A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /v

Podobne dokumenty
Dr inż. Paulina Indyka

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4 DOI: /v

STRUCTURE AND PROPERTIES OF Ni-P/PTFE COMPOSITE COATINGS PRODUCED BY CHEMICAL REDUCTION METHOD

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /v x

NANOSTRUKTURALNE POWŁOKI NA BAZIE WĘGLIKA CHROMU CR 3 C 2 WYTWARZANE RÓŻNYMI METODAMI PVD

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW HYBRYDOWYCH TYPU CRC+CRN WYTWARZANYCH PRZEZ POŁĄCZENIE PROCESU CHROMOWANIA PRÓŻNIOWEGO Z OBRÓBKĄ PVD

MICROSTRUCTURE AND WEAR RESISTANCE OF STELLITE-6/WC METAL MATRIX COMPOSITE COATINGS

OTRZYMYWANIE KOMPOZYTÓW METALOWO-CERAMICZNYCH METODAMI PLAZMOWYMI

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

Mikrostruktura, struktura magnetyczna oraz właściwości magnetyczne amorficznych i częściowo skrystalizowanych stopów Fe, Co i Ni

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym

Technika jonowego rozpylenia

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Streszczenia / Abstracts 9/ 2012

ANALIZA WŁAŚCIWOŚCI MIKROMECHANICZNYCH I TRIBOLOGICZNYCH POWŁOK NANOKOMPOZYTOWYCH nc-wc/a-c I Nc-WC/a-C:H

Cracow University of Economics Poland

Dr inż. Łukasz Rogal zatrudniony jest w Instytucie Metalurgii i Inżynierii Materiałowej Polskiej Akademii Nauk na stanowisku adiunkta

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

TRIBOLOGICAL PROPERTIES OF PLASMA SPRAYED Al TiO 2 NANOSTRUCTURED COATINGS

W trzech niezależnych testach frezy z powłoką X tremeblue typu V803 był w każdym przypadku prawie 2 razy bardziej wydajne niż wersja niepowlekana.

Country fact sheet. Noise in Europe overview of policy-related data. Poland

WŁAŚCIWOŚCI TRIBOLOGICZNE POWŁOK ELEKTROLITYCZNYCH ZE STOPÓW NIKLU PO OBRÓBCE CIEPLNEJ

Wpływ powłoki Al Si na proces wytwarzania i jakość zgrzewanych aluminiowanych rur stalowych

FREZY PM; END MILLS PM

Streszczenia / Abstracts 2 / 2014

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

ZUŻYCIE TRIBOLOGICZNE POWŁOK KOMPOZYTOWYCH Ni-P-Al 2 O 3 WYTWORZONYCH METODĄ REDUKCJI CHEMICZNEJ

Development of SOFC technology in IEn OC Cerel

WPŁYW PROCESU TARCIA NA ZMIANĘ MIKROTWARDOŚCI WARSTWY WIERZCHNIEJ MATERIAŁÓW POLIMEROWYCH

SOLID CARBIDE RODS PRĘTY WĘGLIKOWE

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

T R I B O L O G I A 93

STRUCTURE OF PHOSPHOR TIN BRONZE CuSn10P MODIFIED WITH MIXTURE OF MICROADDITIVES

THE ANALYSIS OF WEAR OF THE LAYERS CONTAINING WC/W 2 C IN ABRASIVE SOIL

Krytyczne czynniki sukcesu w zarządzaniu projektami

Streszczenia / Abstracts 6/ 2011

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /v x

Struktury proponowane dla unikalnych rozwiązań architektonicznych.

