WZMACNIAJĄCE NAPRAW Y BELEK BETONOW YCH

Podobne dokumenty
EFEKTYWNOŚĆ NAPRAW ZNISZCZONYCH ELEMENTÓW ŻELBETOWYCH ZA POMOCĄ LAMINATÓW ZBROJONYCH WŁÓKNAMI WĘGLOWYMI

Badanie wpływu plastyczności zbrojenia na zachowanie się dwuprzęsłowej belki żelbetowej. Opracowanie: Centrum Promocji Jakości Stali

CZYNNE WZMACNIANIE ZGINANYCH BELEK ŻELBETOWYCH SPRĘŻAJĄCYMI TAŚMAMI CFRP

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: Kierunek studiów: Budownictwo Studia I stopnia stacjonarne

BADANIA DOŚWIADCZALNE ZARYSOWANYCH BELEK ŻELBETOWYCH Z NAKLEJONYMI TAŚMAMI KOMPOZYTOWYMI Z WŁÓKIEN WĘGLOWYCH

WYBRANE WŁAŚCIWOŚCI WYTRZYMAŁOŚCIOWE TAŚM KOMPOZYTOWYCH Z WŁÓKIEN WĘGLOWYCH

SPRAWOZDANIE Z BADAŃ

Efektywność wzmocnienia zginanych elementów żelbetowych przy użyciu naprężonych kompozytów CFRP stan wiedzy w dziedzinie badań doświadczalnych

Badania porównawcze belek żelbetowych na ścinanie. Opracowanie: Centrum Promocji Jakości Stali

Wpływ gatunku stali zbrojenia głównego na nośność na zginanie i graniczne odkształcenia kompozytu przy wzmacnianiu taśmami CFRP

Nowoczesne sposoby napraw i wzmocnień konstrukcji murowych

Zastosowanie skanera optycznego 3D do analizy belek wzmocnionych taśmami FRP

Praktyczne aspekty wymiarowania belek żelbetowych podwójnie zbrojonych w świetle PN-EN

EPSTAL stal zbrojeniowa o wysokiej ciągliwości. mgr inż. Magdalena Piotrowska Centrum Promocji Jakości Stali

DOŚWIADCZALNE OKREŚLANIE NOŚNOŚCI BELEK STALOWO-BETONOWYCH ZESPOLONYCH ZA POMOCĄ ŁĄCZNIKÓW NIESPAWANYCH

NOŚNOŚĆ KRÓTKICH WSPORNIKÓW ŻELBETOWYCH W ZM OCNIONYCH MATAMI KOMPOZYTOW YMI

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH M Próbne obciążenie obiektu mostowego

BADANIA NOSNOŚCI NA ZGINANIE I UGIĘĆ BELEK ZESPOLONYCH TYPU STALOWA BLACHA-BETON

Badania zespolonych słupów stalowo-betonowych poddanych długotrwałym obciążeniom

ŚCIEŻKI RÓWNOWAGI STATYCZNEJ BELEK ŻELBETOWYCH WZMACNIANYCH TAŚMAMI Z WŁÓKIEN WĘGLOWYCH

Badanie próbek materiału kompozytowego wykonanego z blachy stalowej i powłoki siatkobetonowej

1. Projekt techniczny Podciągu

OPTYMALIZACJA KONSTRUKCJI WZMOCNIEŃ ELEMENTÓW NOŚNYCH MASZYN I URZĄDZEŃ

SPRAWOZDANIE Z BADAŃ

Analiza wzmocnienia stalowych belek stropowych poprzez ich zespolenie z płytą żelbetową

ZAJĘCIA 3 DOBÓR SCHEMATU STATYCZNEGO PŁYTY STROPU OBLICZENIA STATYCZNE PŁYTY

PRZEBUDOWA I ROZBUDOWA BUDYNKU ZAKŁADU OPIEKI ZDROWOTNEJ W SKOŁYSZYNIE BRANŻA KONSTRUKCJA

EPSTAL stal zbrojeniowa o wysokiej ciągliwości. Badanie ustroju płytowosłupowego. wystąpienia katastrofy postępującej.

