WYTWARZANIE I ZASTOSOWANIA GEOPOLIMERÓW NA BAZIE SUROWCÓW ODPADOWYCH. dr hab. inż. Janusz Mikuła, prof. PK.

Podobne dokumenty
Nieorganiczne polimery glinokrzemianowe (geopolimery) otrzymywanie, właściwości, przykłady zastosowania

WYTWARZANIE I ZASTOSOWANIA GEOPOLIMERÓW NA BAZIE SUROWCÓW ODPADOWYCH. dr hab. inż. Janusz Mikuła, prof. PK.

Wskaźniki aktywności K28 i K90 popiołów lotnych krzemionkowych o miałkości kategorii S dla różnych normowych cementów portlandzkich

EDF POLSKA R&D EDF EKOSERWIS

Wpływ popiołów lotnych krzemionkowych kategorii S na wybrane właściwości kompozytów cementowych

PL B1. Zestaw surowcowy przeznaczony do otrzymywania autoklawizowanych wyrobów wapienno-piaskowych

Geopolimery z tufu wulkanicznego. dr hab. inż. Janusz Mikuła prof. PK mgr inż. Michał Łach

Popiół lotny jako dodatek typu II w składzie betonu str. 1 A8. Rys. 1. Stosowanie koncepcji współczynnika k wg PN-EN 206 0,4

POPIÓŁ LOTNY DO BETONU 2016

Geopolimery z tufu wulkanicznego. dr hab. inż. Janusz Mikuła prof. PK mgr inż. Michał Łach

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 687

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 12/13

Informacja towarzysząca znakowaniu CE kruszywa lekkiego pollytag.

Chemia nieorganiczna Zadanie Poziom: podstawowy

Możliwość stosowania frakcjonowanych UPS w produkcji autoklawizowanego betonu komórkowego

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 24/14

KRUSZYWA WAPIENNE ZASTOSOWANIE W PRODUKCJI BETONU TOWAROWEGO I ELEMENTÓW PREFABRYKOWANYCH

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ BUDOWNICTWA I ARCHITEKTURY KATEDRA KONSTRUKCJI ŻELBETOWYCH I TECHNOLOGII BETONU

ZASTOSOWANIE POPIOŁÓW LOTNYCH Z WĘGLA BRUNATNEGO DO WZMACNIANIA NASYPÓW DROGOWYCH

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 21/12

Możliwości zastosowania frakcjonowanych UPS w budownictwie komunikacyjnym

Właściwości tworzyw autoklawizowanych otrzymanych z udziałem popiołów dennych

Możliwości wykorzystania frakcjonowanych UPS z kotłów fluidalnych w produkcji zapraw murarskich i tynkarskich

NISKOEMISYJNE PALIWO WĘGLOWE

KIERUNKI ROZWOJU TECHNOLOGII PRODUKCJI KRUSZYW LEKKICH W WYROBY

Składniki cementu i ich rola w kształtowaniu właściwości kompozytów cementowych

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 097

(12) OPIS PATENTOWY (19) PL (11) (13) B1

pellet Stelmet LAVA - 24 palety - worki po 15kg LAVA Pellet Opis produktu

1. Podstawowe prawa i pojęcia chemiczne

Badanie rozkładu składników chemicznych w wybranych frakcjach popiołu lotnego Aleksandra Sambor

Przemysł cementowy w Gospodarce o Obiegu Zamkniętym

UBOCZNE PRODUKTY SPALANIA W DROGOWNICTWIE NORMY A APROBATY TECHNICZNE

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

Pytania (w formie opisowej i testu wielokrotnego wyboru) do zaliczeń i egzaminów

PROJEKT: Innowacyjna usługa zagospodarowania popiołu powstającego w procesie spalenia odpadów komunalnych w celu wdrożenia produkcji wypełniacza

MATERIAŁY SUPERTWARDE

Instytutu Ceramiki i Materiałów Budowlanych

LEKKIE KRUSZYWO SZTUCZNE KOMPLEKSOWE ZAGOSPODAROWANIE ODPADÓW KOMUNALNYCH I PRZEMYSŁOWYCH. Jarosław Stankiewicz

CO WARTO WIEDZIEĆ O CEMENCIE?

