Application artificial neural networks for predicting wave resistance of ro-ro ferry in initial designing stage

Podobne dokumenty
Design guidelines for predicting wave resistance of ro-ro ferries at the initial designing stage

Prognozowanie dodatkowego oporu na fali w oparciu o wymiary główne promu ro-ro i parametry falowania. Tomasz Cepowski

ZESZYTY NAUKOWE NR 2 (74) AKADEMII MORSKIEJ W SZCZECINIE. Prognozowanie kołysań bocznych statku za pomocą sztucznych sieci neuronowych

Prof. dr hab. inż. Tadeusz Szelangiewicz. transport morski

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Knovel Math: Jakość produktu

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

ROZPRAWY NR 128. Stanis³aw Mroziñski

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

Streszczenie rozprawy doktorskiej

ZESZYTY NAUKOWE NR 1(73) AKADEMII MORSKIEJ W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

CALCULATION ACCURACY OF SAFE COURSE MADE GOOD IN AN ANTICOLLISION SYSTEM

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

STATISTICAL METHODS IN BIOLOGY

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu

Akademia Morska w Szczecinie. Wydział Mechaniczny

Parametryczne metody modelowania właściwości morskich statku. Tomasz Cepowski

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Hard-Margin Support Vector Machines

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

Verification of probabilistic method for under keel clearance assessment based on ships entering to Świnoujście, Szczecin and Police ports

Has the heat wave frequency or intensity changed in Poland since 1950?

tum.de/fall2018/ in2357

Helena Boguta, klasa 8W, rok szkolny 2018/2019

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Krytyczne czynniki sukcesu w zarządzaniu projektami

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Zarządzanie sieciami telekomunikacyjnymi

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

SYNTEZA SCENARIUSZY EKSPLOATACJI I STEROWANIA

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Tychy, plan miasta: Skala 1: (Polish Edition)

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

PRACA DYPLOMOWA Magisterska

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

F-16 VIRTUAL COCKPIT PROJECT OF COMPUTER-AIDED LEARNING APPLICATION WEAPON SYSTEM POWER ON PROCEDURE

Space for your logo, a photograph etc. Action (WBU)

Medical electronics part 10 Physiological transducers

OCENA MOśLIWOŚCI WYKORZYSTANIA HODOWLI ŚWIŃ RASY ZŁOTNICKIEJ

deep learning for NLP (5 lectures)

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Auditorium classes. Lectures


ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

SZTUCZNE SIECI NEURONOWE I ALGORYTM MARS W REGRESYJNYM MODELOWANIU ODPŁYWU ZE ZLEWNI ZLODOWACONYCH NA PRZYKŁADZIE RZEKI WALDEMARA (SVALBARD)

METODA MACIERZOWA OBLICZANIA OBWODÓW PRĄDU PRZEMIENNEGO

WPŁYW AKTUALIZACJI NIEKTÓRYCH WSKAŹNIKÓW EKSPLOATACYJNO-EKONOMICZNYCH NA KOSZTY EKSPLOATACJI CIĄGNIKÓW ROLNICZYCH NOWEJ GENERACJI

Assessment of ship squat in shallow water using CFD

Opis Przedmiotu Zamówienia oraz kryteria oceny ofert. Części nr 10

Patients price acceptance SELECTED FINDINGS

Podstawy automatyki. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

OPORY W RUCHU OSCYLACYJNYM MECHANIZMÓW MASZYN GÓRNICZYCH

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

CEE 111/211 Agenda Feb 17

Cracow University of Economics Poland

MULTI CRITERIA EVALUATION OF WIRELESS LOCAL AREA NETWORK DESIGNS

Gradient Coding using the Stochastic Block Model

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

WOJSKOWE TRASY LOTÓW (MRT) NA MAŁYCH WYSOKOŚCIACH LOW FLYING MILITARY TRAINING ROUTES (MRT)

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA

Odnawialne źródła energii. Renewable Energy Resources. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI