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 2 DOI: /amm


photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

P/M COMPOSITES OF Al-Si-Fe-Cu ALLOY WITH SiC PARTICLES HOT-EXTRUDED AFTER PRELIMINARY COMPACTION

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /v y

THE MICROSTRUCTURE AND PROPERTIES FORMING SINTERED M35 HSS BASE CERMETS

DOI: / /32/37

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

Conception of reuse of the waste from onshore and offshore in the aspect of

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

miniature, low-voltage lighting system MIKRUS S

Nanoparticles processing for fabrication of multi-functional nanostructured coatings

ROZPRAWY NR 128. Stanis³aw Mroziñski

WŁASNOŚCI TRIBOLOGICZNE STOPÓW Z UKŁADU Ni-Ta-Al-M O DUŻEJ ZAWARTOŚCI WĘGLA

Pro-tumoral immune cell alterations in wild type and Shbdeficient mice in response to 4T1 breast carcinomas

EVALUATION OF THE SURFACE LAYER MIKROSTRUCTURE OF HIGH CARBON ALLOY STEEL AFTER LASER MODIFICATION

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

WPŁYW POWŁOKI NIKLOWEJ CZĄSTEK Al2O3 NA WŁAŚCIWOŚCI MATERIAŁU KOMPOZYTOWEGO O OSNOWIE ALUMINIOWEJ

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW HYBRYDOWYCH TYPU CrC+(Ni-Mo)+CrN

OpenPoland.net API Documentation

Własności mechaniczne kompozytów odlewanych na osnowie stopu Al-Si zbrojonych fazami międzymetalicznymi

OCENA WŁASNOŚCI TRIBOLOGICZNYCH NOWYCH MATERIAŁÓW NARZĘDZIOWYCH NA OSNOWIE NIKLU

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

WYBRANE WŁAŚCIWOŚCI KOMPOZYTÓW Al2O3-Mo W ASPEKCIE BADAŃ Al2O3 WYTRZYMAŁOŚCIOWYCH

WYTWARZANIE I WŁASNOŚCI SPIEKANYCH KOMPOZYTÓW STAL SZYBKOTNĄCA-WĘGLIK WC-MIEDŹ FOSFOROWA

WARSTWY NANOKOMPOZYTOWE Ni-P/Si3N4 WYTWARZANE METODĄ REDUKCJI CHEMICZNEJ NA STOPIE ALUMINIUM AA 7075

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW HYBRYDOWYCH WYTWARZANYCH W PROCESACH CHROMOWANIA DYFUZYJNEGO POŁĄCZONYCH Z OBRÓBKĄ PVD

WYSOKOTEMPERATUROWE WŁASNOŚCI TRIBOLOGICZNE STOPÓW Fe-Al

Innowacje społeczne innowacyjne instrumenty polityki społecznej w projektach finansowanych ze środków Europejskiego Funduszu Społecznego

Auschwitz and Birkenau Concentration Camp Records, RG M

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 3 DOI: /amm

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Has the heat wave frequency or intensity changed in Poland since 1950?

WŁAŚCIWOŚCI TRIBOLOGICZNE WARSTW DUPLEX WYTWARZANYCH W PROCESIE TYTANOWANIA PRÓŻNIOWEGO NA STALI NARZĘDZIOWEJ POKRYTEJ STOPEM NIKLU

ANTYŚCIERNE I ANTYKOROZYJNE WARSTWY NOWEJ GENERACJI WYTWARZANE W PROCESIE TYTANOWANIA PRÓŻNIOWEGO NA STALI NARZĘDZIOWEJ

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Wpływ parametrów procesu osadzania na morfologię powłok ze stali austenitycznej stabilizowanej azotem

The influence of the chosen welding technology on the microstructure and selected mechanical properties of welded magnesium alloy AZ91

TOPOGRAFIA WSPÓŁPRACUJĄCYCH POWIERZCHNI ŁOŻYSK TOCZNYCH POMIERZONA NA MIKROSKOPIE SIŁ ATOMOWYCH

Stopy metali nieżelaznych Non-Ferrous Alloys

MIKROSTRUKTURALNA ANALIZA MECHANIZMÓW ZUŻYCIA POWŁOK MONO- I WIELOWARSTWOWYCH BAZUJĄCYCH NA SKŁADZIE TiN i a-c:h

WARSTWY WĘGLIKOWE WYTWARZANE W PROCESIE CHROMOWANIA PRÓŻNIOWEGO NA POWIERZCHNI STALI POKRYTEJ STOPAMI NIKLU Z PIERWIASTKAMI WĘGLIKOTWÓRCZYMI