BADANIA EKSPERYMENTALNE WZMACNIANIA BARDZO KRÓTKICH WSPORNIKÓW ŻELBETOWYCH

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2019/2020

Opracowanie: Emilia Inczewska 1

BADANIA WPŁYWU PODATNOŚCI PODPÓR NA NOŚNOŚĆ SPRĘŻONYCH PŁYT KANAŁOWYCH

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Materiały pomocnicze

Materiały pomocnicze

Raport z badań betonu zbrojonego włóknami pochodzącymi z recyklingu opon

PRZYSPIESZENIE PROCESU WZMACNIANIA ELEMENTÓW ŻELBETOWYCH TAŚMAMI Z WŁÓKIEN WĘGLOWYCH W METODZIE NSMR

1. Projekt techniczny żebra

OCENA NOŚNOŚCI DORAŹNEJ BELEK STALOWYCH WZMOCNIONYCH NAPRĘŻONYMI TAŚMAMI CFRP

e = 1/3xH = 1,96/3 = 0,65 m Dla B20 i stali St0S h = 15 cm h 0 = 12 cm 958 1,00 0,12 F a = 0,0029x100x12 = 3,48 cm 2

Stany zarysowania i ugięcia tarcz żelbetowych z otworami z fibrobetonu wysokowartościowego

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

KARTA INFORMACYJNA SikaWrap -300 C NW

Zestaw pytań z konstrukcji i mechaniki

KARTA INFORMACYJNA SikaWrap 301 C

WYTRZYMAŁOŚĆ RÓWNOWAŻNA FIBROBETONU NA ZGINANIE

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET

EPSTAL stal zbrojeniowa o wysokiej ciągliwości. Badanie ustroju płytowosłupowego w sytuacji wystąpienia katastrofy postępującej.

ZASTOSOWANIE ANALIZY NIELINIOWEJ W PROGRAMIE DIANA DO OCENY STANU ZARYSOWANIA BELEK ŻELBETOWYCH O ROZPIĘTOŚCI 15 M

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

KARTA INFORMACYJNA Sika CarboShear L

Efektywność zastosowania siatek stalowych w naprawach nawierzchni asfaltowych. Dr inż. Piotr Zieliński Politechnika Krakowska

Badania elementów żelbetowych wzmocnionych laminatami obciążonych wybuchowo. Część II. Wyniki badań belek i słupów żelbetowych

KONSTRUKCJE MUROWE ZBROJONE. dr inż. Monika Siewczyńska

dr inż. Leszek Stachecki

Wymiarowanie sztywnych ław i stóp fundamentowych

Jak projektować odpowiedzialnie? Kilka słów na temat ciągliwości stali zbrojeniowej. Opracowanie: Centrum Promocji Jakości Stali

ZAJĘCIA 2 DOBÓR SCHEMATU STATYCZNEGO PŁYTY STROPU OBLICZENIA STATYCZNE PŁYTY

EKSPERTYZA TECHNICZNA-KONSTRUKCYJNA stanu konstrukcji i elementów budynku

Dobór materiałów konstrukcyjnych cz. 4

e mail: podanych w normach Eurokod 2, ACI 318 i Model Code 2010.

