INFLUENCE OF MATERIAL PROPERTIES ON PARAMETERS OF SILICON SOLAR CELLS *



Podobne dokumenty
Laboratorium z Alternatywnych Źródeł Energii dla studentów IV roku EiT

THE MAIN PROPERTIES OF AMORPHOUS ANTIREFLECTIVE COATING FOR SILICON SOLAR CELLS *

Rok akademicki: 2015/2016 Kod: IEL s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Fotowoltaika i sensory w proekologicznym rozwoju Małopolski


WYKAZ DOROBKU NAUKOWEGO

Wpływ temperatury podłoża na właściwości powłok DLC osadzanych metodą rozpylania katod grafitowych łukiem impulsowym

Medical electronics part 10 Physiological transducers

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

INSTYTUT METALURGII I I INYNIERII MATERIAŁOWEJ PAN

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Has the heat wave frequency or intensity changed in Poland since 1950?

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

Zarządzanie sieciami telekomunikacyjnymi

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Revenue Maximization. Sept. 25, 2018

Instytut Metalurgii i Inżynierii Materiałowej PAN, Laboratorium Fotowoltaiczne, Kozy, ul. Krakowska 22

Knovel Math: Jakość produktu

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Tychy, plan miasta: Skala 1: (Polish Edition)

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

DOI: / /32/37

Streszczenia / Abstracts 7/ 2012

No matter how much you have, it matters how much you need

WPŁYW CHROPOWATOŚCI POWIERZCHNI MATERIAŁU NA GRUBOŚĆ POWŁOKI PO ALFINOWANIU

Few-fermion thermometry

Streszczenie rozprawy doktorskiej

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Odnawialne źródła energii. Renewable Energy Resources. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

katalog / catalogue DIAMOS

Ogniwa fotowoltaiczne

2. Innowacyjne elastyczne pokrycie fotowoltaiczne",

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

G. Kulesza, P. Panek, P. Zięba, Silicon Solar cells efficiency improvement by the wet chemical

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Instytut Metalurgii i Inżynierii Materiałowej PAN, Laboratorium Fotowoltaiczne, Kozy, ul. Krakowska 22

ONTEC C DYSKRETNA OCHRONA

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Pomiary hydrometryczne w zlewni rzek

Veles started in Our main goal is quality. Thanks to the methods and experience, we are making jobs as fast as it is possible.

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

deep learning for NLP (5 lectures)

Fargo, North Dakota Commercial Roofing Contractor Tecta America Dakotas. [stm_sidebar sidebar= 7836 ]

Krytyczne czynniki sukcesu w zarządzaniu projektami

Hard-Margin Support Vector Machines


Sargent Opens Sonairte Farmers' Market

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

ROZPRAWY NR 128. Stanis³aw Mroziñski

OpenPoland.net API Documentation

Adres do korespondencji: Instytut Metalurgii i Inżynierii Materiałowej PAN, Kraków, ul. Reymonta 25

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Instytut Metalurgii i Inżynierii Materiałowej PAN, Laboratorium Fotowoltaiczne, Kozy, ul. Krakowska 22

Cracow University of Economics Poland

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

Marek Lipiński WPŁYW WŁAŚCIWOŚCI FIZYCZNYCH WARSTW I OBSZARÓW PRZYPOWIERZCHNIOWYCH NA PARAMETRY UŻYTKOWE KRZEMOWEGO OGNIWA SŁONECZNEGO

1. WPROWADZENIE. Dariusz Lipiński 1, Jerzy Sarnecki 1, Andrzej Brzozowski 1, Krystyna Mazur 1

Technika jonowego rozpylenia

Innowacyjne technologie wielofunkcyjnych materiałów i struktur

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Inverse problems - Introduction - Probabilistic approach

Convolution semigroups with linear Jacobi parameters

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Typ MFPCR FOR THE MOST DEMANDING REQUIREMENTS ON THE PURITY OF INDOOR AIR, WORKSTATIONS, AND DEVICES

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to teachers

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

Conception of reuse of the waste from onshore and offshore in the aspect of

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Perspectives of photovoltaics in Poland

BARIERA ANTYKONDENSACYJNA

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Twoje osobiste Obliczenie dla systemu ogrzewania i przygotowania c.w.u.