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

INVESTIGATION OF SCREWS FOUND IN WILHELM ORE MINE

WARSZAWA LIX Zeszyt 257

O NIEKTÓRYCH SKUTKACH ODDZIAŁYWANIA PROMIENIOWANIA LASERA RUBINOWEGO Z UKŁADEM CIENKA WARSTWA WĘGLIKÓW METALI NA KAPILARNO-POROWATYM PODŁOŻU

Streszczenie rozprawy doktorskiej

WŁAŚCIWOŚCI NANOSTRUKTURALNYCH POWŁOK WĘGLIKOWYCH NATRYSKANYCH NADDŹWIĘKOWO

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

p ISSN TRIBOLOGIA 1/2018 Key words: Abstract

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków ul.reymonta 25

Transkrypt:

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 57 2012 Issue 2 DOI: 10.2478/v10172-012-0053-0 M.W. RICHERT, A. MAZURKIEWICZ, J.A. SMOLIK THE DEPOSITION OF WC-Co COATINGS BY EBPVD TECHNIQUE OSADZANIE POWŁOK WC-Co TECHNIKAMI EBPVD The WC-Co carbides are widely used to deposit protective coatings on engineering surfaces against abrasion, erosion and other forms of wear existence. The nanostructure coatings offer high strength, a low friction coefficient and chemical and thermal stability. WCo coatings were deposited using EBPVD technique realized in original technological process implemented in the hybrid multisource device, produced in the Institute for Sustainable Technologies National Research Institute in Radom (Poland). The different kind of precursor sources was used. Depending on the source of precursors nanostructure of coatings forms continuous film or consist from nano-carbides. Nanocrystalline WC-Co coatings show hardness in the range of 510-1266 HV. The microstructure of coatings were observed by transmission electron microscopy (TEM). The phase consistence were determined bybrucker D8 Discover-Advance Diffractometer. The paper presents the original technological equipment, methodology, and technological parameters for the creation of the nanocomposite coatings WC. Keywords: electron beam evaporation, WC-Co coatings, microstructure Węgliki WC-Co są szeroko używane do osadzania na powierzchniach inżynierskich jako ochrona przeciwko tarciu, erozji i innym formom zużycia. Powłoki nanostrukturalne wykazują wysoką wytrzymałość, niski współczynnik tarcia oraz chemiczną i termiczną stabiność. Powłoki WC-Co zostały osadzane techniką EBPVD przy użyciu oryginalnego technologicznego procesu zhybrydowym źródłem prekursorów, w Instytucie Technologii Eksploatacji w Radomiu (Polska). Użyto różnego rodzaju źródeł prekursorów. W zależności od rodzaju użytego źródła prekursorów nanostrukturalne powłoki były zbudowane z ciągłych warstw lub z nano-węglików. Mikrotwardość nanokrystalicznych powłok mieściła się w zakresie 510-1266 µhv. Mikrostruktura powłok była obserwowana transmisyjnym mikroskopem elektronowym (TEM). Skład fazowy powłok określono za pomocą aparatu rentgenowskiego Brucker D8 Discover-Advance Diffractometer. Artykuł prezentuje oryginalne technologiczne urządzenie, metodologię i technologiczne parametry pozwalające na wytworzenie nanokompozytowej powłoki WC. 1. Introduction Tungsten carbide (WC) hard coatings are materials of great interest due to their excellent properties and great technological applications. The tribological applications require high hardness and high strength, a low friction coefficient and chemical and thermal stability [1,2]. WC-Co and WC coatings offer a great opportunity to develop such properties. This kind of coatings have relative high hardness (about 2200HV) and high melting temperature (about 2800 C). The WC exhibited extremely high modulus of elasticity, well above 700 GNm 2, a value exceeded only diamond, and has a high thermal conductivity of 1,2 J (cm.s.k) 1 [3]. It is difficult to obtain a pure WC phase, as W-C phase diagram shows a narrow range of homogeneity for WC. The different methods are used for tungsten carbide deposition; PVD, CVD, hybrid method as well as thermal spraying methods. Same investigations indicated the dependence of WC coatings on the PVD deposition parameters, for example gas composition or sputtering time [4]. This results proof that the deposition parameters can strongly influence on the microstructure, composition and properties of coatings. The influence of gas parameter flow on WC coatings was also investigated in the work [5]. It was found that the nanostructured WC-Co coatings show better mechanical and wear properties in comparison to coatings with the conventional microstructures [1]. The observations performed by TEM revealed that the nanoparticles of WC were embedded in the amorphic matrix [6]. It suggests that the coatings could be mixture of nanomaterials and amorphic AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF NON-FERROUS METALS, 30-059 KRAKÓW, 30 MICKIEWICZA AV., POLAND INSTITUTE FOR SUSTAINABLE TECHNOLOGIES NATIONAL RESEARCH INSTITUTE, 26-600 RADOM, 6/10 PUŁASKIEGO STR., POLAND

