of the bottom flange of the truss system and recording the form changes and frequency of the proper vibrations. A detailed description of the model, analysis of global changes of values of the vibration frequencies of the entire system and selected results of field tests are given in [3]. a) Fig. 1. The dimensions of model: a) whole bridge; b) detailed node Rys. 1. Wymiary modelu: a) całego mostu; b) węzła szczegółowego By analysing the local influences, it was shown that in the case of some forms of local vibrations, local disorders occurred. An example is shown in Fig. 2, where clear disorders of horizontal flexural form of vibrations in the node with the damage of the bottom flange can be seen.

Analysis of local influences in structural details of the bridges 117 a) b) Fig. 2. View of the local disorder of vibration form (a horizontal flexural form, f=19.72hz) resulting from damage: a) node with no damage; b) node with damage Rys. 2. Widok lokalnego zaburzenia postaci drgań (postać pozioma giętna, f= 19,72Hz) wynikający z uszkodzenia: a) węzeł bez uszkodzenia; b) węzeł z uszkodzeniem This character occurred in the model without damage at a frequency of 19.720 Hz while in the model with damage at a frequency of 19.700 Hz. The frequency difference of 0.02 Hz and a comparison of global vibration forms of the analysed models (Fig. 3) does not indicate any disorders. Thus, analysis of changes of global frequencies and forms of proper vibrations of the entire model would be insufficient in this case. The same would be in the case of the analysis of the bar model without a specific node. a) b) Fig. 3. Horizontal flexural vibration form: a) model without damage (f=19.720hz); b) model with damage (f=19.700hz). Rys. 3. Pozioma giętna postać drgań: a) model bez uszkodzenia (f=19,720hz); b) model z uszkodzeniem (f=19,700hz)

118 A. Rudzik, S. Pradelok 2.3. Analysis of local changes of stresses and plastic deformations This chapter describes the ability to analyse the changes in stress in the beyond elastic range. The considered structural detail is a stay cable anchorage element. Geometry, dimensions and general view of the model is shown in Fig. 4. The base plate has twelve holes with diameter of Ø30 mm; the peripheral of these holes was given a support in the form of restraint. The ring has a hole of a diameter of Ø50 for the bolt. The contact of the bolt with the ring was assumed as sliding with no friction, allowing movement of the bolt within the hole. All parts of the model were constructed with eightnode solid elements. The analysis includes two models of material: o linear-elastic model; o elastic-plastic model with the plasticity condition of Huber-Mises with the isotropic reinforcement. The load is the surface load distributed over the surface of the bolt, applied at an angle of 22 (parallel to the top edge of the ring). In the calculation model with the elastic plastic model of material, the load was applied in the form of two functions including and not including the offload phases. The maximum (final) value of the load is 2MN. Functions of load are shown in Fig. 5. a) b) Fig. 4. The computational model of anchorage: a) geometry and dimensions; b) general view Rys. 4. Model obliczeniowy: a) geometria i wymiary; b) widok ogólny a) b) Fig. 5. The course of load function: a) without offload phases; b) with offload phases Rys. 5. Przebieg funkcji obciążenia: a) bez faz odciążania; b) z fazami odciążania

Analysis of local influences in structural details of the bridges 119 Distribution of stresses within the hole was analysed. In total, three calculation models were analysed: o model A - with elastic-plastic material and function of load without offload phases; o model B - with elastic-plastic model with function of load with offload phases; o model C - with linear-elastic material. The maximum values of Huber-Mises (H-M) stresses were 1205 MPa in model A, 1223 MPa in model B and 2467 MPa in model C (almost two times the tensile strength of steel). When analysing the distribution of stresses exceeding the yield strength in the final phase of the load (Fig. 6), the difference between model A and B can be seen, which is an excellent example of the need to consider the history of the load (and fatigue effects in a later stage). Distribution in the case of linear-elastic material significantly differs from the models of elastic-plastic material, and recorded maximum stresses would not occur in reality, which excludes it from this type of analysis. a) b) c) Fig. 6. The occurrence of stress above the yield stress (1172MPa): in a model with elastic-plastic material with function of load without offload phases; b) in a model with elastic-plastic material with function of load with offload phases; c) in a model with linear-elastic material Rys. 6. Występowanie naprężeń powyżej granicy plastyczności (1172 MPa): a) w modelu z materiałem sprężysto-plastycznym z funkcją obciążenia bez faz odciążania; b) w modelu z materiałem sprężystoplastycznym z funkcją z fazami odciążania; c) w modelu z materiałem liniowo-sprężystym 3. ANALYSIS OF LOCAL INFLUENCES VERSUS STRUCTURAL HEALTH MONITORING One of the elements of transport safety is the safety and reliability of engineering structures, which are an integral part of the transport network. On the other hand, parameters of the structure's elements, both structural and non-structural, determine its safety and reliability. An important issue is therefore the structural health monitoring (SHM), which is the widely undertaken subject in the national and international literature [4-11]. Detection of local influences in the real structures through a built-in monitoring system should always be preceded by an advanced numerical simulations and possibly model tests [12]. This will allow the detection of local influences and their changes as well as it will be the basis for the selection of an appropriate measurement base, its parameters and the method of installation in a real structure. 4. SUMMARY AND CONCLUSIONS The paper presents examples of the analysis of local influences in structural details of bridge structures. The example of the analysis in the elastic and beyond elastic range of the element is described. The given modelling capabilities can be used in matters of experts and designers. The presented detail of the node of the truss bridge shows that, despite a slight change in the global frequency of proper vibrations of the entire structure induced by the damage, clear