Efekt ekologiczny modernizacji

2.4. ZADANIA STECHIOMETRIA. 1. Ile moli stanowi:


INSTYTUT BADAWCZY DRÓG I MOSTÓW Warszawa, ul. Jagiellońska 80 tel. sekr.: (0-22) , fax: (0-22)

Właściwości fizykochemiczne popiołów fluidalnych

SYSTEM ZARZĄDZANIA I AKREDYTACJE

Wpływ motoryzacji na jakość powietrza

Biomasa alternatywą dla węgla kamiennego

1. W źródłach ciepła:

CENNIK USŁUG ANALITYCZNYCH

Wstęp... CZĘŚĆ 1. Podstawy technologii materiałów budowlanych...

Opracowała: mgr inż. Ewelina Nowak

Udział procentowy 2) [%] 1 Odnawialne źródła energii, w tym biomasa 1,042% Biom 2 Węgiel kamienny

Udział procentowy 2) [%] 1 Odnawialne źródła energii, w tym biomasa 4,514% Biom 2 Węgiel kamienny

POPIÓŁ LOTNY SKŁADNIKIEM BETONU MASYWNEGO NA FUNDAMENTY NOWYCH BLOKÓW ENERGETYCZNYCH

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

X Konkurs Chemii Nieorganicznej i Ogólnej rok szkolny 2011/12

Instytutu Ceramiki i Materiałów Budowlanych

WYŻSZA SZKOŁA EKOLOGII I ZARZĄDZANIA Warszawa, ul. Olszewska 12. Część VI. Autoklawizowany beton komórkowy.

SYSTEM ZARZĄDZANIA I AKREDYTACJE

Mandat 114 ZAŁĄCZNIK I ZAKRES STOSOWANIA CEMENT, WAPNA BUDOWLANE I INNE SPOIWA HYDRAULICZNE LISTA WYROBÓW DO WŁĄCZENIA DO MANDATU

Bezemisyjna energetyka węglowa

Dr Sebastian Werle, Prof. Ryszard K. Wilk Politechnika Śląska w Gliwicach Instytut Techniki Cieplnej

UPS w produkcji klinkieru i cementów

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje rejonowe

Urządzenie do rozkładu termicznego odpadów organicznych WGW-8 EU

ALTERNATYWA DLA PŁYTY CEMENTOWEJ, GIPSOWEJ, OSB

Katowicki Węgiel Sp. z o.o. CHARAKTERYSTYKA PALIW KWALIFIKOWANYCH PRODUKOWANYCH PRZEZ KATOWICKI WĘGIEL SP. Z O.O.

Geopolimery z odpadów górniczych

III Konferencja: Motoryzacja-Przemysł-Nauka ; Ministerstwo Gospodarki, dn. 23 czerwiec 2014

Materiałoznawstwo optyczne CERAMIKA OPTYCZNA

Możliwości zastosowania fluidalnych popiołów lotnych do produkcji ABK

Opracowanie: Zespół Zarządzania Krajową Bazą KOBiZE

Efekt ekologiczny modernizacji

Dyrektywa IPPC wyzwania dla ZA "Puławy" S.A. do 2016 roku

Specjalista od trwałych betonów. Nowy produkt w ofercie CEMEX Polska cement specjalny HSR KONSTRUKTOR (CEM I 42,5 N HSR/NA CHEŁM )

METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej!