MATLAB Neural Network Toolbox przegląd

Instrukcja obsługi User s manual

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Outline of a method for fatigue life determination for selected aircraft s elements

PERSPEKTYWY ZRÓWNOWAŻONEGO ROZWOJU TRANSPORTU DROGOWEGO W POLSCE DO 2030 ROKU

ELECTRIC AND MAGNETIC FIELDS NEAR NEW POWER TRANSMISSION LINES POLA ELEKTRYCZNE I MAGNETYCZNE WOKÓŁ NOWYCH LINII ELEKTROENERGETYCZNYCH

WYNIKI BADAŃ CHARAKTERYSTYKI PRĘDKOŚCIOWEJ MODELU STATKU Z NAPĘDEM HYBRYDOWYM

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d

The analysis of the energy demand for heating and cooling of the house built on the basis of the traditional Canadian wood-frame construction

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Analiza strat ciśnieniowych w kanałach pompy MP-05

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

DOI: / /32/37

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ WSTĘP KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Transkrypt:

Scientific Journals Maritime University of Szczecin Zeszyty Naukowe Akademia Morska w Szczecinie 2011, 26(98) pp. 10 14 2011, 26(98) s. 10 14 Application artificial neural networks for predicting wave resistance of ro-ro ferry in initial designing stage Zastosowanie sztucznych sieci neuronowych do prognozowania dodatkowego oporu od fali promu ro-ro na wstępnym etapie projektowania Tomasz Cepowski Maritime University of Szczecin, Faculty of Navigation, Institut of Marine Navigation Akademia Morska w Szczecinie, Wydział Nawigacyjny, Instytut Nawigacji Morskiej 70-500 Szczecin, ul. Wały Chrobrego 1 2, e-mail: t.cepowski@am.szczecin.pl Key words: ro-ro ferries, artificial neural networks, added wave resistance, approximation, hull shape parameters Abstract The paper presents approximations of added wave resistance useful in the early stage of designing ro-ro ferries. Reference added wave resistance values were calculated by means of SEAWAY software based on accurate numerical methods. Approximating function was elaborated by using the artificial neural networks. The model values were calculated by means of 448 ferry shape variants assuming conventional waving parameters and ferry movement parameters. Such approach permitted the replacement of the complicated numerical model with a simple analytical model based on basic hull shape parameters. Słowa kluczowe: prom ro-ro, sztuczne sieci neuronowe, dodatkowy opór od fali, aproksymacja, parametry kształtu kadłuba Abstrakt W pracy przedstawiono aproksymacje dodatkowego oporu od fali przydatne na wstępnym etapie projektowania promów ro-ro. Wartości wzorcowe dodatkowego oporu od fali obliczono przy użyciu programu SEAWAY. Aproksymacje opracowano za pomocą sztucznych sieci neuronowych. Wartości wzorcowe obliczono dla 448 wariantów kształtu promu, przyjmując umowne parametry falowania oraz parametry ruchu promu. Takie podejście pozwoliło zastąpić skomplikowany model numeryczny prostym modelem regresyjnym, bazującym na podstawowych parametrach geometrycznych kadłuba. Introduction Various optimization methods of ship design parameters or operational ones are often applied to problems associated with ship designing and operation. Economic profits are the main criteria for which target functions are usually formulated. Economic criteria are made up of number of requirements set by the shipowner, among which there are proper internal capacity and operational speed, which significantly affects the profitability of the vessel s operation of a given shipping line. The ship s reaching the assumed operational speed depends inter alia on the parameters and work conditions of the propulsion system and the values of total hull resistance. The hull s total resistance is made up, among other things, the wave s added wave resistance, bound with the vessel s sailing in stormy conditions, which can constitute even up to 30 50% of the vessel s total resistance (Fig. 1) [1, 2]. Predicting the vessel s added wave resistance is an essential challenge to ship designers due to the economic aspect of propulsion system s parameter selection, fuel consumption and estimation of time of voyage. 10 Scientific Journals 26(98)