512 materials. The detailed investigations of microstructure thorough the WC cross section coatings were presented in the work [7]. The kind of the precursor source could be the one of the parameters influencing the microstructure of WC-Co coatings deposited by PVD method. In the presented work two kinds of precursors were used in the electron beam physical vapour deposition method (EBPVD). The effects of their influence on microstructure and properties of WC coatings were investigated. 2. Esperimental The tungsten carbide coatings have been deposited at aluminium alloy substrate by electron beam physical vapor deposition method (EB PVD). The coatings were prepared in multicatode hybrid evaporation system in Institute of Suitable Technologies in Radom, Poland. The two ways of precursor deposition were used. The first coating process was performed form precursor source consisting from WC-Co compacted powder evaporated in argon. The second process of deposition was performed by evaporation of tungsten in C 2 H 2 atmosphere. Before the deposition the substrate was heating by arc etching using the Cr cathode. The microstructure of coatings was observed by using transmission electron microscope JEM 2010 ARP. Thin foils, to microstructure observations, were prepared by the cross sections technique using Gathan materials and equipment. The phase composition of coatings was investigated by Brucker D8 Discover-Advance Diffractometer with copper tubing (40 kv, 30 ma, Ȧ = 1,540598 A ). The method of superficial layer measurement and Diffract Plus Evaluation software were used to examine the layers composition X-ray results. The scanning electron microscopy SU-70 with field emission gun thermally aided was used for investigation of chemical composition of deposited coatings. The microscopy was equipment with analyzers EDS UltraDry and WDS MagnaRay produced by Thermo Ecientific. The hardness of coatings was measured by Vickers method. 3. Results and discussion Figure 1 presents the microstructure of WC-Co coating prepared from WC-Co compacted powder evaporated in argon. It could be visible that the microstructure of coating is very differentiate and consists from bright and dark layers (Fig. 1a). The higher magnifications show that layers are built from nanometric circular in shape particles with the characteristic cafe grain contrast (Fig. 1b, Fig. 1c). In dark layers particles have larger dimension than inside bright ones. Mostly particles have spherical shape, however also some elongated particles were also found (Fig. 1b). Fig. 1. WC-Co coating deposited by EBPVD technique, a) coating microstructure observed by transmission electron microscopy, b) outer layer of deposition, c) characteristic spherical particles