Przemiany substancji

Instytut Maszyn Cieplnych

Efekt ekologiczny modernizacji

WYKRYWANIE ZANIECZYSZCZEŃ WODY POWIERZA I GLEBY

Rodzaj i jakość spoiw a trwałość i bezpieczeństwo konstrukcji

PRODUKCJA I ZASTOSOWANIE NAWOZÓW MINERALNYCH W KONTEKŚCIE OCHRONY KLIMATU

Konkurs Chemiczny dla uczniów szkół ponadgimnazjalnych rok szkolny 2013/2014

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2

Poli(estro-węglany) i poliuretany otrzymywane z surowców odnawialnych - pochodnych kwasu węglowego

SYSTEM ZARZĄDZANIA I AKREDYTACJE

W zgodzie ze środowiskiem. Poznań,

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1344

LABORATORIUM ENERGETYCZNE

Opracował: mgr inż. Maciej Majak. czerwiec 2010 r. ETAP I - BUDOWA KOMPLEKSOWEJ KOTŁOWNI NA BIOMASĘ

Kryteria oceniania z chemii kl VII

Tablica 1. Wymiary otworów sit do określania wymiarów ziarn kruszywa. Sita dodatkowe: 0,125 mm; 0,25 mm; 0,5 mm.

ZBUS-TKW Combustion Sp. z o. o.

Nowe możliwości zastosowania kruszyw węglanowych w drogowych nawierzchniach z betonu cementowego oraz w betonach konstrukcyjnych

Materiały pomocnicze do przedmiotu Chemia I dla studentów studiów I stopnia Inżynierii Materiałowej

TECHNOLOGIA PLAZMOWA W ENERGETYCZNYM ZAGOSPODAROWANIU ODPADÓW

g % ,3%

20 lat co-processingupaliw alternatywnych w cementowniach w Polsce

Transkrypt:

WYTWARZANIE I ZASTOSOWANIA GEOPOLIMERÓW NA BAZIE SUROWCÓW ODPADOWYCH dr hab. inż. Janusz Mikuła, prof. PK.

Geopolimery informacje podstawowe Geopolimer termin obejmujący klasę nowoczesnych, badanych od lat 50 XX wieku, amorficznych, nieorganicznych polimerów glinokrzemianowych o specyficznym składzie i właściwościach. Geopolimery określane są mianem polisialanów. Podstawowy element budowy sialanów łańcuch polimerowy, składa się z czworościennych struktur SiO 4 i AlO 4 - połączonych między sobą przez wspólne atomy tlenu w dwu- lub trójwymiarową, skomplikowaną sieć. Ujemny ładunek fragmentów zawierających glin jest równoważony przez kationy metali.

Geopolimery informacje podstawowe Struktura geopolimerów jest zbliżona do budowy klatkowej podobnej jak w przypadku zeolitów, główna różnica polega na braku uporządkowania dalekiego zasięgu. W zależności od uporządkowania bliskiego zasięgu wyróżniamy trzy podstawowe jednostki strukturalne:

Geopolimery informacje podstawowe Większość metod syntezy geopolimerów sprowadza się do jednego procesu: rozdrobniony, wysuszony materiał pucolanowy (metakaolin lub popiół lotny) mieszany jest z wodnym roztworem odpowiedniego krzemianu (np. krzemianu sodu lub potasu) z dodatkiem silnej zasady z reguły stężonego wodorotlenku sodu lub potasu. Powstająca pasta zachowuje się podobnie, jak cement zastyga do twardej masy w przeciągu kilku godzin. Proces zastygania może być regulowany a w związku z tym i czas zastygania może się zmieniać od kilkunastu sekund do kilku lub kilkudziesięciu godzin. Reakcja polikondensacji nie jest reakcją samorzutną i konieczne jest dostarczenie energii z zewnątrz. Jej rozpoczęcie następuje po podwyższeniu temperatury powyżej 35 o C. Przyjmuje się również, że reakcje polikondensacji geopolimerów zachodzą już w temperaturze pokojowej lecz za optymalne uważa się temperatury 60-80 o C.