European Crime Prevention Award (ECPA) Annex I - new version 2014

Rev Źródło:

WPŁYW ROZKŁADU WIDMA PROMIENIOWANIA SŁONECZNEGO NA PARAMETRY MULTIKRYSTALICZNEGO OGNIWA KRZEMOWEGO

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Formation of Graded Structures and Properties in Metal Matrix Composites by use of Electromagnetic Field

Wytwarzanie nowych scyntylatorów polimerowych na bazie poliwinylotoluenu do hybrydowego tomografu J-PET/MR

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

PRZEDSIEBIORSTWO LUSARSKO-BUDOWLANE LESZEK PLUTA

Transkrypt:

Inluence of material properties on parameters of silicon solar cells PL ISSN 0209-0058 MATERIAŁY ELEKTRONICZNE T. 36-2008 NR 4 INFLUENCE OF MATERIAL PROPERTIES ON PARAMETERS OF SILICON SOLAR CELLS * Barbara Swatowska 1, Tomasz Stapiński 1, 2, Grzegorz Całko 1 Multicrystalline and monocrystalline silicon solar cells are the most popular for commercial applications. Numerous material parameters could affect solar cell performance. The application of antireflective coatings of amorphous silicon based alloys can increase device efficiency. Such coatings due to tunable energy gap and refractive index and non-expensive fabrication method - Plasma Enhanced Chemical Vapour Deposition at 13.56 MHz are good candidates for large scale application. The authors presented the influence of material properties of bulk cell on solar cell efficiency by the use of computer PC-1D simulation program, which solves the fully coupled nonlinear equations for the quasi-one-dimensional transport of electrons and holes in crystalline devices, with emphasis on photovoltaic devices. The temperature, series and shunt resistance, recombination velocity and wafer thickness have the influence on current- -voltage photo-characteristics of solar cells and their efficiency. Also the influence of thickness, reflective coefficient and refractive index of antireflective coatings on solar cells performance was examined. The optimal parameters of efficient solar cell were determined. Key words: silicon solar cell, ARC 1. INTRODUCTION It is very important for research to have a possibility of theoretical verification of some technological or experimental aspects. PC-1D simulation program is one of the most popular tools among the photovoltaic areas [1]. In the past years, PC-1D was cited at least twenty times in refereed journals [2]. This program is available from the Photovoltaics Special Research Centre at the University of New South 1) Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland 2) Department of Computer Science, WSEiP, ul. Jagiellońska 109a, 25-734 Kielce, Poland, email: swatow@agh.edu.pl * Praca prezentowana na XXXII International Conference of IMAPS - CPMP IEEE, Poland, Pułtusk, 21-24.09.2008 114

Wales in Australia [3]. PC-1D is commonly used for interpreting experimental data to determine the structure of a solar cell. PC-1D takes into account the effects of free carrier absorption and trap-assisted tunneling. The new free-carrier absorption model has already been discussed in a journal publication [4]. In this work we propose the use PC-1D program to describe the influence of parameters of antireflective coatings and silicon wafer material parameters on the properties of solar cells. 2. EXPERIMENTAL The optimization of parameters of solar cells especially their efficiency needs the deposition of antireflective coating (ARC) with strictly defined properties. Additionally a great role plays the structure of cell. The application of PC-1D was very useful for determination of proper correlation between the parameters of films and properties of solar cells. The physical properties of ARC films taken into account for photovoltaic application are: optimal energy gap, refractive index, low effective reflectivity and thickness. Their values may be predicted by the use of simulation method based on solar cell model. Parameters such as dimension of solar cell, temperature, diffusion length, resistivity of the wafer, dopants profiles, surface recombination were applied in simulation method. Also the antireflective film geometry and optical data are taken into account. The values of all parameters are listed in Tab. 1. Table 1. Main parameters of silicon solar cells applied in simulation by program PC-1D [5]. Tabela 1. Główne parametry krzemowych ogniw słonecznych zastosowane w programie symulacyjnym PC-1D [5]. Parameters applied in simulation and their units Values Thickness of solar cell d c [µm] 300 Area of solar cell A 0 for Θ=0 [cm 2 ] 100 Temperature T c [ C] 25 Diffusion length of minority carriers in base L c [µm] 80 Resistivity of base type p ρ c [Ω cm] 1 Donor profile erfc with values: surface resistance R ρ [Ω/ ] surface concentration N D [1/cm 3 ] junction depth x c [µm] 30 3.688 x 10 20 0.3 115