Oddziaływanie membranowe w projektowaniu na warunki pożarowe płyt zespolonych z pełnymi i ażurowymi belkami stalowymi Waloryzacja

wykombinuj most 2008

ANALIZA BELKI DREWNIANEJ W POŻARZE

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

WYZNACZANIE WYTRZYMAŁOŚCI BETONU NA ROZCIĄGANIE W PRÓBIE ZGINANIA

Stropy TERIVA - Projektowanie i wykonywanie

Ocena rozkładu wytrzymałości betonu w belkach żelbetowych za pomocą badań sklerometrycznych

BADANIA OSIOWEGO ROZCIĄGANIA PRĘTÓW Z WYBRANYCH GATUNKÓW STALI ZBROJENIOWYCH

KILKA SŁÓW NA TEMAT CIĄGLIWOŚCI STALI ZBROJENIOWEJ

REDYSTRYBUCJA NAPRĘŻEŃ STYCZNYCH I POŚLIZG W ŚCINANYM POŁĄCZENIU BETON-TAŚMA CFRP. ANALIZA NIELINIOWA Z WYKORZYSTANIEM ELEMENTÓW TYPU INTERFACE"

WPŁYW SKRĘCANIA NA NOŚNOŚĆ I SZTYWNOŚĆ ZGINANIA BELEK ŻELBETOWYCH

NUMERYCZNA I DOŚWIADCZALNA ANALIZA ZGINANYCH, SKRĘCANYCH I ŚCINANYCH BELEK ŻELBETOWYCH

Wyznaczenie reakcji belki statycznie niewyznaczalnej

Spis treści. 2. Zasady i algorytmy umieszczone w książce a normy PN-EN i PN-B 5

Wzmacnianie mostów materiałami kompozytowymi

SAS 670/800. Zbrojenie wysokiej wytrzymałości

ODPORNOŚĆ OGNIOWA ELEMENTÓW ZGINANYCH ZE ZBROJENIEM ZEWNĘTRZNYM

Ć w i c z e n i e K 4

SORPCYJNOŚĆ BETONU W OBCIĄŻONYM ELEMENCIE KONSTRUKCJI

Pręt nr 0 - Płyta żelbetowa jednokierunkowo zbrojona wg PN-EN :2004

SPRAWOZDANIE Z BADAŃ

Analiza wytężenia tarczy żelbetowej z materiałów konstrukcyjnych bardzo wysokich wytrzymałości

WPŁYW PARAMETRÓW MATERIAŁOWYCH NA PRACĘ WĘZŁA RAMY ŻELBETOWEJ

EFEKTYWNOŚĆ WZMOCNIENIA BELEK ŻELBETOWYCH WSTĘPNIE NAPRĘŻONYMI TAŚMAMI CFRP

WPŁYW SPOSOBU PODPARCIA SPRĘŻONYCH PŁYT KANAŁOWYCH Z WYPEŁNIONYMI KANAŁAMI NA ICH NOŚNOŚĆ NA ŚCINANIE

OPIS TECHNICZNY. 1. Dane ogólne Podstawa opracowania.

Kleje konstrukcyjne stosowane w obiektach inżynierii komunikacyjnej

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH

ANALIZA SPADKU SZTYWNOŚCI EKSPERYMENTALNEJ BELKI ZESPOLONEJ NA PODSTAWIE WIELOETAPO- WYCH BADAŃ STATYCZNYCH I DYNAMICZNYCH

PaleZbrojenie 5.0. Instrukcja użytkowania

ANALIZA TECHNICZNO-EKONOMICZNA POŁĄCZEŃ NIEROZŁĄCZNYCH

Pręt nr 1 - Element żelbetowy wg. PN-B-03264

2. Badania doświadczalne w zmiennych warunkach otoczenia

Stalowe ściągi wklejane technologia przydatna w usztywnianiu murów konstrukcyjnych obiektów zabytkowych z bogato dekorowanymi fasadami

Zasady projektowania systemów stropów zespolonych z niezabezpieczonymi ogniochronnie drugorzędnymi belkami stalowymi. 14 czerwca 2011 r.

M Obciążenie próbne 1. WSTĘP 1.1. Przedmiot STWiORB 1.2. Zakres stosowania STWiORB 1.3. Zakres robót objętych STWiORB

POŁĄ ŁĄCZENIA KONSTRUKCJI STALOWYCH Z BETONOWYMI. Marian Bober

EPSTAL stal zbrojeniowa o wysokiej ciągliwości. Badanie ustroju płytowosłupowego. wystąpienia katastrofy postępującej.