513 The investigations performed by EDS technique identified close to substrate face the Cr layer, which results from ion surface cleaning by Cr source in the PVD chamber, before the deposition (Fig. 2). The next layer of coating contains Co and C, respectively in proportion: C K α 44,54% at to Co L 55,46% at. The outer layer is enriched in carbon and corresponds to dark layers in Fig.1b and Fig.1c consisting from spherical black particles. The performed analysis indicates that the coating is generally build from the mixture of Co and C particles (Fig. 3). The tungsten appears on the very low level, as it informs the number of counts presented in the upper right corner of figures. In the case of tungsten the only 37 counts appeared (Fig. 2e) in comparison to the 1027 counts for Co (Fig. 2d). The X- ray investigations, which results are presented in Fig. 4, show high level of background typical for amorphic phase. The picks from Al and Si background are only visible in the diagram. There were not found picks from WC phase, which confirms presented chemical identification of coating performed by the SEM EDS. It is possible that inside the Co layer exists some part of WC carbides but in very insignificant quantity. The average 510 HV hardness of the deposited layers was found. It is rather lower value in comparison to the hardness of WC-Co coatings, which usually have the level of about 1800-2100 HV [8]. Fig. 2. SEM EDS mapping showing a) microstructure of coating, b) distribution of C element, c) distribution of Cr element, d) distribution of Co element, e) distribution of W and f) substrate element Al Fig. 3. Co + C coating deposited from WC-Co compacted powder evaporated in argon

514 Fig. 4. X-ray diagram showing high level of background typical for amorphic phase The microstructure of coating obtained by deposition from tungsten source in the C 2 H 2 atmosphere using the PVD technique, observed by transmission electron microscopy, is presented in Fig. 5. The columnar microstructure was found. The detailed investigations show that column width has about 200-500 nm. The columns were built from narrow bands consisting from granules showing the nanometric dimensions (Fig.4c and Fig.4d). Figure 5 presents the exemplary EDS maps of chemical element distribution. The number of counts for carbide and tungsten is comparable (C 97, 71 Fig. 5b, W 81, 82 Fig. 5e). It suggests WC carbide existence inside the investigated areas (Fig.7a). The investigations show that next the regions with the WC carbides, the W 2 C carbides form, which example of occurrence is presented in Fig.7b. The calculation of the stoichiometry composition of carbides was also performed on the base of intensity elements plot recorded during SEM investigations. The X-ray investigations show that contrary to the deposition from WC-Co compacted powder evaporated in argon, coatings deposited from tungsten in C 2 H 2 atmosphere exhibited amorphic and nanometric form, which can be concluded from both high level of background and the broader peaks in phase diagrams (Fig. 6). The discrete picks from WC suggests some part of nanometric phase. Fig. 5. Microstructure of WC coating deposited by EBPVD, a) column microstructure, b) spatial distribution of columns, c),d) internal microstructure of columns

515 Fig. 6. The distribution of elements in coating, a) investigated area of coating, b) distribution of carbon, c) substrate element Al, d) distribution of Cr and e) distribution of tungsten Fig. 7. WC coating deposited from tungsten source in the C 2 H 2 atmosphere, a) area of occurrence of WC carbides, b) area of occurrence of W 2 C carbides Fig. 8. X-ray diagram of WC coating, deposited from tungsten source in the C 2 H 2 atmosphere, showing high level of background, some picks from Al, Si and discrete picks from WC are visible