Resistance [kn] Application artificial neural networks for predicting wave resistance of ro-ro ferry in initial designing stage Still water resistance R SW + Mean added resistance R AW Still water resistance R SW Resistance resistance useful in the early stage of designing ro-ro ferries. The guidelines were prepared on the basis of regression analysis of model values of added wave resistance. In this paper, approximating function was elaborated by using the artificial neural networks. A detailed research algorithm [3] has been presented in figure 2. List of ro-ro ferry variants Time [s] Fig. 1. Added resistance in regular waves [1] Rys. 1. Dodatkowy opór od fali [1] Wave added resistance is in an essential way affected by the hull s shape and dimension, which is why it should be modelled already in the stage of initial design. An essential feature of the vessel s initial designing is that the hull s exact shape is presented by means of main dimensions and certain global coefficients characterising hull shape, e.g. block coefficient. This modest amount of information does not permit using known methods of determining added wave resistance based on the classical linear or non-linear theory. The next problem is that the selection of improper values of main dimensions and block coefficients may cause large wave resistance, as the change of any ship s dimension after construction is economically unprofitable. Method The aim of research was solved by means of analysis of results obtained from numerical calculations of vessel s motions on the wave. The research methods was based on [3] and consisted of the following stages: 1. Preparing a list of ferries in a wide scope of shapes and sizes; 2. Assuming a conventional operational scenario in which, among other things, real waving conditions were replaced with statistical conditions; 3. Using a numerical accurate methods for calculating model values of wave added resistance; 4. Analysis of results and determining hull parameters essentially affecting added wave resistance; 5. Selection of functions approximating the set of discrete results of numerical model; 6. Verification and assessment of determined modelling methods. In the work [3] have been presented design guidelines concerning the predicting of added wave Calculating model values of added wave resistance R Analysis of results and determining hull parameters X 1, X 2, X n essentially affecting added wave resistance R Determining a function approximating the added wave resistance R Conventional operational scenario Fig. 2. Algorithm presenting research method, where: X 1, X 2 X n vessel s design parameters, R added wave resistance [3] Rys. 2. Algorytm przedstawiający metodę badań, gdzie: X 1, X 2 X n parametry projektowe statku, R dodatkowy opór od fali [3] Modelling added wave resistance List of ro-ro ferry hull shape variants and model values of added wave resistance were based on [3]. For preparing a list of ro-ro ferry hull shape variants, guidelines were used contained in report [4]. A list of 448 variants was made in the research, prepared on the basis of the following ranges of the ferry s design parameters: LBd (L waterline length, B waterline breadth, d vessel draft) = 19 000, 28 000, 37 000, 46 000 m 3 ; L/B = 5.8, 6.6, 7.4, 8.2; B/d = 3, 3.5, 4, 4.5 and a set of 7 ro-ro ferry shape variants (Tab. 1). For calculating model values of wave resistance the Gerritsma-Beukelman method was applied [1, 5]. This method is among methods restricted to first of all determining the resistance increment on the opposite wave. Among other methods of determining added wave resistance, the Gerritsma- Zeszyty Naukowe 26(98) 11