Transkrypt:

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ Seria: BUDOWNICTWO z. 95 2002 Nr kol. 1559 Marcin GÓRSKI* Politechnika Śląska WZMACNIAJĄCE NAPRAW Y BELEK BETONOW YCH Streszczenie. System naprawczy wykorzystujący epoksydowy laminat na bazie mat z włókien węglowych stał się propozycją konkurującą z tradycyjnymi sposobami wzmocnień. Trwałość i łatwość realizacji wzmocnienia nakazują szersze zainteresowanie się tym zagadnieniem. Określenie wpływu napraw na pracę i nośność elementów stanowi podstawę opracowania prostych procedur obliczeniowych do zastosowań inżynierskich. W pracy przedstawiono zestawienie wyników badań betonowych i żelbetowych wzmacnianych belek. Badania obejmowały elementy zginane, ścinane i skręcane. STRENGTHENING REPAIRS OF CONCRETE BEAMS Summary. Repairing system basing on CFRP mates became a new proposal concurring with traditional methods of structures strengthening. Its durability and easiness of application forces calls for more interest. Determination of CFRP influence on strengthened element will allow to propose simple methods of strength analysis for that kind of complex elements. Paper presents the comparison of results of concrete, RC and CFRP reinforced beams obtained in research work. Tested elements were subjected to bending, shearing and torsional actions. 1. W prowadzenie Trwałość budowli była zawsze jednym z podstawowych kryteriów uwzględnianych przez jej twórców. Jedną z głównych broni w służbie ochrony budynku jest naprawa i bierne wzmacnianie jego elementów konstrukcyjnych. W latach 60 we Francji i w RPA zaczęła się rozwijać teoria wzmacniania konstrukcji za pomocą zewnętrznych nakładek stalowych, początkowo kotwionych, a następnie naklejanych. Technika ta ewoluowała i wraz z rozwojem chemii materiałowej zaczęto wykorzystywać coraz nowsze materiały i technologie. Jedną z najatrakcyjniejszych wydaje się metoda wzmacniania elementów konstrukcji za pomocą epoksydowych laminatów zbrojonych włóknami o wysokiej wytrzymałości: szklanych i *Opiekun naukowy: Prof. dr inż. Andrzej Ajdukiewicz

186 M. Górski aramidowych stosowanych uprzednio w przemyśle kosmicznym. Metoda ta pozwala bowiem na dokonywanie szybkich napraw zagrożonych elementów, bez ingerencji w ich strukturę oraz zmiany ich geometrii i wymiarów. Podstawy wzmacniania w ten właśnie sposób mają swój początek w Szwajcarii [1] i Niemczech [2], gdzie w roku 1987 opublikowano pierwsze rezultaty badań. Najnowsza technika wzmocnień, będąca wciąż w stadium rozwoju, wykorzystuje włókna węglowe. Lista przyczyn zmuszających projektantów do wykorzystywania w praktyce systemów naprawczych i wzmacniających jest długa. Do podstawowych wpływów stwarzających zagrożenie awaryjne zaliczyć można: błędy projektowe, niedokładności i błędy wykonawcze, zmianę sposobu eksploatacji obiektu, co przynosi zmianę wielkości obciążeń lub schematu ich rozłożenia, zmianę schematu statycznego (usunięcie podpór, wykonanie otworów itp ), procesy zmęczeniowe przy wpływach dynamicznych, agresywne środowisko, na które konstrukcja jest narażona, tąpnięcia i trzęsienia ziemi. Praktyka dowodzi, iż maty węglowe, mimo ich krótkiej historii na światowym rynku, cieszą się dużym uznaniem i są chętnie stosowanym materiałem do wzmocnień. Eksperci i projektanci wzmocnień nie mają jednak procedur roboczych, które umożliwiłyby efektywne i bezpieczne wzmocnienie. Próby opracowania takich procedur zostały podjęte w wielu ośrodkach naukowych i wdrożeniowych. Procedury te rozpatrują jednak proste stany naprężeń. Zbiór najnowszych propozycji obliczeniowych zawiera specjalny raport FIB [3] wydany w czerwcu 2001 r. Jedyna metoda uwzględniająca bardziej złożony stan powstała także w trakcie trwania referowanego projektu badawczego [4], Obecne prace w ośrodkach polskich nie zdeterminowały do tej pory zwartego aparatu obliczeniowego wzmocnień do zastosowań technicznych, uwzględniającego współpracę betonu z wiotkimi nakładkami z włókien węglowych w złożonych stanach naprężeń. Bazę do nowoczesnego ujęcia tej problematyki kreował ośrodek łódzki z prof. M. Kamińską oraz drem R. Kotynią [5, 6], a także prof. J. Ciesielski i prof. W. Radomski. W celu skutecznego projektowania i wykonywania wzmocnień za pomocą mat z włókien węglowych potrzebne jest rozpoznanie doświadczalne i opracowanie statystyczne skuteczności poszczególnych metod wzmacniania uszkodzonych elementów konstrukcji betonowych narażonych na złożone stany naprężeń.