Inluence of material properties on parameters of silicon solar cells Parameters applied in simulation and their units Speed of front-surface recombination in solar cell, for electrons S n and holes S p [cm/s] Values from 1 to 1 x 10 7 Speed of rear-surface recombination in solar cell, for electrons S nr and holes S pr [cm/s] 1 x 10 5 Serial resistance of solar cell R s [Ω] 0.015 Global irradiation AM 1.5 [W/m 2 ] 1000 Antireflective coating: thickness d AR [nm] refractive index n Reflectivity for antireflective coating [%] 8-12 Other parameters 80 2 standard values for Si 3. RESULTS AND DISCUSSIONS 3.1. Influence of antireflective coatings parameters on solar cell properties Investigated solar cells structures were obtained on p-type multicrystalline silicon wafers produced by Bayer, 300 µm thick with a resistivity of 1 Ωcm according to the technological method described in [4]. As an antireflector a-si:c:h films were deposited on upper surface of these solar cells. Using global spectrum sun simulator [5] current-voltage characteristics of cells with and without a-sic:h films were measured under an AM 1.5 illumination (1000 W/m 2 ). This experiment allow us to determine the basic solar cells parameters like: I SC short circuit current, V OC open circuit voltage, FF fill factor and E ff efficiency. The current-voltage characteristics [6] with the use of double exponential relationship allow fitting these parameters (Fig. 1). The model has been thoroughly describe by Appelbaum et al. [7]. The formula has a following form: V + I RS V I = I ph I s1 exp 1 I s 2 A1V exp t + I RS A2Vt V 1 + I RS Rsh (1) where: I current, V voltage, I ph generated photocurrent, R S series resistance, R sh shunt resistance, A 1 and A 2 diode ideality factors, I s1 and I s2 saturation currents. V t is equal to kt/e. The A 1 equal 1.0 and A 2 as equal 2.0 was chosen. To obtain high cell efficiency it is necessary to reduce the surface recombination losses. Very effective 116

method is the use of hydrogen rich antireflection coating, which apparently reduces defects concentration in multicrystalline silicon. Fig. 1. Scheme of two-diode model of solar cells. Rys. 1/ In Fig. 2 the generated by PC-1D current-voltage characteristics for silicon solar cells with ARC of various optical refractive indices n are presented. It is evident that the recommended n value equals 2. PECVD deposition process parameters were chosen to produce a-si:c:h and a-si:n:h films of refractive index of about 2, which was confirmed by optical measurements of these films [8-9]. The electrical measurement confirmed that this is the best value of n for silicon solar cells. Fig. 2. Simulated I-V characteristics for solar cells with ARC of different refractive index. Rys. 2. Charakterystyki prądowo-napięciowe I-V ogniw słonecznych z warstwą ARC, symulowane dla różnych współczynników załamania warstwy antyrefleksyjnej. 117

Inluence of material properties on parameters of silicon solar cells Fig. 3 shows the generated by PC-1D current-voltage characteristics dependence on the thickness of antireflective films. The highest values of solar cell current were obtained for thickness in the range from 70 to 85 nm, which is optimal for commercial applications. The amorphous silicon based alloys (a-si:c:h and a-si:n:h) used for solar cells modification have thickness values of about 80 nm. The influence of ARC thickness on solar cell efficiency was previously experimentally investigated [9-10]. Fig. 3. Simulated I-V characteristics for solar cells with ARC of different thickness. Rys. 3. Charakterystyki prądowo-napięciowe I-V ogniw słonecznych z warstwą ARC, symulowane dla różnych grubości warstwy antyrefleksyjnej. The role of an antireflective film is to decrease the effective reflectivity of the upper cell surface. The theoretical prediction of the influence of ARC reflectivity on I-V characteristics of solar cells is presented in Fig. 4. In real measurements the highest efficiency of solar cells we can observe for effective reflectivity of ARC between 5 and 9% [10]. The electrical measurement of mc-si solar cells with an ARC revealed good agreement with simulation results. 118