Table 1. Ro-ro ferry shape variants, where: CB block coefficient, CM frame section coefficient, CB L longitudinal block coefficient, CB V vertical prismatic coefficient, CWL waterline block coefficient, XF distance of waterline s geometric centre from after perpendicular, XB distance of buoyancy centre from after perpendicular, Lpp vessel s length between perpendiculars [3] Tabela 1. Warianty kształtu promu ro-ro, gdzie: CB współczynnik pełnotliwości podwodzia, CM współczynnik pełnotliwości owręża, CB L wzdłużny współczynnik pełnotliwości podwodzia, CB V pionowy współczynnik pełnotliwości podwodzia, CWL współczynnik pełnotliwości wodnicy, XF odległość środka geometrycznego wodnicy od pionu rufowego, XB odległość środka wyporu od pionu rufowego, Lpp długość statku pomiędzy pionami [3] CB CM CB L CB V CWL XF/Lpp [%] Tomasz Cepowski XB/Lpp [%] 0.609 0.954 0.639 0.759 0.803 46.00 47.61 0.614 0.963 0.638 0.743 0.826 45.34 48.00 0.618 0.955 0.647 0.762 0.811 45.64 47.24 0.585 0.971 0.642 0.734 0.797 43.59 47.16 0.629 0.958 0.657 0.743 0.847 45.04 46.62 0.614 0.984 0.645 0.786 0.781 45.44 48.11 0.642 0.977 0.657 0.777 0.826 44.44 48.79 -Beukelman method is the simplest and yields results most consistent with the experiment. It is based on comparing energy discharged from a rolling vessel in the form of back wash with the work performed by the added resistance force [6]. The Gerritsma-Beukelman method permits a fairly accurate determination of added resistance for vessels of any shape, although the accuracy of this method is smaller for vessels with low values of block coefficient [7]. Calculations were made by means of SEAWAY program. SEAWAY accuracy tests shown in [5, 8] point to fairly large calculation accuracy. Calculations of added wave resistance were made on statistical wave assuming a conventional operational scenario: the ferry is proceeding at progressive speed v = 10 m/s on head wave; waving spectrum conforms with JONSWAP; wave s significant height H s = 1 6 m at interval every 1 m; the wave reaches characteristic period T, for which there is maximum value of added wave resistance. An effect of this part of research was a set of 2568 model values of added wave resistance calculated for assumed ferry shapes and accepted waving parameters. R H 2 S 1 e 0.008 L pp 1 Hull parameters essentially affecting added vessel resistance on the wave For determining a function approximating the added resistance on wave, the artificial neural networks were applied. In this research the following types of them were tested: Multilayer Perceptron (MLP) of a sigmoidal activation function, Generalized Regression Neural Network (GRNN) a regression network, Radial Basic Function Network (RBF). The phase of searching for the most appropriate network contained the following steps: description of the best network structure by means of genetic algorithms; learning a network (usually by using the backpropagation method); testing a network; assessment of approximation accuracy obtainable within a network on the basis of the testing data. To validate and test the networks the set containing 50% amount of the variants deleted by sampling from the learning data set. The MLP network of the structure: 4 (inputs) x 4 (hidden neurons) x 1 (output), appeared the most accurate being characterized by (Fig. 3): the smallest learning RMS error = 0.44 kn; the smallest testing RMS error = 0.52 kn. Fig. 3. Structure of the artificial neural network approximating the added resistance on wave Rys. 3. Struktura sztucznej sieci neuronowej aproksymującej dodatkowy opór od fali The searched function approximating the added resistance on wave R elaborated by means of the above mentioned neural network was represented analytically with the use of the equation (1): Lpp 1, 32.79 CM 31.27, 19.42 CB, 0.42 2.41 V A1 A2 B 0.057 A 3 1.28 (1) 12 Scientific Journals 26(98)