Wzmacniające naprawy belek betonowych 187 2. Opis modeli badawczych i sposobu przeprowadzenia badań Badania przeprowadzono na elementach belkowych o wymiarach przekroju 200x300 mm i rozpiętości pomiędzy podporami 2400 mm. Zrealizowano dwie główne grupy badań weryfikujące skuteczność wzmocnień laminatami CFRP elementów narażonych na: ścinanie i zginanie, skręcanie. Podczas wszystkich prób rejestrowano poziom aplikowanej siły, odczyty stowarzyszonych z nią wielkości ugięć bądź kąta obrotu. Siła realizowana była przez nacisk na element podwieszonego do ramy nośnej podnośnika hydraulicznego. W badaniach belek zginanych zastosowano trawers o wysięgu 800 mm. Poza ugięciami rejestrowano odkształcenia postaciowe na powierzchni betonu i laminatu oraz odkształcenia stali zbrojenia głównego i pomocniczego. Układ tensometrów elektrooporowych zmieniał się w zależności od typu badania. Obydwie serie badań kalibrowano na belkach betonowych o identycznych gabarytach. Badania zasadnicze poprzedzono pomocniczymi badaniami określającymi cechy fizyczne betonu, stali zbrojeniowej zbrojenia głównego i pomocniczego oraz laminatu. 2.1. Ścinanie i zginanie Elementy betonowe Próby na elementach betonowych stanowiły test kalibrujący stanowisko badawcze przed wykonaniem serii badań właściwych. W celu pełnego wykorzystania tej serii badań wykonano próby na elemencie bez wzmocnienia i ze wzmocnieniem laminatem CFRP - pozwoliło to na określenie wpływu wzmocnienia dla belek niezbrojonych. Elementy C l i CR wykonano z betonu z tego samego zarobu, identyczność cech betonu potwierdzono w badaniach pomocniczych. Elementem różniącym próbki było założone na belkę CR wzmocnienie stref przypodporowych i strefy rozciąganej dwukierunkowym laminatem zbrojonym włóknami węglowymi. Elementy żelbetowe Badania zasadnicze przeprowadzono na modelach o wymiarach 200x300x2600 mm (rys. 1); elementy belkowe zbrojone były wkładkami 016 mm. Zbrojenie pomocnicze górą wykonano z prętów 010 mm, a strzemiona z prętów o średnicy 4 mm. Stanowisko do badań