Fig. 4. Simulated I-V characteristics for solar cells without and with ARC of various reflectivity. Rys. 4. Charakterystyki prądowo-napięciowe I-V ogniw słonecznych bez i z warstwą ARC, symulowane dla różnych współczynników odbicia warstwy antyrefleksyjnej. 3.2. Influence of silicon wafers parameters In Fig. 5 the dependence of Si wafer resistivity on final efficiency of silicon solar cell is presented. One can observe the linear decrease of such dependence. This simulation result indicates that low resistivity of Si wafers are preferable. From the technological literature announcements [11] it is know that the optimal resistivity value is 1 Ωcm. Also the solar cell industry enterprises prefer such base resistivity value in large scale production. The resistivity of the basis of all modified in our University solar cells equals 1 Ωcm. The carriers generated in solar cells before reaching the contacts recombine with defects, impurities, surface defects and the current output is diminished. Minority- -carrier lifetime (τ) is a quantitative measure of such phenomena. Characterization of lifetime is frequently used to qualify the crystalline Si material before it is used in device processing. Quality of PV material is strongly connected with τ. In Fig. 6 the simulation of dependence of solar cells efficiency on minority carrier lifetime is shown. One can see that the higher values of lifetime are preferable. Our earlier investigations concerned the measurements of decay rates of the photovoltage and photocurrent for the determination of minority-carrier lifetime and surface recombination velocity of solar cell, the most important transport phenomena in solar cells. The decays were obtained from experiments using specially designed 119

Inluence of material properties on parameters of silicon solar cells measurement setup where a laser diode controlled from the pulse generator and specially designed modulator circuit is used [6]. Fig. 5. Simulated dependence of solar cells efficiency on the resistivity of Si basis generated by PC-1D. Rys. 5. Zależności sprawności ogniw słonecznych od rezystywności bazy, wygenerowane za pomocą symulacji PC-1D. Fig. 6. Simulated dependence of solar cells efficiency on minority carrier lifetime generated by PC-1D. Rys. 6. Zależności sprawności ogniw słonecznych od czasu życia nośników mniejszościowych, wygenerowane za pomocą symulacji PC-1D. 120

Photocurrent decays are generally nonexponential, but the decay time could be determined as the initial logarithmic slope after termination of the light pulse at t = 0 [12] 1 ô ô = 1 I p h d I p h d t t = 0 (2) The typical photovoltage decay curve is presented in Fig. 7. It is clearly seen that only after the switching off the light the exponential like decay exists. From the decay time curves it is possible to calculate the lifetime, using above mentioned formula, which was of about 40 μs. This value is in the range where the achievement of solar cell of higher efficiencies is possible [6]. Fig. 7. Time dependence of the photovoltage after switching off the light for silicon solar cell (after [6]). See that just after the termination of the light pulse the decay trend is exponential. Rys. 7. Przebieg zaniku fotonapięcia na otwartym ogniwie Cz-Si [6]. Zaraz po zgaszeniu oświetlenia zależność przyjmuje charakter eksponencjalny. 4. CONCLUSIONS The possibility of the simulation of working parameters of solar cells with a-si:c:h and a-si:n:h antireflective was of a great importance for possible applications of these films. The simulation results fully confirmed a strong relation between the cell efficiency and the thickness refractive index and reflectivity coefficient of ARCs. All investigated solar cells have material parameters values predicted by PC-1D 121