Geopolimery informacje podstawowe Uproszczony schemat wytwarzania geopolimerów

Geopolimery informacje podstawowe Własności geopolimerów zależą od rodzaju materiału podstawowego użytego do ich produkcji, od rodzaju i ilości aktywatora oraz od warunków w których zachodzi proces polikondensacji. Mieszanina Stężenie molowe roztworu NaOH Stosunek krzemianu sodu do roztworu NaOH (wagowo) 2 8M 2,5 4 14M 2,5

Geopolimery informacje podstawowe

Właściwości geopolimerów Geopolimery w porównaniu do tradycyjnych cementów mają wiele zalet, z których wymienić należy: wysoka wytrzymałość na ściskanie i zginanie (wytrzymałość na ściskanie od ok. 20 MPa do ok. 90 MPa, stosunek wytrzymałości na ściskanie do wytrzymałości na zginanie ok. 10 : 4,5), wysoka kwasoodporność oraz odporność na chlorki i siarczany, odporność na działanie czynników atmosferycznych, wysoka odporność termiczna (do ok. 900 o C), niska porowatość (zbliżona do naturalnego granitu), bardzo wysoka mrozoodporność, brak korozji zbrojenia stalowego w geopolimerze, wysoki stopień adhezji geopolimeru ze stalą, szybszy początek wiązania, stabilność wymiarów (brak skurczu lub niewielki skurcz przy wiązaniu),

Właściwości geopolimerów doskonała lejność a w związku z tym możliwość bardzo dokładnego odwzorowywania formy, możliwość uzyskiwania powierzchni wyrobu o różnych stopniach gładkości czy chropowatości poprzez dobór odpowiednich tworzyw na formy, ciężar właściwy 1,7 do 2,1 g/cm 3 (w zależności od składu masy), współczynnik rozszerzalności cieplnej jest ujemny (w temperaturze ok.100 o C = -2 * 10-4 o C -1 i szybko zmniejsza się do 250 o C = -0,76 * 10-4 o C -1 ), przewodność cieplna w zależności od składu masy geopolimerowej wynosi od 0,5 do 0,8 Wm -1 K -1, twardość Vickersa w zależności od składu masy geopolimerowej od 0,2 do 0,6 GPa możliwość obróbki wszystkimi metodami jak np. w przypadku granitu, marmuru, piaskowca,

Popiół lotny jako surowiec do produkcji geopolimerów Norma PN-EN 450 definiuje popiół lotny jako: Drobno uziarniony pył, składający się głównie z kulistych, zeszkliwionych ziaren, otrzymany przy spalaniu pyłu węglowego, mający właściwości pucolanowe, zawierający w swoim składzie przede wszystkim SiO 2 i Al 2 O 3, przy czym zawartość reaktywnego SiO 2, określona i oznaczona, jak podano w EN 197-1, wynosi co najmniej 25% masy. Składniki popiołów ze względu na wielkość udziału można podzielić na: składniki podstawowe (SiO 2, Al 2 O 3, Fe 2 O 3, CaO), składniki uboczne (MgO, SO 3, Na 2 O, K 2 O), składniki śladowe (TiO 2, P 2 O 5, Mn i inne), niespalony węgiel (straty żarowe).

Popiół lotny jako surowiec do produkcji geopolimerów O właściwościach popiołów lotnych decyduje wiele czynników, a do najważniejszych należą: rodzaj spalanego węgla; rodzaj instalacji, w której zachodzi spalanie węgla, tj. typ kotła i technologiczne warunki spalania; sposób przygotowania paliwa; metoda wychwytywania, odprowadzania i magazynowania popiołów; technologia odsiarczania gazów. Do niepożądanych składników popiołu lotnego jako surowca do wytwarzania geopolimerów należą: zbyt wysoką zawartość związków siarki, zawartość niespalonego węgla, zawartość wolnego wapna, a także zawartość związków żelaza. Analysis Report: Image2-3 Cząstki niespalonego węgla

Popiół lotny jako surowiec do produkcji geopolimerów Analysis Report: Image3-1 Analysis Report: Image3-2 Analysis Report: Image3-3

Popiół lotny jako surowiec do produkcji geopolimerów Związki żelaza Niespalony węgiel Obecność dużej ilości żelaza w postaci hematytu lub magnetytu może negatywnie wpływać na przebieg reakcji pucolanowej. Związki te zazwyczaj powstają na powierzchni ziaren popiołu i utrudniają dostęp fazy ciekłej do jego substancji szklistej. Wysoka zawartość niespalonego węgla (straty prażenia) zwiększa wodożądność popiołu.