188 M. Górski elementów żelbetowych poddanych wpływowi ścinania i zginania nie różniło się zasadniczo od tego zastosowanego w serii badań elementów betonowych (rys. 1). Podstawową różnicą była ilość elektrooporowych czujników tensometrycznych. W badaniach tej grupy elementów pomiaru odkształceń dokonywano również na wkładkach zbrojenia głównego i na strzemionach. W większym stopniu interesowano się także odkształceniami betonu i laminatu w trakcie obciążania. W tym celu na powierzchni elementu, a po wzmocnieniu - na powierzchni laminatu umieszczono tensometry elektrooporowe o bazie pomiarowej 50 mm. Sposób rozmieszczenia tensometrów ewoluował z czasem - dążono do stworzenia najpełniejszego opisu odkształceń betonu i laminatu w newralgicznych dla konstrukcji miejscach. Miało to pomóc w późniejszej kalibracji modelu numerycznego. Elementy niszczyły się przez nagłe wyczerpanie nośności w strefie ścinanej. Tak zniszczone elementy poddawano procesowi naprawy i wzmocnienia. Jako wyjściowy schemat wzmocnienia strefy przypodporowej założono całkowite owinięcie laminatem belki na tym obszarze. Na oszlifowanej i wyczyszczonej pobocznicy belki, po sfazowaniu krawędzi nałożono warstwę kleju epoksydowego, a następnie matę z włókien węglowych (włókna równoległe do najdłuższego boku elementu). Spełniając wszystkie wymogi reżimu technologicznego, na kolejnej warstwie kleju nakładano następną warstwę maty. Włókna tej warstwy układano na kierunku ortogonalnym do poprzedniego. W czasie wykonania wzmocnienia pamiętano o zachowaniu niezbędnych 100 mm zakładów pomiędzy kolejnymi pasami maty. W kolejnych schematach dążono do znalezienia najefektywniejszego sposobu wzmocnienia, redukując jednocześnie do niezbędnego minimum zużyty materiał. Realizowane były schematy wzmocnienia wyłącznie strefy ścinanej, jak również jednoczesnego wzmocnienia strefy rozciąganej i ścinanej. Badania niszczące powtarzano zazwyczaj po 2, 3 razy na każdym elemencie. Schematy wzmocnienia elementów przedstawiono wraz z wynikami badań w tabeli 1.

Wzmacniające naprawy belek betonowych 189 O s 200 Rys.l. Typowe stanowisko badawcze dla realizacji ścinania i zginania Fig. 1. Typical shearing and bcnding test stand 2.2. Skręcanie Skręcanie zrealizowano poprzez układ mimośrodowo przyłożonej siły i niesymetrycznie ułożonej podpory. Ideogram badania przedstawia rys. 2. Podobnie jak w przypadku elementów zginanych elementy skręcane wyposażono w czujniki tensometryczne. Badano elementy o geometrii identycznej z przedstawioną na rysunku 1. Skręcaniu poddano odcinek z zagęszczonymi strzemionami (800 mm). Rejestrowano zmianę kąta obrotu skręcanej belki. tvwne zamocowanie pomiar kąta obrotu podpora na mimośrodzie Rys.2. Ideogram badania elementów skręcanych Fig.2. Torsion research ideogram