simulation program as preferable in photovoltaics. The theoretical simulation provides quantitative values of the main parameters of the antireflective coating which is very important for designing advance solar cell structure. Later investigations of solar cells confirmed the theoretical predictions. Experiments on high quality c-si cells give decay times that are comparable to the results obtained in other laboratories [13-14]. REFERENCES [1] Clugston D.A., Basore P.A.: PC-1D version 5: 32-bit solar cell modeling on personal computers, Photovoltaic Specialists Conference, Anaheim, USA, Conference Record of the Twenty-Sixth IEEE 29 Sept.-3 Oct. 1997, 207-210 [2] Science Citation Index, 1996-1997 [3] School of Photovoltaic and Renewable Energy Engineering at The University of New South Wales: [http://www.pv.unsw.edu.au/links/products/pc1d.asp] [4] Clugston D.A., Basore P.A.: Modeling free-carrier absorption in solar cells, Progress in Photovoltaics, 5, (1997), 229-236 [5] Swatowska B., Stapiński T.: Influence of properties of amorphous a-si:c:h coatings on parameters of silicon solar cells theoretical simulation, Proc. of XXX Intern. Conf. of IMAPS Poland Chapter, Kraków, 24 27.09.2006, 463-466 [6] Wójcik P., Pisarkiewicz T., Stapiński T.: Photoconductivity decay in thin film solar cell structures, Proc. of European Microelectronics Packaging & Interconnection Symposium, IMAPS Europe, Kraków, 16 18.06.2002, 350-352 [7] Appelbaum J., Chairt A., Thompson D.: Parameter estimation and screening of solar cells, Progress in Photovoltaics: Research and Applications, 1, (1993) 93 [8] Stapiński T., Swatowska B., Kluska S., Walasek E.: Optical and structural properties of amorphous silicon-carbon films for optoelectronic applications, Appl. Surf. Sci., 228, (2004), 367-374 [9] Swatowska B., Stapiński T.: Amorphous hydrogenated silicon-nitride films for applications in solar cells, Vacuum, 82, (2008), 942-946 [10] Swatowska B., Czternastek H., Lipiński M., Stapiński T., Zakrzewska K.: Antireflective coatings of a-si:c:h on silicon, Proc. of XXVIII Intern. Conf. of IMAPS Poland Chapter, Wrocław, 26 29.09.2004, 385-388 [11] Mason N.B., Bruton T.M., Gledhill S., Heasman K.C., Hartley O., Morilla C., Roberts S.: The selection and performance of monocrystalline silicon substrates for commercially viable 20% efficient lid-free solar cells, 19 th European PV Solar Energy Conference, Paris, France, June 2004, 620 [12] Pisarkiewicz T.: Photodecay method in investigation of materials and photovoltaic structures, Opto-Electronics Review, 12, (2004), 33-40 122

[13] Rose B.H., Weaver H.T.: Determination of effective surface recombination velocity and minority carrier lifetime in high efficiency Si solar cells, J. Appl. Phys., 54, (1983), 238-247 [14] Jain S.C., Ray U.C.: Photovoltage decay in p-n junction solar cells including the effects of recombination in the emitter, J. Appl. Phys., 54, (1983), 2079-2085 WPŁYW WŁAŚCIWOŚCI MATERIAŁOWYCH NA PARAMETRY EKSPLOATACYJNE KRZEMOWYCH OGNIW SŁONECZNYCH Światowa produkcja ogniw słonecznych opiera się przede wszystkim na krzemie mono- i multikrystalicznym. Właściwości materiałowe istotnie wpływają na jakość, a przede wszystkim na ich parametry użytkowe. Wydatny wzrost sprawności ogniw można uzyskać poprzez zastosowanie warstw ARC. Tego typu powłoki, z możliwością optymalizacji współczynnika załamania oraz przerwy optycznej, można otrzymywać metodami Chemicznego Osadzania z Fazy Gazowej (RFCVD Radio Frequency Chemical Vapour Deposition). Autorzy zbadali wpływ właściwości materiałowych na sprawność ogniw korzystając z metody numerycznej program PC-1D. Program umożliwia wyznaczenie końcowych parametrów ogniw z uwzględnieniem zarówno stałych materiałowych podłoża, jak i elementów modyfikujących to ogniwo. Na kształt charakterystyki prądowo-napięciowej I-V (model dwudiodowy) i sprawność ogniwa mają wpływ: temperatura, rezystancja szeregowa i zwierająca, szybkość rekombinacji oraz grubość podłoża. W przypadku warstw antyrefleksyjnych, decydujące są: grubość, współczynnik załamania oraz współczynnik odbicia. Program symulacyjny pozwolił określić optymalne parametry wydajnych ogniw słonecznych na bazie krzemu, z uwzględnieniem bardzo istotnego wpływu warstw ARC. Słowa kluczowe: ogniwo słoneczne, ARC 123