Ra [kn] Application artificial neural networks for predicting wave resistance of ro-ro ferry in initial designing stage where: R significant value of added wave resistance [kn]; B waterline breadth [m]; L pp length [m]; C M midship section coefficient ; C BV vertical block coefficient ; H S wave significant height [m]; A 1 matrix of weighting factors: 0.188 0.964 0.539 1.240 6.874 1.547 4.798 0.825 0.978 1.519 3.450 1.693 0.123 1.059 0.074 0.542 A 2 vector of threshold values: [ 1.418 2.209 0.859 1.449]; A 3 vector of weighting factor values: [4.611 3.065 2.016 1.967]. Figures 4 6 compare the model values calculated by means of accurate numerical methods with values approximated by equation (1). Equation (1) is characterised by trends in conformance with [6, 7, 9]. 35 42.1484 2.39727 0.98 CM 0.95 0.73 CB(V) 0.79 Fig. 5. Influence of design parameters for additional wave resistance, L pp = 124.33 m, CM = var, CB(V) = var, L pp /B = 5.8, H S = 12 m Rys. 5. Wpływ parametrów projektowych na maksymalny dodatkowy opór od fali, L pp = 124,33 m, CM = var, CB(V) = var, L pp /B = 5,8, H S = 12 m 30 25 20 36.2013 15 10 5 8.2 0 10 15 20 25 30 R [kn] Fig. 4. Significant values of added resistance on bow wave Ra calculated by means of accurate numerical methods and equation (1), H S = 1 m, waving spectrum JONSWAP, vessel speed v = 10 m/s Rys. 4. Wartości znaczące dodatkowego oporu od fali dziobowej Ra obliczone za pomocą dokładnych metod numerycznych oraz za pomocą równania (1), H S = 1 m, spectrum falowania JONSWAP, prędkość statku v = 10 m/s 13.7865 256 L pp [m] 124 5.8 L pp/b Fig. 6. Influence of design parameters for additional wave resistance, L pp = var, CM = 0.98, CB(V) = 0.78, L pp /B = var, H S = 12 m Rys. 6. Wpływ parametrów projektowych na maksymalny dodatkowy opór od fali, L pp = var, CM = 0,98, CB(V) = 0,78, L pp /B = var, H S = 12 m Zeszyty Naukowe 26(98) 13

Tomasz Cepowski Conclusions The added resistance on wave approximating function was elaborated with the use of artificial neural networks and presented in the analytical form. The function is highly accurate as compared with the testing data calculated by means of the exact methods. The approach proposed permits the replacement of complicated numerical model with a simple linear model characterised by high accuracy in the scope of assumed restrictions. The model values, on the basis of which approximation (1) were prepared, were calculated with the assumptions made as described in the article. Therefore, approximations (1) have limitations resulting from the assumptions made and they concern: limitations of Gerritsma-Beukelman method; assumed waving spectrum JONSWAP; parameters and uprush directions of statistical wave: bow wave of significant height H s = 1 6 m and characteristic period causing the emergence of maximum values R; vessel speed v = 10 m/s; hull parameters and block coefficients conforming to assumptions, in particular B = 19 33 m, C M = 0.954 0.985, C BV = 0,73 0,79, L pp = 124 256 m. References 1. ARRIBAS F. PE REZ: Some methods to obtain the added resistance of a ship advancing in waves. Ocean Engineering 34 (2007) 946 955. 2. PAYNE S., DALLINGA R.P., GAILLARDE G.: Queen Mary 2 seakeeping assessment: the owner s requirements, the design verification and operational experience. 3. CEPOWSKI T.: Design guidelines for predicting wave resistance of ro-ro feries at the initial designing stage. Zeszyty Naukowe Akademii Morskiej w Szczecinie, 22(94), 2010, 5 9. 4. Future trends in the design of ro-ro and ro-pax vessels operating in the southern Baltic. BALTIC GATEWAY Report, Sea Highways Ltd, 2005. 5. GERRITSMA J., BEUKELMAN W.: Analysis of the Resistance Increase in Waves of a Fast Cargo-ship. International Shipbuilding Progress, 18(217), 1972. 6. DUDZIAK J.: Teoria okrętu. FPPOiGM, Gdańsk 2008. 7. NABERGOJ R., JASNA PRPI-ORŠI: A comparison of different methods for added resistance prediction. 22 nd IWWWFB, Plitvice, Croatia 2007. 8. Journée J.M.J. Verification and Validation of Ship Motions Program SEAWAY. Report1213a, Delft University of Technology, The Netherlands, 2001. 9. SCHNEEKLUTH H., BERTRAM V.: Ship Design for Efficiency and Economy. Butterworth-Heinemann, 1998. Recenzent: dr hab. inż. Marek Dzida, prof. PG Politechnika Gdańska 14 Scientific Journals 26(98)