120 A. Rudzik, S. Pradelok disorders of the form in the detail were observed. Obtaining such a result was achieved through appropriate modelling of the structural detail, while maintaining the size of the calculation task allowing the use of a personal computer. In the case of analysis of the stay cable anchorage element, it was shown that the use of linearelastic material in this type of analysis is insufficient and more complex models taking into account the plastic range and the strengthening material process should be used. Both examples lead to the conclusion that the analysis of the structural details of bridges is an important element in the structural health monitoring and safety. An exact mapping of the detail's geometry and the way of cooperation of individual elements is important. More complex than used in engineering practice linear-elastic model should also be used, allowing for tracking the plastic zones and taking into account the history of the load. The presented modelling capabilities allow the use of personal computer for the advanced analyses. References 1. Pradelok, S. & Bętkowski, P. & Rudzik, A. & Łaziński, P. Modelowanie inżynierskie szczegółów konstrukcyjnych mostu. Budownictwo i Architektura. 2013. Vol. 12(2). P. 55-62. [In Polish: Engineering modelling of structural details of a bridge]. 2. Jankovski, V. & J. Atkočiūnas, J. Biparametric shakedown design of steel frame structures. Mechanika. 2011. Vol. 17. No. 1. P. 5-12. 3. Pradelok, S. & Rudzik, A. & Poprawa, G. Analiza teoretyczna wpływu postępującego pękania na zmianę częstotliwości drgań własnych kratowego mostu kolejowego. XXVI Konferencja Naukowo-Techniczna Awarie Budowlane. Szczecin-Międzyzdroje 2013. P. 275-282. [In Polish: Theoretical analysis progressive cracking impact on natural frequency of truss railway bridge]. 4. Kuras, P. & Owerko, T. & Ortyl, Ł. & Kocierz, R. & Sukta, O. & Pradelok, S. Advantages of radar interferometry for assessment of dynamic deformation of bridge. Proceedings of the Sixth International IABMAS Conference. Stresa, Italy. 8-12 July 2012. P. 885-891. 5. Owerko, T. & Ortyl, Ł. & Kocierz, R. & Kuras, P. & Salamak M. Investigation of displacements of road bridges under test loads using radar interferometry case study. Proceedings of the Sixth International IABMAS Conference. Stresa, Italy. 8-12 July 2012. P. 181-188. 6. Biliszczuk, J. & Barcik W. & Sieńko, R. System monitorowania mostu w Puławach. Mosty. 2009. Vol. 4. P. 12-17. [In Polish: The monitoring system of the bridge in Puławy]. 7. Barcik, W. & Sieńko, R. & Biliszczuk, J. System monitorowania konstrukcji mostu Rędzińskiego we Wrocławiu. Wrocławskie Dni Mostowe. Aktualne realizacje mostowe. Wrocław 24-25 listopada 2011. [In Polish: Monitoring system of the Rędziński Bridge s structure in Wrocław]. 8. Kowalewski, J. & Sulik, P. Wiarygodność i skuteczność monitoringu bezpieczeństwa konstrukcji budowlanych. XI Konferencja Naukowo-Techniczna Problemy rzeczoznawstwa budowlanego. Warszawa Miedzeszyn 2010. P. 263-271. [In Polish: Reliability and performance of the building structure safety monitoring]. 9. Scianna, A. & Jiang, Z. & Christenson R. & DeWolf, J. Implementation of a Probabilistic Structural Health Monitoring Method on a Highway Bridge. Advances in Civil Engineering. 2012. Volume 2012. P. 40-48. 10. Oth, A. & Picozzi, M. Structural Health Monitoring Using Wireless Technologies: An Ambient Vibration Test on the Adolphe Bridge, Luxemburg City. Advances in Civil Engineering. 2012. Vol. 2012. P. 23-39. 11. Yu, L. & Momeni, S. & Godinez, V. & Giurgiutu, V. & Ziehl, P. & Yu, J. Dual Mode Sensing with Low-Profile Piezoelectric Thin Wafer Sensors for Steel Bridge Crack Detection and Diagnosis. Advances in Civil Engineering. 2012. Vol. 2012. P. 49-58. 12. Wróblewski, T. Badania doświadczalne modelu kolejowego mostu zespolonego. Inżynieria i Budownictwo. 2013. Vol. 5. P. 284-287. [In Polish: Experimental studies of model of composite railway bridge]. Received 25.09.2013; accepted in revised form 25.02.2015