516 4. Summary Considering the presented results, the mechanism of Cr interlayer deposition during the cleaning surface process was isolated. This is the reason of the Cr interlayer occurrence. The results of the work [5] reported that interlayer of chromium can improve the adhesion of WC coatings. From this point of view existence of Cr interlayer is advantageous in the deposited coating composition. The microstructure and phase composition of coating deposited from WC-Co compacted powder evaporated in argon in comparison to the coating obtained by deposition of tungsten source in the C 2 H 2 atmosphere demonstrate essential differences. In the first case the only insignificant percentage of WC was found. The main dominating elements inside the coating was Co and carbon. The mixture of Co and C particles was typical microstructure in this analysed coating. Results presented in the work [4] shown appearance of the WC carbide coating deposited in argon gases onto carbon steel substrates. Therefore it is difficult to recognized the reason of the unsuccessful deposition of WC carbides from WC-Co compacted powder evaporated in argon in the performed work. Probably the vapour pressure of tungsten was too low to deposition of this element in the enough quantity. The understanding of this phenomenon requires additional investigations. The deposition of tungsten in the C 2 H 2 atmosphere was successful and WC and W 2 C carbides were found inside the coating. Very characteristic is uniform structure of coating. The detailed investigations by TEM technique revealed that there exists very delicately visible internal columnar microstructure of coating having nanometric size of columns. The fine-structure coatings, deposited onto the sintered cutting toots we also found in the work [9]. On the basis of the experimental results of the X-ray investigations the phase consistence of coatings was characterized. In the both cases it has been found the mixture of the dominating amorphic phase and partly existence of nanometric state of coating. Especially in the case of coating deposited from tungsten source in the C 2 H 2 atmosphere probably larger part of coating characterized the nanometric state. The hardness of coating containing Co and C (coating deposited from WC-Co compacted powder) revealed level of about 510 HV. The hardness of coating containing WC and W 2 C carbides is about twice time higher (1266 HV). The essential increase of hardness in the second case is connected with the existence of hard carbides, which were absent in the first kind of coating. Acknowledgements The work was financially supported by polish project N R15 0001 06. REFERENCES [1] A. C z y z n i e w s k i, Deposition some properties of nanocrystalline WC and nanocomposite WC/a-C;H coatings, Thin Solid Films 433, 180-185 (2003). [2] O. W a n s t r a n d, M. L a r s s o n, P. H e d e n - q v i s t, Mechanical and tribological evaluation of PVD WC/C coatings, Surface and Coatings Technology 111, 247-254 (1999). [3] G. Z a m b r a n o, P. P r i e t o, F. P e r e z, C. R i n - c o n, H. G a l i n d o, L. C o t a - A r a i z a, J. E s - t e v e, Hardness and morphological characterization of tungsten carbide thin films, Surface and Coating Technology 108-109, 323-327 (1998). [4] J. E s t e v e, E. M a r t i n e z, G. Z a m b r a n o, P. P r i e t o, C. R i n c o n, H. G a l i n d o, Mechanical and tribological properties of tungsten carbide sputtered coatings, Thin Solid Films 373, 282-286 (2000). [5] O. W a n s t r a n d, M. L a r s s o n, P. H e d e n - q v i s t, Mechanical and tribological evaluation of PVD WC/C coatings, Surface and Coating Technology 111, 247-254 (1999). [6] T. M o s k a l e w i c z, B. W e n d l e r, S. Z i m o w s - k i, B. D u b i e l, A. C z y r s k a - F i l e m o n o - w i c z, Microstructure, micro-mechanical and tribological properties of the nc-wc/a-c nanocomposite coatings magnetron sputtered on non-hardened and oxygen hardened Ti-6Al-4V alloy, Surface & Coatings Technology 205, 2668-2677 (2010). [7] N.J.M. C a r v a l h o, J.Th.M. D e h o s s o n, Microstructure investigation of magnetron sputtered Wc/C coatings deposited on steel substrates, Thin Solid Films 388, 150-159 (2001). [8] Z. Z a k F a n g, X. W a n g, T. R y u, K. S u p H w a n g, H.Y. S o h n, Synthesis, sintering, and mechanical properties nanocrystalline cemented tungsten carbide A review, Int. Journal of Refractory Metals and Hard Materials 27, 288-299 (2009). [9] L.A. D o b r z a ń s k i, M. S t a s z a k, K. G o ł o m b e k, A. Ś l i w a, M. P o n c i e l e j k o, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools, Archives of Metallurgy and Materials 55, 187-193 (2010). Received: 10 December 2011.