190 M. Górski 3. Porównanie wyników badań dla różnych sposobów wzmocnień Poprzez zamierzony zabieg niedozbrojenia elementu na ścinanie, zastosowanie silnego zbrojenia w strefie rozciąganej i obciążenie belki dwoma siłami przyłożonymi na szerokim trawersie uzyskano efekt nagłego zniszczenia belki przez jej ścinanie. Wszystkie elementy badawcze w tej serii zniszczono w tym samym schemacie - sposób zniszczenia był więc niemal identyczny, a więc rysa niszcząca element pojawiała się na linii punkt przyłożenia siły - podpora. W tej serii badań wykonano i zbadano 7 belek: element próbny MB, pięć elementów serii zasadniczej: B2 do B6 i element B7 określający wpływ iniekcji. Element BC1 wykonano jako pierwotnie wzmocniony bez wykonywania wstępnego zniszczenia. MB Model Zakres wzmocnienia matami CFRP Zestawienie wyników badań Sita niszcząca 2 F [kn Przyrost siły niszczącej % Tabela 1 Ugięde Przyrost odp. ugięcia Sposób 1F zniszcz. [mml % MB 131,0 6,91 ścinanie MBC L. v *.1 fl 159,3 21,6 14,69 112,6 zginanie B2 B3 B4 B5 B6 B7 B2 --- 141,4 6,63 ścinanie B2C 'TTjmSgł------ i!.i 5 p i 150,7 6,6 8,90 34,2 zginanie Bc 1 B2CC CTTiTPf " ' TrimTiTrj i j -j 166,6 17,8 9,15 38,0 zginanie B3 140,2 7,13 ścinanie B3C i 7 T* tr r in n n 160,5 14,5 9,09 27,5 zginanie B4 --- 149,6 8,04 ścinanie C i i B4C 150,4 0,5 8,43 4,9 zginanie B4CC Cd i. Ł 161,6 8,0 8,60 7,0 zginanie B5 154,6 9,93 ścinanie B5CC I I I 198,5 28,4 17,95 80,8 zginanie B6 140,2 6,81 ścinanie B6C - t n 17,55 157,7 B6CC zginanie & i i n---------------:. u 180,6 28,8 17,93 163,3 zginanie B7 132,2 8,56 ścinanie B7i iniekcja 150,6 13,9 15,5 8 ścinanie BC1 BC1 i #... 4 ii 170,4 ~ 14,55 zginanie

Wzmacniające naprawy belek betonowych 191 Wielkościami pozwalającymi na ocenę wzmocnień są ugięcia (rys.3, 4), siła krytyczna 2F (tab. 1) oraz wielkości odkształceń, przełożone na wielkości naprężeń w stali zbrojenia (rys-5) długość belki [mm] 0 400 800 1200 1600 2000 2400 Rys.3. Linie ugięcia w ostatnim kroku obciążenia przed zniszczeniem Fig.3. Deflection lines in the last step of loading before failure Rys.4. Wykres przyrostu ugięć dla wybranych modeli Fig.4. Diagram of deflection increment for chosen models Wzmocnienie elementów poddanych wpływowi zginania i ścinania prowadziło do zwiększenia siły niszczącej 2F max o ok. 30%. Elementy uprzednio zniszczone wykazywały minimalnie mniejszy wzrost nośności. Kluczem do sukcesu jest tutaj prawidłowo wykonana iniekcja oraz jednoczesne wzmocnienie strefy ścinanej i rozciąganej z wykonaniem

192 M. Górski odpowiednich zakładów laminatów (min 100 mm wg [7]). W żadnym ze wzmacnianych elementów nie zanotowano spadku nośności, pomimo uprzedniego, czasami dwukrotnego, zniszczenia elementu. Maksymalny przyrost ugięcia wynoszący ok. 260% poziomu ugięcia bazowego, niewzmocnionego elementu zaobserwowano także dla belek wzmacnianych jednocześnie w strefie przypodporowej i wzdłuż włókien rozciąganych. Rys.5. Wykres przyrostu naprężeń w stali zbrojenia głównego dla wybranych modeli Fig.5. Diagram of stresses increment in main reinforcement for chosen models Równie interesujące i obiecujące rezultaty dały obserwacje badań elementów skręcanych Belki pierwotnie zniszczone, zainiektowane, reprofilowane i wzmocnione przez oklejenie dwukierunkowym laminatem całej strefy skręcanej osiągały 2,5-krotny wzrost siły niszczącej. Potwierdziły się również obserwacje z pierwszej serii: epoksydowy laminat zbrojony włóknami węglowymi pozwala na sygnalizację stanu awaryjnego na długo przed zniszczeniem elementu. Finalny kąt obrotu zdeformowanej belki wzmocnionej po zniszczeniu wynosił ok. 5, był więc widoczny gołym okiem. Beton pod laminatem uległ zmiażdżeniu, stal zbrojenia płynęła, lecz belka mimo znacznego obrotu pozostawała na stanowisku, w kształcie umożliwiającym dalsze badanie. Badanie zakończono w obawie o zniszczenie stanowiska badawczego, mimo możliwości dalszego wzrostu odkształcenia.