Popiół lotny jako surowiec do produkcji geopolimerów Analysis Report: Image1-1 Analysis Report: Image1-2 Analysis Report: Image1-3

Wytrzymałość na ściskanie MPa Wyniki badań wytrzymałości na ściskanie geopolimerów otrzymanych z pyłów pochodzących z koncernu TURON Wytwarzanie S.A. 90 80 70 60 50 40 30 20 10 0 Siersza Blok nr 3 strefa 1 Siersza Blok nr 5 strefa 1 Siersza fluidalny Blok nr 2 strefa 1 Jaworzno III Blok I Łaziska 225 MW Bielsko-Biała Będzin

Zastosowanie geopolimerów płyty elewacyjne o wymiarach 30 x 35 x 2 cm

Zastosowanie geopolimerów cegła pełna 25 x 12 x 7 cm, cegła elewacyjna z warstwą spienioną

Zastosowanie geopolimerów płyta chodnikowa, krawężnik

Zastosowanie geopolimerów płytki tarasowe

Zastosowanie geopolimerów kostka brukowa

Zastosowanie geopolimerów kostka brukowa

Zastosowanie geopolimerów parapety

Zastosowanie geopolimerów elementy dekoracyjne

Geopolimery a ochrona środowiska Energetyka oraz przemysł wydobywczy i metalurgiczny wytwarzają ogromne ilości odpadów poprocesowych, których deponowanie w środowisku może powodować poważne problemy ekologiczne związane z zanieczyszczeniem gleby oraz wód powierzchniowych i podziemnych. Dlatego jednym z priorytetów w zakresie gospodarowania tego typu odpadami jest ich wykorzystanie do produkcji nowych, bezpiecznych dla środowiska materiałów. Produkcja geopolimerów może być realną alternatywę dla zagospodarowania niektórych odpadów sektora energetycznego, górniczego i metalurgicznego, w tym popiołów lotnych i żużli. Poprzez geopolimeryzację możliwe jest wykorzystanie znacznych ilości odpadów wytwarzanych przez te sektory i produkcję nowych wyrobów, a w związku z tym minimalizowanie wpływu tych sektorów na środowisko.

Geopolimery a ochrona środowiska Produkcja najważniejszego materiału budowlanego XX wieku, cementu portlandzkiego, związana jest z istotnym zanieczyszczeniem środowiska oraz problemami natury energetycznej. Jego uzyskiwanie odbywa się w bardzo wysokiej temperaturze rzędu 1400 1500 o C. Podczas produkcji emitowane są do atmosfery znaczne ilości dwutlenku węgla oraz wysokotoksyczne tlenki azotu. Wszystko to stanowi barierę dalszego wzrostu produkcji. Dwutlenek węgla w procesach produkcji cementu jest emitowany z dwóch podstawowych źródeł bezpośrednich: procesu dekarbonizacji węglanu wapnia i spalania paliw oraz dwóch źródeł pośrednich: produkcji energii elektrycznej wykorzystywanej w cementowni i transportu. Przemysł cementowy jest jednym z większych emitorów gazów cieplarnianych.

Geopolimery a ochrona środowiska W przemyśle cementowym, emisja gazów cieplarnianych pochodząca z procesów wytwarzania cementu wynosi ponad 47%, ze spalania pierwotnych nośników energii wynosi ponad 40%, z transportu około 5%. Jednym z głównych czynników stymulujących rozwój technologii nieorganicznych polimerów jest możliwość realnej alternatywy dla cementu portlandzkiego. Szacuje się, że synteza geopolimerów jest dwukrotnie mniej energochłonnym procesem niż produkcja cementu portlandzkiego oraz powoduje wydzielanie 4 8 razy mniej dwutlenku węgla. Może ona istotnie zmniejszyć obciążenia środowiska.

Politechnika Krakowska Im. Tadeusza Kościuszki Instytut Inżynierii Materiałowej Wydział Mechaniczny Dziękuję za uwagę