Wzmacniające naprawy belek betonowych 193 Rys.6. Przyrost kąta obrotu przy skręcaniu Fig.6. Rotation angle increasc at torsion 4. Wnioski Zastosowanie napraw wzmacniających wykorzystujących epoksydowe laminaty zbrojone włóknami węglowymi pozwala na zwiększenie nośności elementu nawet o 30% pod warunkiem należytego wykonania tak samego wzmocnienia, jak poprzedzającej ten proces iniekcji. Zaproponowana iniekcja z kompozycji epoksydowej nie może być jednak traktowana jako sposób wzmocnienia. Zabieg ten przynosi wzrost nośności, lecz schemat ponownego zniszczenia pozostaje nieokreślony. Brak tu także opisywanego wyżej sygnalizowania awarii na długo przed zniszczeniem elementu poprzez znaczny wzrost ugięcia lub obrotu elementu spowodowany zastosowaniem laminatu. Finalne ugięcie tak wzmocnionej belki osiągnęło poziom ok. 2,5-krotny w stosunku do elementu niewzmocnionego. Równie znaczący jest przyrost kąta obrotu w elementach skręcanych. Wzmocnienie stref ścinanych elementów zmienia rozkład sił wewnętrznych. Pełniej wykorzystany zostaje przekrój środkowy elementu, prowadząc do wyczerpania nośności strefy rozciąganej bądź jak w przypadku odcinkowego wzmocnienia stref przypodporowych (element B3C) do zniszczenia strefy ściskanej betonu. Badania dowodzą skuteczności tego sposobu wzmacniania elementów konstrukcji, szczególnie tych narażonych na wpływ złożonych stanów naprężeń.

194 M. Górski LITERATURA 1. Meier U., Bridge Repair with High Performance Composite Materials', Material und Technic, V.4, 1987, 125-128. 2. Federal Insitute for Materials Testing, Bonding o f Steel and GFRP Plates in the Area of Coupling Joints, Talhrucke Kattenbusch, Research Report No. 3126/1429, Braunschweig 1987. 3. FIB Bulletine 14 (TRIAFANTAFELLOU T.) Extemaly bonded FRP reinforcement forrc structures, FEB, July 2001. 4. Colotti V., Spadea G., Swamy R.N., Shear an flexural behaviour o fr C beams externally reinforced with bonded laminates: a truss model approach', Composite in Constructions, Figueiras et al (eds), Swets&Zetilinger, Lisse 2001, 517-522. 5. Kotynia R., Odksztalcalność i nośność zginanych elementów żelbetowych wzmocnionych taśmami z włókien węglowych - rozprawa doktorska, Łódź 1999. 6. Kamińska M.E., Kotynia R., Obliczanie nośności belek wzmocnionych taśmami CFRP. XLV Konferencja Naukowa KILiW PAN i KN PZITB, Krynica 1999, 87-94. 7. Karta techniczna systemu SikaWrap. Recenzent: Dr hab. inż. Maria Kamińska, prof. Politechniki Łódzkiej Abstract Developing techniques of strengthening concrete and RC structural elements reached for carbon fibres. Seeking for simple strength analysis methods some lab test of such a reinforcing repairs were performed. Paper presents results of researches concerning shearing, bending and torsional strength influences. Observations of tests proved rightness of CFRP use as strengthening. Bearing capacity of tested elements raised even 30% after strengthening, despite their former total failure. Most promising factor of strengthening with use of CRFP is long lasting signalisation of failure by significant increase of deflection or rotation angle. To achieve desired effect element should be properly epoxy-injected. Simultaneous strengthening tensioned and sheared zones seems to be also the key to success.